首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In rainforests, trunk size, strength, crown position, and geometry of a tree affect light interception and the likelihood of mechanical failure. Allometric relationships of tree diameter, wood density, and crown architecture vs. height are described for a diverse range of rainforest trees in Brunei, northern Borneo. The understory species follow a geometric model in their diameter-height relationship (slope, β = 1.08), while the stress-elasticity models prevail (β = 1.27-1.61) for the midcanopy and canopy/emergent species. These relationships changed with ontogeny, especially for the understory species. Within species, the tree stability safety factor (SSF) and relative crown width decreased exponentially with increasing tree height. These trends failed to emerge in across-species comparisons and were reversed at a common (low) height. Across species, the relative crown depth decreased with maximum potential height and was indistinguishable at a common (low) height. Crown architectural traits influence SSF more than structural property of wood density. These findings emphasize the importance of applying a common reference size in comparative studies and suggest that forest trees (especially the understory group) may adapt to low light by having deeper rather than wider crowns due to an efficient distribution and geometry of their foliage.  相似文献   

2.
Wood density plays a central role in the life-history variation of trees, and has important consequences for mechanical properties of wood, stem and branches, and tree architecture. Wood density, modulus of rupture, modulus of elasticity, and safety factors for buckling and bending were determined for saplings of 30 Bolivian rain forest tree species, and related to two important life-history axes: juvenile light demand and maximum adult stature. Wood density was strongly positively related to wood strength and stiffness. Species safety factor for buckling was positively related to wood density and stiffness, but tree architecture (height : diameter ratio) was the strongest determinant of mechanical safety. Shade-tolerant species had dense and tough wood to enhance survival in the understorey, whereas pioneer species had low-density wood and low safety margins to enhance growth in gaps. Pioneer and shade-tolerant species showed opposite relationships between species traits and adult stature. Light demand and adult stature affect wood properties, tree architecture and plant performance in different ways, contributing to the coexistence of rain forest species.  相似文献   

3.
4.
To investigate crown development patterns, branch architecture, branch-level light interception, and leaf and branch dynamics were studied in saplings of a plagiotropically branching tree species, Polyalthia jenkinsii Hk. f. & Thoms. (Annonaceae) in a Malaysian rain forest. Lengths of branches and parts of the branches lacking leaves ('bare' branches) were smaller in upper branches than in lower branches within crowns, whereas lengths of 'leafy' parts and the number of leaves per branch were larger in intermediate than in upper and lower branches. Maximum diffuse light absorption (DLA) of individual leaves was not related to sapling height or branch position within crowns, whereas minimum DLA was lower in tall saplings. Accordingly, branch-level light interception was higher in intermediate than in upper and lower branches. The leaf production rate was higher and leaf loss rate was smaller in upper than in intermediate and lower branches. Moreover, the branch production rate of new first-order branches was larger in the upper crowns. Thus, leaf and branch dynamics do not correspond to branch-level light interception in the different canopy zones. As a result of architectural constraints, branches at different vertical positions experience predictable light microenvironments in plagiotropic species. Accordingly, this pattern of carbon allocation among branches might be particularly important for growth and crown development in plagiotropic species.  相似文献   

5.
浙江天童太白山不同群落植物构型比较   总被引:1,自引:1,他引:0  
植物构型是植株构件在空间上的分配方式,反映了植物对环境的响应策略。通过对浙江天童太白山海拔差异很小的栲树(Castanopsis fargesii)、小叶青冈(Cyclobalanopsis gracilis)和云山青冈(Cyclobalanopsis sessilifolia)群落类型中所有植株的树高、树冠厚度、树冠面积、叶片聚集度、枝下高和距地45 cm基径等植物构型性状,以及树冠曝光指数、土壤含水率、空气温湿度、土壤p H值和风速6个环境因子的测定,分别分析乔灌木层植物构型性状及性状关系在3个群落间的变化规律。结果表明:(1)从栲树到小叶青冈至云山青冈群落,灌木层的树高、树冠厚度、枝下高和距地45 cm基径增加,叶片聚集度减小;乔木层的树高、树冠厚度、树冠面积、枝下高和距地45 cm基径均减小,叶片聚集度增大;(2)3个群落灌木层构型性状间显著相关(P0.001),而乔木层只在中低海拔群落存在相关性;(3)从栲树到小叶青冈至云山青冈群落,乔灌木层的冠层曝光指数显著增加(P0.05);(4)多元逐步回归表明,树冠曝光指数对灌木层构型性状变异的贡献最大,而风速、土壤含水率和p H值对乔木构型性状的变异起主导作用。综上得知,天童太白山乔灌木植物在不同群落间存在构型分异,植物对光资源的竞争是引起灌木构型在不同群落间变化的主要驱动因子,而对乔木植物,其构型变化更多受到风速和土壤含水量的影响。  相似文献   

