首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we investigated the involvement of calpains in the neurotoxicity induced by short-term exposure to kainate (KA) in non-desensitizing conditions of AMPA receptor activation (cyclothiazide present, CTZ), in cultured rat hippocampal neurons. The calpain inhibitor MDL28170 had a protective effect in cultures treated with KA plus CTZ (p < 0.01), preventing the decrease in MTT reduction caused by exposure to KA (p < 0.001). Caspase inhibition by ZVAD-fmk was not neuroprotective against the toxic effect of KA. At 1 h after treatment, we could already observe significantly increased calpain activity, which was prevented by MDL 28170 and NBQX. Western blot analysis of calpain substrates, GluR1, neuronal nitric oxide synthase (nNOS) and nonerythroid spectrin (fodrin), showed a time-dependent and MDL 28170-sensitive proteolysis of these proteins. This effect was due to calpains, but not caspases, since ZVAD-fmk was ineffective in preventing proteolytic events. Breakdown products of fodrin (BDPs) were detected as early as 15 min after exposure to KA. Overall, these results show early activation of calpains following activation of AMPA receptors as well as compromise of neuronal survival, likely due to proteolytic events that affect proteins involved in neuronal signaling.  相似文献   

2.
Apoptosis and oncotic necrosis in neuronal and glial cells have been documented in many neurological diseases. Distinguishing between these two major types of cell death in different neurological diseases is needed in order to better reveal the injury mechanisms so as to open up opportunities for therapy development. Accumulating evidence suggests apoptosis and oncosis epitomize the extreme ends of a broad spectrum of morphological and biochemical events. Biochemical markers that can distinguish between the calpain and caspase dominated types of cell death would help in this process. In this study, three chemical agents, maitotoxin (MTX), staurosporine (STS) and thylenediaminetetraacetic acid (EDTA), were used to induce different types of cell death in PC12 neuronal-like cells. MTX-induced necrosis, as determined by the increased levels of calpain-specific cleaved fragments of spectrin by antibodies specific to the calpain-cleaved 150 kDa αII-spectrin breakdown product (SBDP150) and 145 kDa αII-spectrin breakdown product (SBDP145). In this paradigm, there were no detectable SBDP150i and SBDP120 fragments as determined by antibodies specific to the caspase-cleaved specific fragments similar to those seen in the EDTA-mediated apoptotic PC-12 cells. In contrast to the calpain specific MTX necrosis treatment and the caspase EDTA apoptotic treatment is the STS treatment which induced both proteases as shown by the increase in all the SBDP fragments. Furthermore, compared to SBDP150, SBDP145 appears to be a more specific and sensitive biomarker for calpain activation. Taken together, our results suggested calpains and caspases which dominate the two major types of cell death could be independently discriminated by specifically examining the multiple αII-spectrin cleavage breakdown products.  相似文献   

3.
Abstract: We investigated the potential role of different proteases in the death of cultured rat hippocampal pyramidal neurons induced by β-amyloid(Aβ) (25–35). Both Aβ(25–35)- and staurosporine-induced death of these neurons appeared to involve apoptosis, as indicated using Hoechst 33342 and terminal dUDP nick end labeling staining, whereas NMDA-induced death appeared more complex. Two irreversible inhibitors of the interleukin-1β converting enzyme (ICE) and related proteases, Z-Val-Ala-Asp-CH2F and acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone, blocked neuronal death produced by Aβ(25–35), staurosporine, and NMDA to differing extents. Furthermore, MDL 28,170, a selective inhibitor of the calcium-regulated protease calpain, also inhibited death induced by all agents. Aβ(25–35) and staurosporine stimulated the breakdown of the protein spectrin, a calpain substrate. Spectrin breakdown was inhibited by MDL 28,170 but not by ICE inhibitors. Leupeptin was only effective in preventing NMDA-induced death. These results support the role of apoptosis in neuronal death due to Aβ(25–35) treatment and also suggest a role for calcium-regulated proteases in this process.  相似文献   

