首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The levels of (Na+ + K+)-ATPase expression during muscle development and in response to modulation of demand for ion transport were studied in chick skeletal muscle cells in culture. The number of (Na+ + K+)-ATPase molecules on the myogenic cell surface, quantified with 125I-labeled monoclonal antibodies, increased 20-fold during muscle differentiation, with a substantial increase in (Na+ + K+)-ATPase molecules/unit area of membrane. The demand for sodium ion transport by the (Na+ + K+)-ATPase was modulated by activating voltage-sensitive sodium channels with veratridine or exposing cultures to low [K+]o (0.5 mM). Exposure to veratridine (10 microM) resulted in a 60-100% increase in cell surface and a smaller increase in intracellular (Na+ + K+)-ATPase over a 24-36-h period. Neither high [K+]o (50 mM) nor Ca2+ ionophore A23187 (1 microM) produced any such change, suggesting that neither membrane depolarization nor elevated cytosolic calcium was mediating the effect of veratridine. Veratridine stimulated up-regulation was specific for the (Na+ + K+)-ATPase, blocked by tetrodotoxin, and completely reversible. The kinetics of the reversal (down-regulation) process were much faster (t1/2 = 3 h) than those of up-regulation (t1/2 = 18 h). Up-regulation of the (Na+ + K+)-ATPase by veratridine occurred by a combination of two mechanisms: the first an early phase involving a stimulated biosynthesis of the (Na+ + K+)-ATPase and a later phase in which the biosynthetic rate returned to approximately control levels while the degradation rate slowed (t1/2 control = 31 h, t1/2 veratridine = 64 h).  相似文献   

2.
Tetrodotoxin-sensitive sodium channels of lobster nerve membranes were incorporated into soybean liposomes by the freeze-thaw-sonication procedure and their ionic selectivity was studied. Veratridine and grayanotoxin-I were used to activate the sodium channels and the increment of the ionic flux through them was specifically abolished by tetrodotoxin. The drug-sensitive 22Na+, 42K+, 86Rb+ and 137Cs+ influxes were measured. The permeability ratios calculated directly from ion fluxes showed that the channels preferably allow the passage of Na+. No anion influx ([32P]phosphate, [35S]sulfate, 36Cl) sensitive to the drugs was observed. The data reveal that the sodium channels incorporated into liposomes remain cation-selective and discriminate among different cations.  相似文献   

3.
An endogenous Na+, K+-ATPase inhibitor termed endobain E has been isolated from rat brain which shares several biological properties with ouabain. This cardiac glycoside possesses neurotoxic properties attributable to Na+, K+-ATPase inhibition, which leads to NMDA receptor activation, thus supporting the concept that Na+/K+ gradient impairment has a critical impact on such receptor function. To evaluate potential direct effects of endobain E and ouabain on NMDA receptors, we assayed [3H]dizocilpine binding employing a system which excludes ionic gradient participation. Brain membranes thoroughly washed and stored as pellets ('non-resuspended' membranes) or after resuspension in sucrose ('resuspended' membranes) were employed. Membrane samples were incubated with 4 or 10 nM ligand with or without added endobain E or ouabain, in the presence of different glutamate plus glycine combinations, with or without spermidine. [3H]dizocilpine basal binding and Na+, K+- and Mg2+-ATPase activities proved very similar in 'non-resuspended' or 'resuspended' membranes. Endobain E decreased [3H]dizocilpine binding to 'resuspended' membranes in a concentration-dependent manner, attaining roughly 50% binding inhibition with the highest endobain E concentration assayed. Among tested conditions, only in 'resuspended' membranes, with 4 nM ligand and with 1x10(-8) M glutamate plus 1x10(-5) M glycine, was [3H]dizocilpine binding enhanced roughly +24% by ouabain (1 mM). After Triton X-100 membrane treatment, which drastically reduces Na+, K+-ATPase activity, the effect of ouabain on binding was lost whereas that of endobain E remained unaltered. Results indicate that not only membrane preparation but also treatment and storage are crucial to observe direct endobain E and ouabain effects on NMDA receptor, which are not attributable to changes in Na+, K+-ATPase activity or to Na+/K+ equilibrium alteration.  相似文献   