6.
BACKGROUND AND AIMS: Light extinction through crowns of canopy trees determines light availability at lower levels within forests. The goal of this paper is the exploration of foliage distribution and light extinction in crowns of five canopy tree species in relation to their shoot architecture, leaf traits (mean leaf angle, life span, photosynthetic characteristics) and successional status (from pioneers to persistent). METHODS: Light extinction was examined at three hierarchical levels of foliage organization, the whole crown, the outermost canopy and the individual shoots, in a tropical moist forest with direct canopy access with a tower crane. Photon flux density and cumulative leaf area index (LAI) were measured at intervals of 0.25-1 m along multiple vertical transects through three to five mature tree crowns of each species to estimate light extinction coefficients (K). RESULTS: Cecropia longipes, a pioneer species with the shortest leaf life span, had crown LAI <0.5. Among the remaining four species, crown LAI ranged from 2 to 8, and species with orthotropic terminal shoots exhibited lower light extinction coefficients (0.35) than those with plagiotropic shoots (0.53-0.80). Within each type, later successional species exhibited greater maximum LAI and total light extinction. A dense layer of leaves at the outermost crown of a late successional species resulted in an average light extinction of 61% within 0.5 m from the surface. In late successional species, leaf position within individual shoots does not predict the light availability at the individual leaf surface, which may explain their slow decline of photosynthetic capacity with leaf age and weak differentiation of sun and shade leaves. CONCLUSION: Later-successional tree crowns, especially those with orthotropic branches, exhibit lower light extinction coefficients, but greater total LAI and total light extinction, which contribute to their efficient use of light and competitive dominance.  相似文献   

7.
The planting of tree seedlings is a common restoration technique in the tropics, and using large‐crowned, fast‐growing shade species is recommended to suppress invasive grasses and accelerate forest succession. We analyzed the effectiveness of shade species in shading the forest floor during the rainy and dry seasons at young forest restoration sites, whether shade changes according to site for a given species, and whether crown architecture can predict the shade level. We measured the photosynthetically active radiation (PAR) intercepted by the tree crowns of 14 species in two 3‐year‐old restoration plantings. The ability to predict shade based on crown architecture traits was evaluated using multiple linear regressions. The interception of PAR varied according to species, site, and season for seven species and was generally higher during the rainy season. Low values of tree and first branch height and high values of trunk diameter and mean area of a leaf predicted greater light interception. For the dry season, the ability to predict PAR interception was weaker than that for the rainy season and affected by a shorter tree height and a greater crown area. The crown architecture of shade species did not completely predict their shading ability, and the preselection of shade species for forest restoration purposes based only on crown architecture traits is not effective. Therefore, it is important to consider other factors, such as how long trees retain their leaves throughout the year and the soil and management conditions of the sites undergoing restoration, during the selection of species.  相似文献   