4.
Neuronal calpains appear to be activated uncontrollably by sustained elevation of cytosolic calcium levels under pathological conditions as well as neurodegenerative diseases. In the present study, we have characterized calpain activation in cytosolic extract of mice cerebral cortex and cerebellum using an experimental model of fatal murine cerebral malaria (FMCM). Pathology of FMCM resulted in the increase in activity of calpains in both cerebral cortex and cerebellum. Western blot analysis revealed an increase in the levels of mu-calpain (calpain-1) in the cytosolic fraction of infected cerebral cortex and cerebellum although a decrease in the level of m-calpain was observed in the cytosolic fraction of infected cerebellum and cerebral cortex. Calpain activation was further confirmed by monitoring the formation of calpain-specific spectrin breakdown products (SBDP). Protease-specific SBDP revealed the formation of calpain-generated 150kDa product in the infected cerebral cortex and cerebellum. The specific signature fragment of calpain activation and spectrin breakdown after Plasmodium berghei ANKA infection provide a strong evidence of the role of calpains during the cell death in cerebral cortex and cerebellum. Given the role of calpains in neurodegeneration and cell death, our results strongly suggest that calpains are important mediators of cell injury and neurological sequelae associated with FMCM.  相似文献   

5.
Yu CG  Geddes JW 《Neurochemical research》2007,32(12):2046-2053
Following contusive spinal cord injury (SCI), calpain activity is dramatically increased and remains elevated for days to weeks. Although calpain inhibition has previously been demonstrated to be neuroprotective following spinal cord injury, most studies administered the calpain inhibitor at a single time point. We hypothesized that sustained calpain inhibition would improve functional and pathological outcomes, as compared to the results obtained with a single postinjury administration of the calpain inhibitor. Contusion SCI was produced in female Long-Evans rats using the Infinite Horizon spinal cord injury impactor at the 200 kdyn force setting. Open-field locomotor function was evaluated until 6 weeks postinjury. Histological assessment of lesion volume and tissue sparing was performed at 6 weeks after SCI. Calpain inhibitor MDL28170 administered as a single postinjury i.v. bolus (20 mg/kg) or as a daily i.p. dose (1 mg/kg) improved locomotor function, but did not increase tissue sparing. Combined i.v. and daily i.p. MDL28170 administration resulted in significant improvement in both functional and pathological outcome measures, supporting the calpain theory of SCI proposed by Dr. Banik and colleagues. Special issue in honor of Naren Banik.  相似文献   

6.
Abstract: Caspase activation has been shown to be a critical step in several models of neuronal apoptosis such as staurosporine treatment of human neuroblastoma SH-SY5Y cells and potassium deprivation of rat cerebellar granule neurons. One common event is the appearance of caspase-mediated 120-kDa nonerythroid α-spectrin breakdown product (SBDP120). Second, inhibitors of the caspase family are effective blockers of such neuronal death. In this study, we report the appearance of caspase-mediated SBDP120 in excitotoxin-challenged fetal rat cerebrocortical neurons [ N -methyl- d -aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate] and rat cerebellar granule neurons (NMDA and kainate). A general caspase inhibitor, carbobenzoxy-Asp-CH2OC(O)-2,6-dichlorobenzene (Z-D-DCB), blocked the formation of SBDP120 under these conditions and attenuated the observed NMDA-induced lactate dehydrogenase (LDH) release in both cell types. Furthermore, hydrolytic activity toward a caspase-3-preferred synthetic peptide substrate, acetyl-DEVD-7-amido-4-methylcoumarin, was significantly elevated in NMDA-treated granule neurons. Lastly, oxygen-glucose deprivation (OGD)-challenged cerebrocortical cultures also showed the appearance of SBDP120. Again, Z-D-DCB blocked the SBDP120 formation as well as attenuated the LDH release from the OGD-challenged neurons. Taken together, the presence of caspase-specific SBDP120 and the neuroprotective effects of Z-D-DCB strongly suggest that caspase activation contributes at least in part to excitotoxin- and OGD-induced neuronal death.  相似文献   