4.
In this study, the properties of ischemic condition-induced and veratridine-evoked [3H]noradrenaline ([3H]NA) release from rat spinal cord slices were compared. It was expected that ischemia mimicked by oxygen and glucose deprivation results in the impairment of Na+/K+ -ATPase with a consequent elevation of the intracellular Na+ -level which reverses the NA carrier and promotes excessive NA release, and veratridine, by the activation of Na+ channels, releases NA both carrier-mediated and Ca2+ -dependent, i.e. vesicular manner. In our experiments, veratridine (1-100 microM) dose-dependently increased the resting [3H]NA release, and its effect was only partially blocked by low temperature or the lack of external calcium, whereas the sodium channel inhibitor tetrodotoxin (TTX, 1 microM) completely prevented it, indicating that veratridine induces NA release via axonal depolarization and reversing the transporters by eliciting Na+ -influx. In contrast to TTX, the local anesthetic lidocaine (100 microM) only partially blocked the veratridine-induced [3H]NA release due to its inhibitory action on K+ channels. The ischemia-induced [3H]NA release was abolished at 12 degrees C, a temperature known to block only the transporter-mediated release of transmitters. However, lidocaine was also partially effective to reverse the action of ischemia on the NA release, indicating that lidocaine is not a useful compound in the treatment of spinal cord-injured patients against the excessive excytotoxic NA release.  相似文献   

5.
The voltage-sensitive sodium channel has been purified from rabbit T-tubular membranes and reconstituted into defined phospholipid vesicles. Membranes enriched in T-tubular elements (specific [3H]nitrendipine binding = 41 +/- 9 pmol/mg of protein, n = 7) were isolated from fast skeletal muscle. After solubilization with Nonidet P-40, the sodium channel protein was purified to greater than 95% of theoretical homogeneity based on the specific activity of [3H]saxitoxin binding. Two subunits of Mr approximately 260,000 and 38,000 were found; these bands co-distributed with the peak of [3H]saxitoxin binding on sucrose gradients. The purified protein was reconstituted into egg phosphatidylcholine vesicles and retained the ability to gate specific 22Na+ influx in response to activation by batrachotoxin or veratridine. All activated fluxes were blocked by saxitoxin and tetrodotoxin. On sucrose gradients, the distribution of protein capable of functional channel activity paralleled the distribution of specific [3H]saxitoxin binding and of the Mr 260,000 and 38,000 components. The cation selectivity for the reconstituted, batrachotoxin-activated channel was Na+ greater than K+ greater than Rb+ greater than Cs+, with flux ratios of 1:0.13:0.02:0.008. Nine of 25 monoclonal antibodies raised against the rat sarcolemmal sodium channel cross-reacted with the rabbit T-tubular sodium channel in a solid-phase radioimmunoassay. Six of these antibodies showed specific binding to immunoblot transfers of T-tubular membrane proteins. Each labeled a single band at Mr approximately 260,000 corresponding in mobility to the large subunit of the sodium channel.  相似文献   

6.
Batrachotoxin, veratridine and aconitine, activators of the voltage-dependent sodium channel in excitable cell membranes, increase the rate of 22Na+ uptake by mouse brain synaptosomes. Batrachotoxin was both the most potent (K0.5, 0.49 microM) and most effective activator of specific 22Na+ uptake. Veratridine (K0.5, 34.5 microM) and aconitine (K0.5, 19.6 microM) produced maximal stimulations of 22Na+ uptake that were 73% and 46%, respectively, of that produced by batrachotoxin. Activation of 22Na+ uptake by veratridine was completely inhibited by tetrodotoxin (I50, 6 nM ), a specific blocker of nerve membrane sodium channels. These results identify appropriate conditions for measuring sodium channel-dependent 22Na+ flux in mouse brain synaptosomes. The pharmacological properties of mouse brain synaptosomal sodium channels described here are distinct from those previously described for sodium channels in rat brain synaptosomes and mouse neuroblastoma cells.  相似文献   