8.
Patterns of crown spread and branch retention of two shade-intolerantspecies (Betula platyphyllaandB. maximowicziana) were comparedwith three more tolerant species (Quercus mongolica,Acer sieboldianumandMagnoliaobovata). Branching height (height of the lowest living branch)rose more rapidly with age for the twoBetulaspecies than forthe shade tolerant species. Branching heights ofA. sieboldianumandM.obovatawere similar, irrespective of tree height and age, andlarger trees tended to produce wider crowns than theBetulaspecieswhen trees of similar height were compared. In all species,the branch basal area (cross-sectional area of a branch at itsbase) and the leaf area per branch generally increased as thebranch position on a stem became lower. Therefore, retaininglarger branches contributed significantly to the support ofa larger leaf area per tree. The number of larger branches (branchbasal area >80 cm2) for bothBetulaspecies was significantlysmaller than that of the shade tolerant species. The branchretention pattern ofBetulaspecies was probably a consequenceof intolerance of the leaves to shade. The decline ofBetulaspecieswith forest succession is likely to occur through their inabilityto retain branches with a large base area in closed forests.Copyright1997 Annals of Botany Company Shade tolerance; crown spread; branch retention; branch size; broad-leaved woody species; leaf area index per tree  相似文献   

9.
In this study we explore the impact of asymmetrical vs. uniform crown shading on the mortality and growth of upper and lower branches within tree crowns, for two conifer species: shade intolerant lodgepole pine (Pinus contorta) and shade tolerant white spruce (Picea glauca). We also explore xylem hydraulics, foliar nutrition, and carbohydrate status as drivers for growth and expansion of the lower and upper branches in various types of shading. This study was conducted over a two-year period across 10 regenerating forest sites dominated by lodgepole pine and white spruce, in the lower foothills of Alberta, Canada. Trees were assigned to one of four shading treatments: (1), complete uniform shading of the entire tree, (2) light asymmetric shading where the lower 1/4–1/3 of the tree crown was shaded, (3) heavy asymmetric shading as in (2) except with greater light reduction and (4) control in which no artificial shading occurred and most of the entire crown was exposed to full light. Asymmetrical shading of only the lower crown had a larger negative impact on the bud expansion and growth than did uniform shading, and the effect was stronger in pine relative to spruce. In addition, lower branches in pine also had lower carbon reserves, and reduced xylem-area specific conductivity compared to spruce. For both species, but particularly the pine, the needles of lower branches tended to store less C than upper branches in the asymmetric shade, which could suggest a movement of reserves away from the lower branches. The implications of these findings correspond with the inherent shade tolerance and self-pruning behavior of these conifers and supports a carbon based mechanism for branch mortality – mediated by an asymmetry in light exposure of the crown.  相似文献   

10.
Rhizophora mangle L., the predominant neotropical mangrove species, occupies a gradient from low intertidal swamp margins with high insolation, to shaded sites at highest high water. Across a light gradient, R. mangle shows properties of both “light-demanding” and “shade-tolerant” species, and defies designation according to existing successional paradigms for rain forest trees. The mode and magnitude of its adaptability to light also change through ontogeny as it grows into the canopy. We characterized and compared phenotypic flexibility of R. mangle seedlings, saplings, and tree modules across changing light environments, from the level of leaf anatomy and photosynthesis, through stem and whole-plant architecture. We also examined growth and mortality differences among sun and shade populations of seedlings over 3 yr. Sun and shade seedling populations diverged in terms of four of six leaf anatomy traits (relative thickness of tissue layers and stomatal density), as well as leaf size and shape, specific leaf area (SLA), leaf internode distances, disparity in blade–petiole angles, canopy spread: height ratios, standing leaf numbers, summer (July) photosynthetic light curve shapes, and growth rates. Saplings showed significant sun/shade differences in fewer characters: leaf thickness, SLA, leaf overlap, disparity in bladepetiole angles, standing leaf numbers, stem volume and branching angle (first-order branches only), and summer photosynthesis. In trees, leaf anatomy was insensitive to light environment, but leaf length, width, and SLA, disparities in bladepetiole angles, and summer maximal photosynthetic rates varied among sun and shade leaf populations. Seedling and sapling photosynthetic rates were significantly depressed in winter (December), while photosynthetic rates in tree leaves did not differ in winter and summer. Seasonal and ontogenetic changes in response to light environment are apparent at several levels of biological organization in R. mangle, within constraints of its architectural baiiplan. Such variation has implications for models of stand carbon gain, and suggest that response flexibility may change with plant age.  相似文献   