7.
Recently, it was shown that conversion of cdk5 activator protein p35 to a C-terminal fragment p25 promotes a deregulation of cdk5 activity, which may contribute to neurodegeneration in Alzheimer's disease. In this study, we present evidence that calpain is a protease involved in the conversion of p35 to p25. To activate calpain, rat cerebellar granule neurons were treated with maitotoxin (MTX). A C-terminus-directed anti-p35 antibody detected that p35 conversion to p25 paralleled the formation of calpain-generated alpha-spectrin (alpha-fodrin) breakdown products (SBDP's) in a maitotoxin-dose-dependent manner. Two calpain inhibitors (MDl28170 and SJA6017) reduced p35 processing but were unchanged when exposed to the caspase inhibitor carbobenzoxy-Asp-CH(2)OC(=O)-2, 6-dichlorobenzene or the proteasome inhibitors (lactacystin and Z-Ile-Glu(OtBu)Ala-Leu-CHO). p35 protein was also degraded to p25 when rat brain lysate was subjected to in vitro digestion with purified mu- and m-calpains. Additionally, in a rat temporary middle cerebral artery occlusion model, p35 processing to p25 again paralleled SBDP formation in the ischemic core. Lastly, in malonate-injured rat brains, the ipsilateral side showed a striking correlation of SBDP formation with p35 to p25 conversion and tau phosphorylation (at Ser202 and Thr205) increase. These data suggest that calpain is a major neuronal protease capable of converting p35 to p25 and might play a pathological role of activating cdk5 and its phosphorylation of tau in Alzheimer's disease.  相似文献   

8.
Abstract: Immunocytochemical and immunoblotting techniques were used to investigate calpain I activation and the stability of the calpain-sensitive cytoskeletal proteins microtubule-associated protein 2 (MAP2) and spectrin at 1, 4, and 24 h after contusion injury to the spinal cord. Spinal cord injury resulted in the activation of calpain I at all time points examined, with the highest level of activation occurring at 1 h. At the same early time point, there was a loss of dendritic MAP2 staining in spinal cord sections, accompanied by pronounced perikaryal accumulation. The loss in MAP2 staining in the injured spinal cord progressed over the 24-h survival period to affect regions 3 mm distant to the site of injury. The presence of calpain I-specific spectrin degradation was apparent in neuronal cell bodies and fibers as early as 1 h after injury, with the most intense staining occurring within and juxtaposed to the injury site. Spectrin breakdown products in neuronal cell bodies declined rapidly at 4 h and were nearly undetectable at 24 h after injury. Immunoblot studies confirmed the immunocytochemical results by demonstrating a significant increase in calpain I activation, a significant decrease in MAP2 levels, and a significant increase in spectrin breakdown. Finally, treatment of animals with riluzole, an inhibitor of glutamate release, before surgery reduced significantly the loss of MAP2 levels observed at 24 h after injury. These results demonstrate that Ca2+-dependent protease activation and degradation of critical cytoskeletal proteins are early events after spinal cord injury and that treatments that minimize the actions of glutamate may limit their breakdown.  相似文献   

9.
Liver injury is known to often progress even after the hepatotoxicant is dissipated. The hydrolytic enzyme calpain, which is released from dying hepatocytes, destroys the surrounding cells and results in progression of injury. Therefore, control of calpain activation may be a suitable therapeutic intervention in cases of fulminant hepatic failure. This study evaluated the effects of a potent cell-permeable calpain inhibitor, MDL28170, and its mechanisms of action on thioacetamide (TAA)-induced hepatotoxicity in mice. We found that MDL28170 significantly decreased mortality and change in serum transaminase after TAA administration. The necroinflammatory response in the liver was also suppressed. Furthermore, a significant suppression of hepatocyte apoptosis could be found by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay. The upregulation of inducible nitric oxide synthase (iNOS) and tumor necrosis factor- (TNF-), both of which are known to mediate the propagation of inflammation, was abolished. MDL2810 also effectively blocked hepatic stellate cell activation, which is assumed to be the early step in liver fibrosis. These results demonstrated that MDL28170 attenuated TAA-induced acute liver failure by inhibiting hepatocyte apoptosis, abrogating iNOS and TNF- mRNA upregulation and blocking hepatic stellate cell activation.  相似文献   

