首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study examined the active and passive length-tension relationship of the abdominal expiratory muscles in vitro during electrically stimulated contractions. Studies were performed on isolated strips of transverse abdominis and external oblique muscle from nine adult hamsters with normal lung function. The effect of chronic hyperinflation on the two muscles was assessed in eight hamsters with elastase-induced emphysema. In normal animals the maximal active tension per cross-sectional area (Po) was equal in the two muscles. The absolute muscle fiber length at which Po occurred (Lo) was less for the external oblique than the transverse abdominis and the length-tension curve operated at shorter fiber lengths. However, the change in tension produced by an increase or decrease in muscle length expressed in relative terms (i.e., as %Lo) was greater for the transverse abdominis than the external oblique. Mean total lung capacity of emphysematous animals was 198% of control. Po of the transverse abdominis and external oblique were the same in emphysematous and control animals. However, Lo and the length-tension curve of the transverse abdominis occurred at shorter fiber lengths in emphysematous animals because of a reduction in the number of sarcomeres in series along the fiber. The length-tension curve and the number of sarcomeres in the external oblique was the same in emphysematous and control animals. These results in normal animals indicate that the magnitude of the change in active and passive tension produced by a change in muscle length differs in the transverse abdominis and external oblique. Moreover, chronic hyperinflation of the thorax produced by elastase injection alters the length-tension relationships of some but not all the expiratory muscles.  相似文献   

2.
Effect of hypercapnia and PEEP on expiratory muscle EMG and shortening   总被引:1,自引:0,他引:1  
The present study examined the effects of hypercapnia and positive end-expiratory pressure (PEEP) on the electromyographic (EMG) activity and tidal length changes of the expiratory muscles in 12 anesthetized, spontaneously breathing dogs. The integrated EMG activity of both abdominal (external oblique, internal oblique, rectus abdominis, and transverse abdominis) and thoracic (triangularis sterni, internal intercostal) expiratory muscles increased linearly with increasing PCO2 and PEEP. However, with both hypercapnia and PEEP, the percent increase in abdominal muscle electrical activity exceeded that of thoracic expiratory muscle activity. Both hypercapnia and PEEP increased the tidal shortening of the external oblique and rectus abdominis muscles. Changes in tidal length correlated closely with simultaneous increases in muscle electrical activity. However, during both hypercapnia and PEEP, length changes of the external oblique were significantly greater than those of the rectus abdominis. We conclude that both progressive hypercapnia and PEEP increase the electrical activity of all expiratory muscles and augment their tidal shortening but produce quantitatively different responses in the several expiratory muscles.  相似文献   

3.
The purpose of this study was to determine the influence of posture on the expiratory activity of the abdominal muscles. Fifteen young adult men participated in the study. Activities of the external oblique abdominis, internal oblique abdominis, and rectus abdominis muscles were measured electromyographically in various postures. We used a pressure threshold in order to activate the abdominal muscles as these muscles are silent at rest. A spirometer was used to measure the lung volume in various postures. Subjects were placed in the supine, standing, sitting, and sitting-with-elbow-on-the-knee (SEK) positions. Electromyographic activity and mouth pressure were measured during spontaneous breathing and maximal voluntary ventilation under the respiratory load. We observed that the lung volume changed with posture; however, the breathing pattern under respiratory load did not change. During maximal voluntary ventilation, internal oblique abdominis muscle expiratory activity was lower in the SEK position than in any other position, external oblique abdominis muscle inspiratory activity was lower in the supine position than in any other position, and internal oblique abdominis muscle activity was higher in the standing position than in any other position. During spontaneous breathing, external oblique abdominis muscle activity was higher during expiration and inspiration in the SEK position than in any other position. The internal oblique abdominis muscle activity was higher during both inspiration and expiration in the standing position than in any other position. The rectus abdominis muscle activity did not change with changes in posture during both inspiration and expiration. Increase in the external oblique abdominis activity in the SEK position was due to anatomical muscle arrangement that was consistent with the direction of lower rib movement. On the other hand, increase in the internal oblique abdominis activity in the standing position was due to stretching of the abdominal wall by the viscera. We concluded that differences in activity were due to differences in the anatomy of the abdominal muscles and the influence of gravity.  相似文献   

