首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The termini of rRNA processing intermediates and of mature rRNA species encoded by the 3' terminal region of 23S rDNA, by 4.5S rDNA, by the 5' terminal region of 5S rDNA and by the 23S/4.5S/5S intergenic regions from Zea mays chloroplast DNA were determined by using total RNA isolated from maize chloroplasts and 32P-labelled rDNA restriction fragments of these regions for nuclease S1 and primer extension mapping. Several processing sites detectable by both 3' and 5' terminally labelled probes could be identified and correlated to the secondary structure for the 23S/4.5S intergenic region. The complete 4.5S/5S intergenic region can be reverse transcribed and a common processing site for maturation of 4.5S and 5S rRNA close to the 3' end of 4.5S rRNA was detected. It is therefore concluded that 23S, 4.5S and 5S rRNA are cotranscribed.  相似文献   

2.
Processing pathway of Escherichia coli 16S precursor rRNA.   总被引:5,自引:2,他引:3       下载免费PDF全文
Immediate precursors of 16S rRNA are processed by endonucleolytic cleavage at both 5' and 3' mature termini, with the concomitant release of precursor fragments which are further metabolized by both exo- and endonucleases. In wild-type cells rapid cleavages by RNase III in precursor-specific sequences precede the subsequent formation of the mature ends; mature termini can, however, be formed directly from pre-16S rRNA with no intermediate species. The direct maturation is most evident in a strain deficient in RNase III, and the results in whole cells are consistent with results from maturation reactions in vitro. Thus, maturation does not require cleavages within the double-stranded stems that enclose mature rRNA sequences in the pre-16S rRNA.  相似文献   

3.
4.
Formation of the eukaryotic ribosomal 5 S RNA-protein complex has been shown to be critical to ribosome biogenesis and has been speculated to contribute to a quality control mechanism that helps ensure that only normal precursors are processed and assembled into active ribosomes. To study the structural basis of these observations, the RNA-protein interface in the 5 S RNA-protein complex of the yeast (Saccharomyces cerevisiae) ribosome was examined based on a systematic introduction of targeted base substitutions in the RNA sequence. Most base substitutions had little or no effect on the efficiency of complex formation, but large effects were observed when changes disrupted helix I, the secondary structure formed between the interacting termini. Again, only modest effects were evident when the extended 3' end of the mature RNA molecule was altered, but essentially no complex was formed when the 5' end of the mature 5 S RNA sequence was artificially extended by one nucleotide. In vitro analyses demonstrated that this extension also dramatically altered the maturation of 5 S rRNA precursor molecules as well as the stability of the mature 5 S rRNA. Taken together, the results indicate that in the course of RNA maturation, the 5 S RNA-binding protein binds precisely over or "caps" the termini in a critical manner that protects the RNA from further degradation.  相似文献   

5.
6.
Over 25 years ago, Pace and coworkers described an activity called RNase M5 in Bacillus subtilis cell extracts responsible for 5S ribosomal RNA maturation (Sogin & Pace, Nature, 1974, 252:598-600). Here we show that RNase M5 is encoded by a gene of previously unknown function that is highly conserved among the low G + C gram-positive bacteria. We propose that the gene be named rnmV. The rnmV gene is nonessential. B. subtilis strains lacking RNase M5 do not make mature 5S rRNA, indicating that this process is not necessary for ribosome function. 5S rRNA precursors can, however, be found in both free and translating ribosomes. In contrast to RNase E, which cleaves the Escherichia coli 5S precursor in a single-stranded region, which is then trimmed to yield mature 5S RNA, RNase M5 cleaves the B. subtilis equivalent in a double-stranded region to yield mature 5S rRNA in one step. For the most part, eubacteria contain one or the other system for 5S rRNA production, with an imperfect division along gram-negative and gram-positive lines. A potential correlation between the presence of RNase E or RNase M5 and the single- or double-stranded nature of the predicted cleavage sites is explored.  相似文献   

7.
Ordered processing of Escherichia coli 23S rRNA in vitro.   总被引:6,自引:2,他引:4       下载免费PDF全文
In an RNase III-deficient strain of E. coli 23S pre-rRNA accumulates unprocessed in 50S ribosomes and in polysomes. These ribosomes provide a substrate for the analysis of rRNA maturation in vitro. S1 nuclease protection analysis of the products obtained in in vitro processing reactions demonstrates that 23S rRNA processing is ordered. The double stranded stem of 23S rRNA is cleaved by RNase III in vitro to two intermediate RNAs at the 5' end and one at the 3' end. Mature termini are then produced by other enzyme(s) in a soluble protein fraction from wild-type cells. The nature of the reaction at the 5' end is not clear, but the reaction at the 3' end is exonucleolytic, producing three heterogeneous mature termini. The two reactions are coordinated; 3' end maturation progresses concurrently with cleavages at the 5' end. Two results suggest a possible link between final maturation and translation: in vitro, mature termini are formed efficiently in the presence of additives required for protein synthesis; and all the processing intermediates detected from in vitro reactions are also found in polysomes from wild-type cells.  相似文献   