10.
Evidence for increased calpain activity has been described in the hippocampus of rodent models of temporal lobe epilepsy. However, it is not known whether calpains are involved in the cell death that accompanies seizures. In this work, we characterized calpain activation by examining the proteolysis of calpain substrates and in parallel we followed cell death in the hippocampus of epileptic rats. Male Wistar rats were injected with kainic acid (10 mg/kg) intraperitoneally and killed 24 h later, after development of grade 5 seizures. We observed a strong Fluoro-Jade labeling in the CA1 and CA3 areas of the hippocampus in the rats that received kainic acid, when compared with saline-treated rats. Immunohistochemistry and western blot analysis for the calpain-derived breakdown products of spectrin showed evidence of increased calpain activity in the same regions of the hippocampus where cell death is observed. No evidence was found for caspase activation, in the same conditions. Treatment with the calpain inhibitor MDL 28170 significantly prevented the neurodegeneration observed in CA1. Taken together, our data suggest that early calpain activation, but not caspase activation, is involved in neurotoxicity in the hippocampus after status epilepticus .  相似文献   

11.
Oxygen-glucose deprivation (OGD) induced neuron-specific cell death in organotypic hippocampal slice cultures. Neuronal death was first evident in the CA1 region 24 h after the injury as assessed by propidium iodide (PI) labeling, and continued to extend to the CA3/4 region up to 72 h. At 6 days post-OGD, PI labeling was weak and diffuse with no clear demarcation of pyknotic nuclei. To characterize biochemical changes produced by OGD, cellular efflux of three key amino acid neurotransmitters was evaluated. OGD elicited large increases in the release of GABA and aspartate (55- and 4.5-fold increase over basal, respectively), while there were no detectable changes in extracellular glutamate levels. In order to ascertain the existence of the synaptic pool of glutamate, sister cultures were treated with sodium azide. This evoked a strong increase in glutamate release, suggesting the intactness of the glutamate system. Further studies revealed a time-dependent activation of caspase 3 following OGD, shown by immunoblot analysis as well as by confocal laser scanning microscopy. While we did not observe the activation of caspases 1, 2, or 8 in our model, the activation of caspase 9 was evident, peaking at 12 h post-OGD. Despite no apparent increase in glutamate release by ischemic slices, treatment with a N-methyl-D-aspartate (NMDA) antagonist or an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonist significantly reduced neuronal death. Furthermore, a pan-caspase inhibitor (zVAD-fmk), but not the caspase 3 inhibitor (DEVD-fmk), provided partial neuroprotection. Inhibition of a Ca(2+)-dependent cysteine protease, calpain, by MDL28170 also elicited partial neuroprotective effects.  相似文献   

12.
Calpains are ubiquitous Ca(2+)-activated neutral proteases that have been implicated in ischemic and traumatic CNS injury. Ischemia and trauma of central white matter are dependent on Ca2+ accumulation, and calpain overactivation likely plays a significant role in the pathogenesis. Adult rat optic nerves, representative central white matter tracts, were studied in an in vitro anoxic model. Functional recovery following 60 min of anoxia and reoxygenation was measured electrophysiologically. Calpain activation was assessed using western blots with antibodies against calpain-cleaved spectrin breakdown products. Sixty minutes of in vitro anoxia increased the amount of spectrin breakdown approximately 20-fold over control, with a further increase after reoxygenation to >70 times control, almost as much as 2 h of continuous anoxia. Blocking voltage-gated Na+ channels with tetrodotoxin or removing bath Ca2+ was highly neuroprotective electrophysiologically and resulted in a marked reduction of spectrin degradation. The membrane-permeable calpain inhibitors MDL 28,170 and calpain inhibitor-I (10-100 microM) were effective at reducing spectrin breakdown in anoxic and reoxygenated optic nerves, but no electrophysiological improvement was observed. We conclude that calpain activation is an important step in anoxic white matter injury, but inhibition of this Ca(2+)-dependent process in isolation does not improve functional outcome, probably because other deleterious Ca(2+)-activated pathways proceed unchecked.  相似文献   