4.
The purpose of the present study was to assess the mechanical role of the expiratory muscles during spontaneous breathing in prone animals. The electromyographic (EMG) activity of the triangularis sterni, the rectus abdominis, the external oblique, and the transversus abdominis was studied in 10 dogs light anesthetized with pentobarbital sodium. EMGs were recorded during spontaneous steady-state breathing in supine and prone suspended animals both before and after cervical vagotomy. We also measured the end-expiratory lung volume [functional residual capacity (FRC)] in supine and prone positions to assess the mechanical role of expiratory muscle activation in prone dogs. Spontaneous breathing in the prone posture elicited a significant recruitment of the triangularis sterni, the external oblique, and the transversus abdominis (P less than 0.05). Bilateral cervical vagotomy eliminated the postural activation of the external oblique and the transversus abdominis but not the triangularis sterni. Changes in posture during control and after cervical vagotomy were associated with an increase in FRC. However, changes in FRC, on average, were 132.3 +/- 33.8 (SE) ml larger (P less than 0.01) postvagotomy. We conclude that spontaneous breathing in prone anesthetized dogs is associated with a marked phasic expiratory recruitment of rib cage and abdominal muscles. The present data also indicate that by relaxing at end expiration the expiratory muscles of the abdominal region are directly responsible for generating roughly 40% of the tidal volume.  相似文献   

5.
Action of abdominal muscles on rib cage in humans   总被引:6,自引:0,他引:6  
To assess the actions of the rectus abdominis and external oblique muscles on the rib cage in humans, these two muscles were stimulated with surface electrodes in four normal supine subjects at functional residual capacity. Changes in anteroposterior and transverse rib cage diameters and changes in xiphipubic distance were measured with pairs of magnetometers. Stimulation of rectus abdominis produced a marked decrease in the xiphipubic distance and in the anteroposterior diameter, thus making the rib cage more elliptic. In contrast, stimulation of the external oblique caused a decrease in the transverse diameter, making the rib cage more cylindrical. When both muscles were stimulated simultaneously, the resultant rib cage distortion depended on the relative voltage at which each muscle was stimulated. Electromyogram recordings showed that there was no cross contamination or activity of the diaphragm during the muscle stimulations. Transdiaphragmatic pressure increased with the voltage of stimulation, suggesting passive lengthening of the diaphragm. X-ray studies were performed in two subjects and confirmed the main magnetometer findings. These studies thus confirm that the rib cage in humans is more easily distortable than conventionally thought. The abdominal muscles can distort it in either direction depending on which muscles are contracting.  相似文献   

6.
To assess the characteristics and function of the muscles of the anterolateral abdominal wall, we have examined the isometric contractile properties of bundles of canine rectus abdominis (RA) and external oblique (EO) muscles. In addition, we have related the lengths of these muscles measured sonometrically in vivo at supine functional residual capacity (FRC) to in vitro optimal force-producing length (Lo). We also investigated the action of the abdominal muscles on the displacement of costal and crural diaphragm. We found that 1) contraction time of RA was longer and that the RA developed greater force than the EO at submaximal stimulation frequencies; 2) maximal tetanic force and the active length-tension curves were similar in both abdominal muscles; 3) on passive stretch, the compliance of the RA was one-third that of the EO; 4) at supine FRC, the EO is operating at 83% of Lo, whereas the RA is operating at 105% of Lo; 5) stimulation of either RA or EO (abdominal pressure of 15 cmH2O) lengthened the costal and crural diaphragm toward their Lo values, with greater crural excursion occurring than costal. We conclude that the RA is well suited for restraining the abdominal viscera in prone quadrupeds, whereas the EO is better designed to assist expiration. Stimulation of both muscles improves in situ diaphragmatic operating length.  相似文献   

7.
Transversus abdominis muscle function in humans   总被引:4,自引:0,他引:4  
We used a high-resolution ultrasound to make electrical recordings from the transversus abdominis muscle in humans. The behavior of this muscle was then compared with that of the external oblique and rectus abdominis in six normal subjects in the seated posture. During voluntary efforts such as expiration from functional residual capacity, speaking, expulsive maneuvers, and isovolume "belly-in" maneuvers, the transversus in general contracted together with the external oblique and the rectus abdominis. In contrast, during hyperoxic hypercapnia, all subjects had phasic expiratory activity in the transversus at ventilations between 10 and 18 l/min, well before activity could be recorded from either the external oblique or the rectus abdominis. Similarly, inspiratory elastic loading evoked transversus expiratory activity in all subjects but external oblique activity in only one subject and rectus abdominis activity in only two subjects. We thus conclude that in humans 1) the transversus abdominis is recruited preferentially to the superficial muscle layer of the abdominal wall during breathing and 2) the threshold for abdominal muscle recruitment during expiration is substantially lower than conventionally thought.  相似文献   