8.
9.
10.
The final stage in the formation of the two large subunit rRNA species in Saccharomyces cerevisiae is the removal of internal transcribed spacer 2 (ITS2) from the 27SB precursors. This removal is initiated by endonucleolytic cleavage approximately midway in ITS2. The resulting 7S pre-rRNA, which is easily detectable, is then converted into 5.8S rRNA by the concerted action of a number of 3'-->5' exonucleases, many of which are part of the exosome. So far the complementary precursor to 25S rRNA resulting from the initial cleavage in ITS2 has not been detected and the manner of its conversion into the mature species is unknown. Using various yeast strains that carry different combinations of wild-type and mutant alleles of the major 5'-->3' exonucleases Rat1p and Xrn1p, we now demonstrate the existence of a short-lived 25.5S pre-rRNA whose 5' end is located closely downstream of the previously mapped 3' end of 7S pre-rRNA. The 25.5S pre-rRNA is converted into mature 25S rRNA by rapid exonucleolytic trimming, predominantly carried out by Rat1p. In the absence of Rat1p, however, the removal of the ITS2 sequences from 25.5S pre-rRNA can also be performed by Xrn1p, albeit somewhat less efficiently.  相似文献   

11.
12.
The CafA protein, which was initially described as having a role in either Escherichia coli cell division or chromosomal segregation, has recently been shown to be required for the maturation of the 5'-end of 16 S rRNA. The sequence of CafA is similar to that of the N-terminal ribonucleolytic half of RNase E, an essential E. coli enzyme that has a central role in the processing of rRNA and the decay of mRNA and RNAI, the antisense regulator of ColE1-type plasmids. We show here that a highly purified preparation of CafA is sufficient in vitro for RNA cutting. We detected CafA cleavage of RNAI and a structured region from the 5'-untranslated region of ompA mRNA within segments cleavable by RNaseE, but not CafA cleavage of 9 S RNA at its "a" RNase E site. The latter is consistent with the finding that the generation of 5 S rRNA from its 9 S precursor can be blocked by inactivation of RNase E in cells that are wild type for CafA. Interestingly, however, a decanucleotide corresponding in sequence to the a site of 9 S RNA was cut efficiently indicating that cleavage by CafA is regulated by the context of sites within structured RNAs. Consistent with this notion is our finding that although 23 S rRNA is stable in vivo, a segment from this RNA is cut efficient by CafA at multiple sites in vitro. We also show that, like RNase E cleavage, the efficiency of cleavage by CafA is dependent on the presence of a monophosphate group on the 5'-end of the RNA. This finding raises the possibility that the context dependence of cleavage by CafA may be due at least in part to the separation of a cleavable sequence from the 5'-end of an RNA. Comparison of the sites surrounding points of CafA cleavage suggests that this enzyme has broad sequence specificity. Together with the knowledge that CafA can cut RNAI and ompA mRNA in vitro within segments whose cleavage in vivo initiates the decay of these RNAs, this finding suggests that CafA may contribute at some point during the decay of many RNAs in E. coli.  相似文献   

13.
The maturation of 5S ribosomal ribonucleic acid (rRNA) in the obligately photoautotrophic unicellular blue-green alga Anacystis nidulans has been studied by using polyacrylamide gel electrophoresis and T1 ribonuclease oligonucleotide analysis. A. nidulans mature 5S rRNA (m5) is of approximately the same molecular weight as the 5S rRNA of Escherichia coli, and is derived by cleavage of a precursor (p5) containing a few (three to six) additional nucleotides. Some of these additional nucleotides occur at the 5' end of the precursor molecule; others may occur at the 3' end. Kinetic experiments indicate that precursors of mature 5S rRNA larger than p5 either do not exist or are very transient in A. nidulans. These results are discussed in relation to those obtained with other prokaryotes.  相似文献   