13.
Neuronal cell death after traumatic brain injury, Alzheimer’s disease and ischemic stroke may in part be mediated through endoplasmic reticulum (ER) stress and unfolded protein response (UPR). UPR results in induction of molecular chaperone GRP78 and the ER-resident caspase-12, whose activation has been proposed to be mediated by calpain and caspase processing, although their relative contribution remains unclear. In this study we induced ER stress with thapsigargin (TG), and determined the activation profile of calpain-2, caspase-3, caspase-7, and caspase-12 by analyses of protein levels, corresponding substrates and breakdown products (BDP). Specific calpain and caspase activity was assessed by analysis of αII-spectrin BDP of 145 kDa (SBDP145), BDP of 150 kDa (SBDP150) and BDP of 120 kDa (SBDP120). Decrease in pro-calpain-2 protein and increased SBDP145 levels by 3 h after TG treatment indicated early calpain activity. Active caspase-7 (p20) increase occurred after 8 h, followed by concomitant up-regulation of active caspase-3 and SBDP120 after 24 h. In vitro digestion experiments supported that SBDP120 was exclusively generated by active caspase-3 and validated that kinectin and co-chaperone p23 were calpain and caspase-7 substrates, respectively. Pro-caspase-12 protein processing by the specific action of calpain and caspase-3/7 was observed in a time-dependent manner. N-terminal pro-domain processing of pro-caspase-12 by calpain generated a 38 kDa fragment, while caspase-3/7 generated a 35 kDa fragment. Antibody developed specifically against the caspase-3/7 C-terminal cleavage site D341 detected the presence of large subunit (p20) containing 23 kDa fragment that increased after 24 h of TG treatment. Significant caspase-12 enzyme activity was only detected after 24 h of TG treatment and was completely inhibited by caspase 3/7 inhibitor DEVD-fmk and partially by calpain inhibitor SNJ-1945. ER-stress-induced cell death pathway in TG-treated PC12 cells was characterized by up-regulation of GRP-78 and processing and activation of caspase-12 by the orchestrated proteolytic activity of calpain-2 and caspase-3/7.  相似文献   

14.
Unilateral injection of 50 nmol of N-methyl-D-aspartate (NMDA) into the left posterior striatum of 7 day-old rat pups induces massive neuronal loss in the ipsilateral hemisphere in 5 days. In this model of excitotoxicity, the form of neuronal death (necrosis vs apoptosis) has not been clearly addressed. Here we report evidence of DNA laddering in the ipsilateral hemisphere 24 h after the NMDA injection. Activation of apoptosis-linked caspase(s) was also identified, as evidenced by (i) the formation of caspase-produced 120 kDa alpha-spectrin breakdown product (SBDP120) and (ii) increase in hydrolysis of caspase-3 substrate acetyl-DEVD-7-amido-4-methylcoumarin in the homogenate from the ipsilateral hemisphere. Lastly, we note that i.p. injection (100 mg/kg) of a pan caspase inhibitor Z-D-DCB attenuates the levels of SBDP120. Our results suggest the presence of caspase-activation in this rat pup model of NMDA toxicity.  相似文献   