8.
The internal abdominal muscles are biaxially loaded in vivo, and therefore length-tension relations along and transverse to the directions of the muscle fibers are important in understanding their mechanical properties. We hypothesized that 1) internal oblique and transversus abdominis form an internal abdominal composite muscle with altered compliance than that of either muscle individually, and 2) anisotropy, different compliances in orthogonal directions, of internal abdominal composite muscle is less pronounced than that of its individual muscles. To test these hypotheses, in vitro mechanical testing was performed on 5 x 5 cm squares of transversus abdominis, internal oblique, and the two muscles together as a composite. These tissues were harvested from the left lateral side of abdominal muscles of eleven mongrel dogs (15-23 kg) and placed in a bath of oxygenated Krebs solution. Each tissue strip was attached to a biaxial mechanical testing device. Each muscle was passively lengthened and shortened along muscle fibers, transverse to fibers, or simultaneously along and transverse to muscle fibers. Both transversus abdominis and internal oblique muscles demonstrated less extensibility in the direction transverse to muscle fibers than along fibers. Biaxial loading caused a stiffening effect that was greater in the direction along the fibers than transverse to the fibers. Furthermore, the abdominal muscle composite was less compliant than either muscle alone in the direction of the muscle fibers. Taken together, our data suggested that the internal abdominal composite tissue has complex mechanical properties that are dependent on the mechanical properties of internal oblique and transversus abdominis muscles.  相似文献   

9.
The present study was conducted to determine the pattern of activation of the anterolateral abdominal muscles during the cough reflex. Electromyograms (EMGs) of the rectus abdominis, external oblique, internal oblique, transversus abdominis, and parasternal muscles were recorded along with gastric pressure in anesthetized cats. Cough was produced by mechanical stimulation of the lumen of the intrathoracic trachea or larynx. The pattern of EMG activation of these muscles during cough was compared with that during graded expiratory threshold loading (ETL; 1-30 cmH(2)O). ETL elicited differential recruitment of abdominal muscle EMG activity (transversus abdominis > internal oblique > rectus abdominis congruent with external oblique). In contrast, both laryngeal and tracheobronchial cough resulted in simultaneous activation of all four anterolateral abdominal muscles with peak EMG amplitudes 3- to 10-fold greater than those observed during the largest ETL. Gastric pressures during laryngeal and tracheobronchial cough were at least eightfold greater than those produced by the largest ETL. These results suggest that, unlike their behavior during expiratory loading, the anterolateral abdominal muscles act as a unit during cough.  相似文献   

10.
The abdominal muscles accelerate airflow during expiration and may also influence the end-expiratory volume and configuration of the thorax. Although much is known about their electrical activity, the degree to which they change length during the respiratory cycle has not been previously assessed. In the present study we measured respiratory changes in transverse abdominis length using sonomicrometry in 14 pentobarbital sodium-anesthetized supine dogs and compared length changes to simultaneously recorded tidal volume and transverse abdominis electromyograms (EMG). To determine muscle resting length at passive functional residual capacity (LFRC), the animals were hyperventilated to apnea. The transverse abdominis was electrically active in all animals during resting O2 breathing (eupnea). During inspiration the transverse abdominis lengthened above resting length in all 14 dogs by a mean of 3.7 +/- 1.1% LFRC; during expiration the transverse abdominis shortened below resting length in 13 of 14 dogs by a mean of 4.2 +/- 0.9% LFRC. Increasing hyperoxic hypercapnia (produced in 9 animals) progressively heightened transverse abdominis EMG and progressively increased the extent of muscle shortening below resting length (to 12.6 +/- 3.2% LFRC at a PCO2 of 90 Torr). During single-breath airway occlusion substantial inspiratory lengthening of the transverse abdominis occurred, both during O2 breathing and during CO2 rebreathing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The present study examined the effects of elastase-induced emphysema on the structure of the external oblique and transverse abdominis muscles and a non-respiratory muscle, the extensor digitorum longus. Muscle structure was assessed from the cross-sectional area (CSA) and percent of individual fiber types in histochemically stained sections and from the number of sarcomeres arranged in series along the length of individual fibers. Data were obtained in eight hamsters with emphysema and nine saline-injected controls. In the normal (control) animals the external oblique was thicker but contained fewer sarcomeres than the transverse abdominis. Fiber size was similar in the two muscles. In the transverse abdominis the percents of fast-glycolytic and fast-oxidative fibers were greater and smaller, respectively, than in the external oblique. Lung volume of emphysematous hamsters was 168% of control values (P less than 0.001). In emphysematous compared with control animals, the CSA of fast-twitch fibers in the external oblique and transverse abdominis was significantly reduced. Fiber length and sarcomere number were significantly decreased in the transverse abdominis but not in the external oblique in emphysematous hamsters. In contrast, fiber size and composition of the extensor digitorum longus was similar in emphysematous and control animals. These data indicate that cellular responses of the ventilatory muscles to chronic hyperinflation and altered thoracic geometry induced by emphysema are not present in limb skeletal muscle. We speculate that changes in fiber length and CSA of fast fibers in the abdominal expiratory muscles reflect responses to chronic alterations in the mechanics of breathing that may affect muscle load, length, or the pattern of activity.  相似文献   