11.
BACKGROUND AND AIMS: Inevitable trade-offs in structure may be a basis for differentiation in plant strategies. Juvenile trees in different functional groups are characterized by specific suites of structural traits such as crown architecture and biomass distribution. The relationship between juvenile tree structure and function was tested to find out if it is robust among functionally and taxonomically similar species of the genus Shorea that coexist sympatrically in a tropical rain forest in Borneo. METHODS: The sapling structures of 18 species were compared for standardized dry masses of 5 and 30 g. Pairwise simple correlation and multiple correlation patterns among structural traits of juveniles (0.1-1.5 m in height) of 18 Shorea species were examined using Pearson's correlation and principal component analysis (PCA), respectively. The correlation was then tested between the PCA results and three indices of shade tolerance: the net photosynthetic rate, the wood density of mature trees and seed size. KEY RESULTS: The structural variation in saplings of the genus Shorea was as large as that found in sets of species with much more diverse origins. The PCA showed that both crown architecture and allocation to leaves are major sources of variation in the structures of the 18 species investigated. Of these two axes, allocation to leaves was significantly correlated with wood density and showed a limited correlation with photosynthetic rate, whereas crown architecture was significantly correlated to seed size. CONCLUSIONS: Overall, the results suggest that an allocation trade-off between leaves and other organs, which co-varied with wood density and to a certain extent with photosynthetic capacity, accounts for the difference in shade tolerance among congeneric, functionally similar species. In contrast, the relationship between the architecture and regeneration strategy differed from the pattern found between functional groups, and the function of crown architecture was ambiguous.  相似文献   

12.
Because light conditions in the forest understory are highly heterogeneous, photosynthetic acclimation to spatially variable irradiance within a crown is important for crown‐level carbon assimilation. The effect of variation in irradiance within the crown on leaf nitrogen content and photosynthetic rate was examined for pinnate compound leaves in saplings of Cedrela sinensis, a pioneer deciduous tree. Five shading treatments, in which 0, 25, 50, 75 and 100% of leaves were shaded, were established by artificial heavy shading using shade screen umbrellas with 25% transmittance. Although the nitrogen content of leaves was constant regardless of shading treatment, ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco) content and light‐saturated photosynthetic capacity were lower in shade leaves within partially shaded crowns than within fully shaded crowns. Shade leaves within partially shaded crowns contained higher amount of amino acids. Most shade leaves died in partially shaded crowns, whereas more than half of shade leaves survived in totally shaded crowns. Assumptions on photosynthetic acclimation to local light conditions cannot explain why shade leaves have different photosynthetic capacities and survival rates in between partially and totally shaded crowns. Irradiance heterogeneity within the crown causes a distinct variation in photosynthetic activity between sun and shaded leaves within the crown.  相似文献   

13.
Plant allometry that is related to plant architecture and biomass allocation strongly influences a plants ability to grow in shaded forest understory. Some allometric traits can change with plant size. The present study compared crown and trunk allometries, root/shoot biomass allometry, and root architecture among understory saplings (0.25--5m height, except for two trees > 5 < 7 m) of seven deciduous dicotyledonous species in central Japan. Associations of the crown and trunk allometries with several plant morphological attributes were analyzed. Branch morphology (plagiotropyvs orthotropy) and life size were correlated with sapling crown and trunk allometries. Both large leaves and orthotropic branches were associated with a narrow small crown and slender trunk. The root/shoot ratio decreased rapidly with increasing plant height for saplings shorter than about 1.5 m. Less shade-tolerant species tended to have smaller root/shoot ratios for saplings taller than 1.5 m. With an increase in plant height, the branch/trunk biomass ratio decreased for saplings with plagiotropic branches but increased for saplings with orthotropic branches. Four subcanopy species (Acer distylum, Carpinus cordata, Fraxinus lanuginosa and Acanthopanax sciadophylloides) had superficial root systems; a common understory species (Sapium japonica) had a deep tap root system; and a canopy species (Magnolia obovata) and a subcanopy species (Acer tenuifolium) had heart root systems of intermediate depth. The root depth was not related to shade tolerance. Among species of the same height, the difference in fine root length can be 30-fold.  相似文献   