15.
目的:在大鼠急性心肌缺血/再灌ii(I/R)模型上,观察高铁血红素在钙激活中性蛋白酶(calpain)介导的心肌I/R损伤中的作用。并初步探讨其可能的机制。方法:64只雄性SD大鼠随机8组(n:8):假手术组(sham组)、(I/R)组、MDL28170+I/R组、单纯MDL28170组、高铁血红素+I/R组、单纯高铁血红素组、锌原卟啉Ⅸ+高铁血红素+I/R组、单纯锌原卟啉Ⅸ组。采用大鼠离体心脏Langendorff灌流技术,心脏I/R后,测定左室发展压(LVDP)、心肌梗死面积、冠脉流出液中的乳酸脱氢酶(LDH)释放量。检测calpain、血红素氧化酶(HO)、和半胱氨酸天冬氨酸蛋白酶3(caspase3)活性。Westernblot观察心肌钙蛋白酶抑制蛋白(calpastatin)蛋白表达。结果:①心肌I/R后,calpain、caspase3活性明显增高。calpain抑制剂MDL28170可抑制I/R诱导的LDH释放量增加,增高LVDP,缩小心肌梗死面积。②与单纯I/R组相比,大鼠预先给予高铁血红素后,心脏HO-1活性增加,calpain和caspase3活性下降。同时,LDH释放量减少,LVDP明显增高,心肌梗死面积缩小。③I/R组心肌calpastatin表达量明显低于对照组,高铁血红素组大鼠calpastatin表达量增高。HO-1的抑制剂锌原卟啉Ⅸ可取消高铁血红素对calpastain表达量的影响,并取消其心肌保护作用。结论:高铁血红素预处理可通过抑制calpain的激活,减轻大鼠心肌I/R损伤,其机制可能与增加calpastatin蛋白表达有关。  相似文献   

16.
Although a number of increased CSF proteins have been correlated with brain damage and outcome after traumatic brain injury (TBI), a major limitation of currently tested biomarkers is a lack of specificity for defining neuropathological cascades. Identification of surrogate biomarkers that are elevated in CSF in response to brain injury and that offer insight into one or more pathological neurochemical events will provide critical information for appropriate administration of therapeutic compounds for treatment of TBI patients. Non-erythroid alpha II-spectrin is a cytoskeletal protein that is a substrate of both calpain and caspase-3 cysteine proteases. As we have previously demonstrated, cleavage of alpha II-spectrin by calpain and caspase-3 results in accumulation of protease-specific spectrin breakdown products (SBDPs) that can be used to monitor the magnitude and temporal duration of protease activation. However, accumulation of alpha II-spectrin and alpha II-SBDPs in CSF after TBI has never been examined. Following a moderate level (2.0 mm) of controlled cortical impact TBI in rodents, native alpha II-spectrin protein was decreased in brain tissue and increased in CSF from 24 h to 72 h after injury. In addition, calpain-specific SBDPs were observed to increase in both brain and CSF after injury. Increases in the calpain-specific 145 kDa SBDP in CSF were 244%, 530% and 665% of sham-injured control animals at 24 h, 48 h and 72 h after TBI, respectively. The caspase-3-specific SBDP was observed to increase in CSF in some animals but to a lesser degree. Importantly, levels of these proteins were undetectable in CSF of uninjured control rats. These results indicate that detection of alpha II-spectrin and alpha II-SBDPs is a powerful discriminator of outcome and protease activation after TBI. In accord with our previous studies, results also indicate that calpain may be a more important effector of cell death after moderate TBI than caspase-3.  相似文献   

17.
Abstract: Calpain (calcium-activated neutral protease) has been implicated as playing a role of neuronal injury in cerebral ischemia and excitotoxicity. Here we report that, in addition to extreme excitotoxic conditions [ N -methyl- d -aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate challenges], other neurotoxins such as maitotoxin, A23187, and okadaic acid also induce calpain activation, as detected by m-calpain autolytic fragmentation and nonerythroid α-spectrin breakdown. Under the same conditions, calmodulin-dependent protein kinase II-α (CaMPK-IIα) and neuronal nitric oxide synthase (nNOS) are both proteolytically cleaved by calpain. Such fragmentation can be reduced by calpain inhibitors (acetyl-Leu-Leu-Nle-CHO and PD151746). In vitro digestion of protein extract from cortical cultures with purified μ- and m-calpain produced fragmentation patterns for CaMPK-IIα and nNOS similar to those produced in situ. Also, several other calpain-sensitive calmodulin-binding proteins (plasma membrane calcium pump, microtubule-associated protein 2, and calcineurin A) and protein kinase C-α are also degraded in neurotoxin-treated cultures. Lastly, in a rat pup model of acute excitotoxicity, intrastriatal injection of NMDA resulted in breakdown of CaMPK-IIα and nNOS. The degradation of CaMPK-IIα, nNOS, and other endogenous calpain substrates may contribute to the neuronal injury associated with various neurotoxins.  相似文献   