12.
The goal of this study was to quantify the relative contributions of each muscle group surrounding the spine to vertebral joint rotational stiffness (VJRS) during the push-up exercise. Upper-body kinematics, three-dimensional hand forces and lumbar spine postures, and 14 channels (bilaterally from rectus abdominis, external oblique, internal oblique, latissimus dorsi, thoracic erector spinae, lumbar erector spinae, and multifidus) of trunk electromyographic (EMG) activity were collected from 11 males and used as inputs to a biomechanical model that determined the individual contributions of 10 muscle groups surrounding the lumbar spine to VJRS at five lumbar vertebral joints (L1-L2 to L5-S1). On average, the abdominal muscles contributed 64.32 +/- 8.50%, 86.55 +/- 1.13%, and 83.84 +/- 1.95% to VJRS about the flexion/extension, lateral bend, and axial twist axes, respectively. Rectus abdominis contributed 43.16 +/- 3.44% to VJRS about the flexion/extension axis at each lumbar joint, and external oblique and internal oblique, respectively contributed 52.61 +/- 7.73% and 62.13 +/- 8.71% to VJRS about the lateral bend and axial twist axes, respectively, at all lumbar joints with the exception of L5-S1. Owing to changes in moment arm length, the external oblique and internal oblique, respectively contributed 55.89% and 50.01% to VJRS about the axial twist and lateral bend axes at L5-S1. Transversus abdominis, multifidus, and the spine extensors contributed minimally to VJRS during the push-up exercise. The push-up challenges the abdominal musculature to maintain VJRS. The orientation of the abdominal muscles suggests that each muscle primarily controls the rotational stiffness about a single axis.  相似文献   

13.
The present study examined the intrinsic contractile properties and endurance of the transverse abdominis and external oblique abdominal expiratory muscles in adult hamsters and compared their performance with the diaphragm. Experiments were performed in vitro on isolated bundles of muscle stimulated electrically. In control animals peak twitch tension was similar in the two muscles. In contrast, the twitch contraction time and one-half relaxation time of the transverse abdominis were significantly greater than that of the external oblique. The isometric tension generated over a range of stimulus frequencies (i.e., the force-frequency relationship) was a greater percent of the maximum value in response to subtetanizing frequencies (10-40 Hz) in the transverse abdominis than in the external oblique. For both abdominal muscles, however, the tension generated over this range of stimulus frequencies was less than that of the diaphragm. The endurance of the transverse abdominis during repeated contractions was significantly greater than that of the external oblique but similar to the diaphragm. The effect of chronic hyperinflation produced by elastase-induced emphysema on the contractile function of the two muscles was assessed in a second group of adult hamsters. In emphysematous animals peak twitch tension, contraction time, and one-half relaxation time of the twitch and force-frequency curves of muscles from emphysematous animals were similar to values obtained in control animals for both the external oblique and transverse abdominis. However, the endurance of both the transverse abdominis and external oblique muscles was greater in emphysematous than control animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Triangularis sterni muscle use in supine humans   总被引:5,自引:0,他引:5  
The electrical activity of the triangularis sterni (transversus thoracis) muscle was studied in supine humans during resting breathing and a variety of respiratory and nonrespiratory maneuvers known to bring the abdominal muscles into action. Twelve normal subjects, of whom seven were uninformed and untrained, were investigated. The electromyogram of the triangularis sterni was recorded using a concentric needle electrode, and it was compared with the electromyograms of the abdominal (external oblique and rectus abdominis) muscles. The triangularis sterni was usually silent during resting breathing. In contrast, the muscle was invariably activated during expiration from functional residual capacity, expulsive maneuvers, "belly-in" isovolume maneuvers, static head flexion and trunk rotation, and spontaneous events such as speech, coughing, and laughter. When three trained subjects expired voluntarily with considerable recruitment of the triangularis sterni and no abdominal muscle activity, rib cage volume decreased and abdominal volume increased. These results indicate that unlike in the dog, spontaneous quiet expiration in supine humans is essentially a passive process; the human triangularis sterni, however, is a primary muscle of expiration; and its neural activation is largely coupled with that of the abdominals. The triangularis sterni probably contributes to the deflation of the rib cage during active expiration.  相似文献   