14.
15.
Eukaryotic 5S rRNA hybridizes specifically with 18S rRNA in vitro to form a stable intermolecular RNA:RNA hybrid. We have used 5S rRNA/18S rRNA fragment hybridization studies coupled with ribonuclease digestion and primer extension/chain termination analysis of 5S rRNA:18S rRNA hybrids to more completely map those mouse 5S rRNA and 18S rRNA sequences responsible for duplex formation. Fragment hybridization analysis has defined a 5'-terminal region of 5S rRNA (nucleotides 6-27) which base-pairs with two independent sequences in 18S rRNA designated Regions 1 (nucleotides 1157-1180) and 2 (nucleotides 1324-1339). Ribonuclease digestion of isolated 5S rRNA:18S rRNA hybrids with both single-strand- and double-strand-specific nucleases supports the involvement of this 5'-terminal 5S rRNA sequence in 18S rRNA hybridization. Primer extension/chain termination analysis of isolated 5S rRNA:18S rRNA hybrids confirms the base-pairing of 5S rRNA to the designated Regions 1 and 2 of 18S rRNA. Using these results, 5S rRNA:18S rRNA intermolecular hybrid structures are proposed. Comparative sequence analysis revealed the conservation of these hybrid structures in higher eukaryotes and the same but smaller core hybrid structures in lower eukaryotes and prokaryotes. This suggests that the 5S rRNA:16S/18S rRNA hybrids have been conserved in evolution for ribosome function.  相似文献   

16.
The late steps of both 16S and 5S ribosomal RNA maturation in the Gram-positive bacterium Bacillus subtilis have been shown to be catalysed by ribonucleases that are not present in the Gram-negative paradigm, Escherichia coli. Here we present evidence that final maturation of the 5' and 3' extremities of B. subtilis 23S rRNA is also performed by an enzyme that is absent from the Proteobacteria. Mini-III contains an RNase III-like catalytic domain, but curiously lacks the double-stranded RNA binding domain typical of RNase III itself, Dicer, Drosha and other well-known members of this family of enzymes. Cells lacking Mini-III accumulate precursors and alternatively matured forms of 23S rRNA. We show that Mini-III functions much more efficiently on precursor 50S ribosomal subunits than naked pre-23S rRNA in vitro, suggesting that maturation occurs primarily on assembled subunits in vivo. Lastly, we provide a model for how Mini-III recognizes and cleaves double-stranded RNA, despite lacking three of the four RNA binding motifs of RNase III.  相似文献   

17.
18.
Creation of the mature 5' terminus of human 18 S rRNA in vitro occurs via a two-step processing reaction. In the first step, an endonucleolytic activity found in HeLa cell nucleolar extract cleaves an rRNA precursor spanning the external transcribed spacer-18 S boundary at a position 3 bases upstream from the mature 18 S terminus leaving 2',3'-cyclic phosphate, 5' hydroxyl termini. In the second step, a nucleolytic activity(s) found in HeLa cell cytoplasmic extract removes the 3 extra bases and creates the authentic 5'-phosphorylated terminus of 18 S rRNA. Here we have examined the sequence requirements for the trimming reaction. The trimming activity(s), in addition to requiring a 5' hydroxyl terminus, prefers the naturally occurring adenosine as the 5'-terminal base. By a combination of deletion, site-directed mutagenesis, and chemical modification interference approaches we have also identified a region of 18 S rRNA spanning bases +6 to +25 (with respect to the mature 5' end) which comprises a critical recognition sequence for the trimming activity(s).  相似文献   

19.
20.
J Venema  Y Henry    D Tollervey 《The EMBO journal》1995,14(19):4883-4892
Three of the four eukaryotic ribosomal RNA molecules (18S, 5.8S and 25-28S rRNA) are transcribed as a single precursor, which is subsequently processed into the mature species by a complex series of cleavage and modification reactions. Early cleavage at site A1 generates the mature 5'-end of 18S rRNA. Mutational analyses have identified a number of upstream regions in the 5' external transcribed spacer (5' ETS), including a U3 binding site, which are required in cis for processing at A1. Nothing is known, however, about the requirement for cis-acting elements which define the position of the 5'-end of the 18S rRNA or of any other eukaryotic rRNA. We have introduced mutations around A1 and analyzed them in vivo in a genetic background where the mutant pre-rRNA is the only species synthesized. The results indicate that the mature 5'-end of 18S rRNA in yeast is identified by two partially independent recognition systems, both defining the same cleavage site. One mechanism identifies the site of cleavage at A1 in a sequence-specific manner involving recognition of phylogenetically conserved nucleotides immediately upstream of A1 in the 5' ETS. The second mechanism specifies the 5'-end of 18S rRNA by spacing the A1 cleavage at a fixed distance of 3 nt from the 5' stem-loop/pseudoknot structure located within the mature sequence. The 5' product of the A1 processing reaction can also be identified, showing that, in contrast to yeast 5.8S rRNA, the 5'-end of 18S rRNA is generated by endonucleolytic cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号