14.
This study compared the morphological and growth adjustment of saplings from three shade- tolerant canopy species (Castanopsis lamontii, Lithocarpus hancei and Fagus lucida; Fagaceae) under different light conditions in a Chinese beech forest with dense bamboo undergrowth. Only F. lucida is deciduous, and it had the most flexible morphology. In shade, F. lucida had flat or bent topshoots and horizontal branches to maximize light interception, while in conditions of high light intensity, it formed vertical topshoots to promote growth in terms of height, and upright branches to mitigate excessive sun exposure on the leaves. In contrast to F. lucida (beech), the evergreen species always had vertical topshoots regardless of light conditions. In shady conditions, the evergreens had greater annual growth rates in terms of both height and diameter than the beech, and between the evergreens, the species bearing plagiotropic branches grew faster in diameter than the species bearing orthotropic branches. The evergreen trees had thicker leaves and thicker stems compared to the beech. It was concluded that the evergreen saplings have advantages over beech saplings in terms of current growth in the forest understorey; whereas, morphological and growth flexibility in the beech aids in its persistence in the understorey.  相似文献   

15.
Understanding what drives changes in tree mortality as well as the covariates influencing trees' response is a research priority to predict forest responses to global change. Here, we combined drone photogrammetry and ground-based data to assess the influence of crown exposure to light (relative to total crown area), growth deviations (relative to conspecifics), tree size, and species' wood density (as a surrogate for light-demanding and shade-tolerant life-history strategies) on the mortality of 984 canopy trees in an Amazon terra firme forest. Trees with lower wood density were less prone to die when their proportion of crown was more exposed to sunlight, but this relationship with relative crown exposure weakened and slightly reversed as wood density increased. Trees growing less than their species average had higher mortality, especially when the species' wood density decreased. The role of wood density in determining the survival of canopy trees under varying light conditions indicates differential responses of light-demanding versus shade-tolerant species. Our results highlight the importance of accounting for life-history strategies, via plant functional types, in vegetation dynamic models aiming to predict forest demography under a rapidly changing climate. Abstract in Spanish is available with online material.  相似文献   

16.

Key message

Mechanical properties of wood constrain most conifers to an excurrent form and limit the width of tree crowns. Development of support tissue alters allometric relations during ontogeny.

Abstract

Biomechanical constraints on tree architecture are explored. Torque on a tree branch is a multiplicative function of mass and moment arm. As such, the need for support rises faster than branch length, which leads to increased taper as branch size increases. This violates assumptions of models, such as the pipe-model theory, for large trees and causes changing allometry with tree size or exposure. Thus, assumptions about optimal design for light capture, self-similarity, or optimal hydraulic architecture need to be modified to account for mechanical constraints and costs. In particular, it is argued that mechanical limitations of compression wood in conifers prevent members of this taxon from developing large branches. With decurrent form ruled out (for larger species), only a conical or excurrent form can develop. Wind is shown to be a major mortality risk for trees. Adaptations for wind include dynamic responses of wood properties and height. It is argued that an adaptation to wind could be the development of an open crown in larger trees to let the wind penetrate, thereby reducing wind-throw risk. It is thus argued that crown shape and branching may result not just from optimal light capture considerations but also from adaptation to and response to wind as well as from mechanical constraints. Results have implications for allometric theory, life history theory, and simulations of tree architecture.
  相似文献   

17.
不同光环境下紫椴幼树树冠结构的可塑性响应   总被引:20,自引:1,他引:19  
从冠形、侧枝和叶片在树冠中的空间分布角度对天然更新紫椴幼树的树冠结构进行了论述,认为紫椴幼树树冠对光照条件的变化有显著的可塑性响应.强光通过抑制主干的生长促进了侧枝的分化,庇荫则通过抑制1级侧枝的生长促进了侧枝的再分枝.随着光照水平的降低,紫椴幼树的数量叶片密度显著降低,且叶片逐渐集中于冠上层.林冠下的紫椴幼树通过这种侧枝和叶片的分布格局,在形态上提高其对光的截获能力在适度庇荫环境中,紫椴幼树垂直生长采取演替先锋种的"避荫”对策,侧枝生长采取中等耐荫种的"掠光”对策;在弱光环境中,紫椴幼树则采取典型的忍耐适应行为.这种树冠结构的变化是提高紫椴幼树对光的截获能力的一种有益适应.  相似文献   