15.
Although ascites causes abdominal expansion, its effects on abdominal muscle function are uncertain. In the present study, progressively increasing ascites was induced in supine anesthetized dogs, and the changes in abdominal (DeltaPab) and airway opening (DeltaPao) pressure obtained during stimulation of the internal oblique and transversus abdominis muscles were measured; the changes in internal oblique muscle length were also measured. As ascites increased from 0 to 100 ml/kg body wt, Pab and muscle length during relaxation increased. DeltaPab also showed a threefold increase (P < 0.001). However, DeltaPao decreased (P < 0.001). When ascites increased further to 200 ml/kg, resting muscle length continued to increase and muscle shortening during stimulation became very small so that active muscle length was 155% of the resting muscle length in the control condition. Concomitantly, DeltaPab returned to the control value, and DeltaPao continued to decrease. Similar results were obtained with the animals in the head-up posture, although the decrease in DeltaPao appeared only when ascites was greater than 125 ml/kg. It is concluded that 1) ascites adversely affects the expiratory action of the abdominal muscles on the lung; 2) this effect results primarily from the increase in diaphragm elastance; and 3) when ascites is severe, the abdomen cross-sectional area is also increased and the abdominal muscles are excessively lengthened so that their active pressure-generating ability itself is reduced.  相似文献   

16.
Following spinal cord injury, muscles below the level of injury develop variable degrees of disuse atrophy. The present study assessed the physiological changes of the expiratory muscles in a cat model of spinal cord injury. Muscle fiber typing, cross-sectional area, muscle weight, and changes in pressure-generating capacity were assessed in five cats spinalized at the T(6) level. Airway pressure (P)-generating capacity was monitored during lower thoracic spinal cord stimulation before and 6 mo after spinalization. These parameters were also assessed in five acute animals, which served as controls. In spinalized animals, P fell from 41 +/- l to 28 +/- 3 cm H2O (means +/- SE; P < 0.001). Muscle weight of the external oblique, internal oblique, transversus abdominis, and internal intercostal muscles decreased significantly (P < 0.05 for each). Muscle weight of the external oblique, internal oblique, transversus abdominis, and internal intercostal, but not rectus abdominis (RA), correlated linearly with P (r > 0.7 for each; P < 0.05 for each). Mean muscle fiber cross-sectional area of these muscles was significantly smaller (P < 0.05 for each; except RA) and also correlated linearly with P (r > 0.55 for each; P < 0.05 for each, except RA). In spinalized animals, the expiratory muscles demonstrated a significant increase in the population of fast muscle fibers. These results indicate that, following spinalization, 1) the expiratory muscles undergo significant atrophy and fiber-type transformation and 2) the P-generating capacity of the expiratory muscles falls significantly secondary to reductions in muscle mass.  相似文献   

17.
The purpose of the present study was to assess the relationship between excised length (unstressed length of excised muscle; Lex) and optimal force-generating length (Lo) in a variety of respiratory muscles, with the goal of establishing a reliable method whereby Lo could be rapidly and easily estimated with a high level of accuracy. Experiments were conducted on 111 muscle bundles obtained from 18 mongrel dogs. Segments of costal diaphragm, parasternal intercostal, scalene, sternomastoid, triangularis sterni, rectus abdominis, external oblique, and transversus abdominis muscles were studied. We noted a linear relationship between the distance measured between two fixed points in excised bundles (Lex) and at the muscles' Lo. Correlation coefficients ranged from 0.83 (P less than 0.01) for the transversus abdominis to 0.92 (P less than 0.01) for the triangularis sterni and external oblique muscles. Pooled Lex for all muscles averaged 61.4 +/- 6.3% (SD) Lo, with specific values ranging from 55.5 +/- 3.9% Lo for triangularis sterni bundles to 63.0 +/- 5.1% Lo for external oblique bundles. In three additional dogs, we verified the usefulness of this relationship and prospectively estimated Lo from excised length in 10 costal diaphragm bundles and 10 transversus abdominis bundles and then measured Lo directly. Predicted Lo averaged 100.0 +/- 6.0% Lo for diaphragm and 97.6 +/- 5.9% Lo for transversus abdominis muscle. We conclude that Lo can be conveniently and accurately estimated from excised dimensions. This rapid estimation technique should prove valuable for future studies in respiratory muscle physiology.  相似文献   