18.
This study identifies calpain as being instrumental for brush border (BB) microvillus assembly during differentiation and effacement during bacterial pathogenesis. Calpain activity is decreased by 25-80% in Caco 2 lines stably overexpressing calpastatin, the physiological inhibitor of calpain, and the effect is proportional to the calpastatin/calpain ratio. These lines exhibit a 2.5-fold reduction in the rate of microvillus extension. Apical microvillus assembly is reduced by up to 50%, as measured by quantitative fluorometric microscopy (QFM) of ezrin, indicating that calpain recruits ezrin to BB microvilli. Calpain inhibitors ZLLYCHN2, MDL 28170, and PD 150606 block BB assembly and ezrin recruitment to the BB. The HIV protease inhibitor ritonavir, which inhibits calpain at clinically relevant concentrations, also blocks BB assembly, whereas cathepsin and proteasome inhibitors do not. Microvillus effacement is inhibited after exposure of calpastatin-overexpressing cells to enteropathogenic Escherichia coli. These results suggest that calpain regulates BB assembly as well as pathological effacement, and indicate that it is an important regulator involved in HIV protease inhibitor toxicity and host-microbial pathogen interactions.  相似文献   

19.
M Savart  V Pallet  P Letard  C Bossuet  A Ducastaing 《Biochimie》1991,73(11):1409-1416
A calpain 1-protein kinase C (PKC) complex was isolated from rabbit skeletal muscle by hydrophobic interaction chromatography on phenyl-sepharose and by strong anion exchange chromatography on Q-Sepharose. Calpain 1 and kinase activities were then dissociated on a phenyl-Sepharose matrix using gradients of decreasing ionic strength. The purified PKC obtained corresponded to conventional PKC and was recognized by a monoclonal antibody specific for alpha and beta isotypes. Leupeptin, calpain inhibitor II, and the more selective calpain inhibitors calpeptin and MDL 28170 did not block the activation of the purified PKC by Ca2+ and phosphatidylserine.  相似文献   

20.
The Ca2+ paradox represents a good model to study Ca2+ overload injury in ischemic heart diseases. We and others have demonstrated that contracture and calpain are involved in the Ca2+ paradox-induced injury. This study aimed to elucidate their roles in this model. The Ca2+ paradox was elicited by perfusing isolated rat hearts with Ca2+-free KH media for 3 min or 5 min followed by 30 min of Ca2+ repletion. The LVDP was measured to reflect contractile function, and the LVEDP was measured to indicate contracture. TTC staining and the quantification of LDH release were used to define cell death. Calpain activity and troponin I release were measured after Ca2+ repletion. Ca2+ repletion of the once 3-min Ca2+ depleted hearts resulted in almost no viable tissues and the disappearance of contractile function. Compared to the effects of the calpain inhibitor MDL28170, KB-R7943, an inhibitor of the Na+/Ca2+ exchanger, reduced the LVEDP level to a greater extent, which was well correlated with improved contractile function recovery and tissue survival. The depletion of Ca2+ for 5 min had the same effects on injury as the 3-min Ca2+ depletion, except that the LVEDP in the 5-min Ca2+ depletion group was lower than the level in the 3-min Ca2+ depletion group. KB-R7943 failed to reduce the level of LVEDP, with no improvement in the LVDP recovery in the hearts subjected to the 5-min Ca2+ depletion treatment; however, KB-R7943 preserved its protective effects in surviving tissue. Both KB-R7943 and MDL28170 attenuated the Ca2+ repletion-induced increase in calpain activity in 3 min or 5 min Ca2+ depleted hearts. However, only KB-R7943 reduced the release of troponin I from the Ca2+ paradoxic heart. These results provide evidence suggesting that contracture is the main cause for contractile dysfunction, while activation of calpain mediates cell death in the Ca2+ paradox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号