18.
This study analyzed the effects of tree size, and correlated architectural tree characteristics, on the assemblages of ants and insect herbivores associated with Anadenanthera macrocarpa (Mimosaceae). The latter is a myrmecophilous tree species from the Atlantic rainforest in south-eastern Brazil. Ants and insect herbivores were collected in 30 individuals of A. macrocarpa , ranging from young individuals (>3 m in height) to emergent trees (up to 40 m). Tree height was a strong indicator of other tree characteristics, including trunk diameter, crown height, crown volume, and number of bifurcations. Ants were collected using arboreal pitfall traps and beating, while insect herbivores with beating only. There was a significant increase in both abundance and species richness of ants and insect herbivores with an increase in tree height. In addition, tree height had a significant effect on the species composition of ants and insect herbivores. Assemblages of both taxa showed a nested organization pattern. The species found in small- and medium-sized trees, in general, consisted of a subset of the species found in the crowns and branches of larger, canopy or emergent trees. Thus, in A. macrocarpa , there was not a replacement of insect species with plant ontogeny. This finding is at variance with those conducted in tropical evergreen forests and which show a clear stratification between the understory and canopy insect faunas. Additional studies are needed to explain these contrasting patterns, but it is possible that differences in microclimate are involved. As the forest we studied is semi-deciduous, microclimatic gradients between the understory and the canopy habitat are probably less severe than in an evergreen forest, thus resulting in a lower turnover of species.  相似文献   

19.
Tree growth and form are both influenced by crown architecture and how it effects leaf distribution and light interception. This study examined the vertical distribution of foliage in 4-year-old plantation-grown Eucalyptus pilularis Sm. and E. cloeziana F. Muell. trees. Leaf area (LA) distribution was determined at two different sites using allometric approaches to determine LA in crown sections and for whole trees. Leaf area was distributed more towards the upper crowns when canopies had been closed for longer. Leaf area was also skewed more towards the upper crowns for Eucalyptus pilularis than E. cloeziana. These species differences were consistent with differences in vertical light availability gradients as determined by point quantum sensors. Leaf area of individual branches was highly correlated with branch cross-sectional area (CSA) and whole-tree LA was closely related to stem CSA. Branch-level allometric relationships were influenced by site and crown position. However, the general allometric equations between stem size and whole-tree leaf area could be applied across sites. Results from this study suggest that pruning of live branches in these species should follow species-specific guides for the timing and height of pruning to optimise the effects on stem growth and form.  相似文献   

20.
This study tests the hypotheses that (1) the above-ground structure of Norway spruce (Picea abies [L] Karst.) is derivable from the functional balance theory, and that (2) crown ratio is a key source of structural variation in trees of different age and social position. Twenty-nine trees were measured in three stands (young, middle-aged, and mature), with three thinning treatments (unthinned, normal, and intensive) in the two older stands. There was a strong linear relationship between the total cross-sectional area of branches and that of stem at crown base. Foliage mass was linearly related with stem basal area at crown base. Also an allometric relationship was found between foliage mass and crown length. The mean length (weighted by basal area) of branches obeyed an exponential function of crown length. The parameters of most of these relationships were independent of slenderness (tree height/breast height diameter) and tree age However, total branch cross-sectional area per stem cross-sectional area in the young trees was greater than in the older trees. The young trees also had slightly shorter branches than predicted by the mean branch length equation. This was probably caused by branch senescence which had not yet started in the young stand. The older trees had a relatively long lower crown segment which was growing slowly and senescing. It was proposed that a segmented crown structure is characteristic of shade tolerant tree species, and that the structural model could be further developed by making the two segments explicit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号