18.
Abdominal muscles are selectively active in normal subjects during stress and may increase the potential energy for inspiration by reducing the end-expiratory lung volume (EELV). We hypothesized that a similar process would occur in subjects with myotonic muscular dystrophy (MMD), but would be less effective, because of to their weakness and altered chest wall mechanics. Fine-wire electromyography (EMG) of the transversus abdominis (TA), internal oblique (IO), external oblique, and rectus abdominis was recorded in 10 MMD and 10 control subjects. EMG activity, respiratory inductive plethysmography, and gastric pressure were recorded during static pressure measurement and at increasing levels of inspiratory resistance breathing. EELV was reduced and chest wall motion was synchronous only in controls. Although the TA and IO were selectively recruited in both groups, EMG activity of the MMD group was twice that of controls at the same inspiratory pressure. In MMD subjects with mildly reduced forced vital capacity, significant differences can be seen in abdominal muscle recruitment, wall motion, work of breathing, and ventilatory parameters.  相似文献   

19.
In humans during stimulated ventilation, substantial abdominal muscle activity extends into the following inspiration as postexpiratory expiratory activity (PEEA) and commences again during late inspiration as preexpiratory expiratory activity (PREA). We hypothesized that the timing of PEEA and PREA would be changed systematically by posture. Fine-wire electrodes were inserted into the rectus abdominis, external oblique, internal oblique, and transversus abdominis in nine awake subjects. Airflow, end-tidal CO2, and moving average electromyogram (EMG) signals were recorded during resting and CO2-stimulated ventilation in both supine and standing postures. Phasic expiratory EMG activity (tidal EMG) of the four abdominal muscles at any level of CO2 stimulation was greater while standing. Abdominal muscle activities during inspiration, PEEA, and PREA, were observed with CO2 stimulation, both supine and standing. Change in posture had a significant effect on intrabreath timing of expiratory muscle activation at any level of CO2 stimulation. The transversus abdominis showed a significant increase in PEEA and a significant decrease in PREA while subjects were standing; similar changes were seen in the internal oblique. We conclude that changes in posture are associated with significant changes in phasic expiratory activity of the four abdominal muscles, with systematic changes in the timing of abdominal muscle activity during early and late inspiration.  相似文献   

20.
Although exercise speed is an acute variable to prescribe abdominal strengthening programs, current literature lacks studies analyzing the influence of speed on muscular activation in abdominal exercises. The aim of this work was to determine the influence of trunk curl-up speed on the amplitude of muscular activation and the way in which the trunk muscles were coactivated. Twenty recreationally trained volunteers (16 women and 4 men; age, 23.7 +/- 4.3 years; height, 166.2 +/- 6.3 cm; mass, 61.0 +/- 8.2 kg) participated in this study. Surface electromyographic data were collected from the rectus abdominis, external oblique, internal oblique, and erector spinae during 4 different curl-up cadences [1 repetition per 4 seconds (C4), 1 repetition per 2 seconds (C2), 1 repetition per 1.5 seconds (C1.5), 1 repetition per 1 second (C1)], and during maximum speed curl-ups (Cmax). The electromyographic amplitude was averaged and normalized using maximum voluntary isometric contractions (MVICs). Statistical analyses were performed using repeated-analyses of variance. Normalized electromyographic mean amplitudes of trunk muscles increased with curl-up speed. Although the rectus abdominis (ranged from 23.3% of MVICs at C4 to 49.6% of MVICs at Cmax) and internal oblique (ranged from 19.2% of MVICs at C4 to 48.5% of MVICs at Cmax) were the most active analyzed muscles at each speed, contribution of the external oblique increased appreciably with velocity (ranged from 5.3% of MVICs at C4 to 33.3% of MVICs at Cmax). Increasing trunk curl-up speed supposed greater trunk muscular coactivation, probably required for a faster performance and to ensure dynamic spine stability. On the basis of our findings, curl-up speed had an important effect on trunk muscular recruitment and must be taken into account when prescribing exercise programs for abdominal conditioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号