7.
Three derivatives of ouabain have been synthesized which alkylate the digitalis receptor. These derivatives were formed through reductive amination of p-nitrophenyltriazene (NPT) ethylenediamine to the periodate-oxidized rhamnose moiety of ouabain. The non-covalent binding of the ouabain derivatives (NPT-ouabain, designated I, II, and III) was followed (i) by their ability to inhibit the activity of sodium- and potassium-activated ATPase ((Na+,K+)-ATPase) purified from the electric organ of Electrophorus electricus, (ii) by the binding of [3H]NPT-ouabain I to the enzyme, and (iii) by the inhibition of [3H]ouabain binding with unlabeled NPT-ouabain I. Covalent modification of the digitalis site of (Na+,K+)-ATPase occurs after long periods of time. At pH 7.5 (25 degrees C) the best alkylating derivative, NPT-ouabain I, gives maximum covalent labeling after 6 h. Only the large polypeptide chain (Mr = 93,000) of the purified enzyme is specifically labeled with [3H]NPT-ouabain I while the glycoprotein chain (Mr = 47,000) is not significantly labeled. Labeling of a microsomal fraction of the electric organ with [3H]NPT-ouabain I gave the same type of gel pattern as that observed with the purified enzyme. [3H]NPT-ouabain I was also used to label the digitalis receptor in highly purified axonal membranes and in cardiac membranes prepared from embryonic chick heart. Although the (Na+,K+)-ATPase in both types of membranes has a low affinity for ouabain, [3H]NPT-ouabain I proved to be a very efficient affinity label for the digitalis receptor. In the complex mixture of polypeptides found in these membrane preparations, only a single polypeptide chain having a Mr = 93,000 is specifically labeled by [3H]NPT-ouabain I.  相似文献   

8.
A multistep selection for ouabain resistance was used to isolate a clone of HeLa S3 cells that overproduces the plasma membrane sodium, potassium activated adenosinetriphosphatase (Na+,K+-ATPase). Measurements of specific [3H]ouabain-binding to the resistant clone, C+, and parental HeLa cells indicated that C+ cells contain 8-10 X 10(6) ouabain binding sites per cell compared with 8 X 10(5) per HeLa cell. Plasma membranes isolated from C+ cells by a vesiculation procedure and analyzed for ouabain-dependent incorporation of [32P]phosphate into a 100,000-mol-wt peptide demonstrated a ten- to twelvefold increase in Na+,K+-ATPase catalytic subunit. The affinity of the enzyme for ouabain on the C+ cells was reduced and the time for half maximal ouabain binding was increased compared with the values for the parental cells. The population doubling time for cultures of C+ cells grown in dishes was increased and C+ cells were unable to grow in suspension. Growth of C+ cells in ouabain-free medium resulted in revertant cells, C-, with biochemical and growth properties identical with HeLa. Karyotype analysis revealed that the ouabain-resistant phenotype of the C+ cells was associated with the presence of minute chromosomes which are absent in HeLa and C- cells. This suggests that a gene amplification event is responsible for the Na+,K+-ATPase increase in C+ cells.  相似文献   

9.
The effect of thiamine deficiency on energy-requiring processes in brain tissue was studied by comparing cortical slices prepared from control and pyrithiamine-treated rats. Veratridine was used to stimulate energy metabolism by opening voltage-sensitive sodium channels resulting in enhanced Na+/K+ pumping; subsequent tetrodotoxin addition closed the sodium channels. Pyrithiamine-treated slices showed both lower basal and veratridine-stimulated respiration rates compared to control slices. K+ was released from the tissue upon addition of veratridine and was taken up again upon addition of tetrodotoxin. The movement of K+ was monitored directly with a K+-sensitive electrode as well as by measuring the rubidium diffusion potential. There was no difference between control and pyrithiamine-treated slices in K+ fluxes in response to veratridine and tetrodotoxin. The extent of reuptake of K+ upon tetrodotoxin addition was inversely related to the extracellular Ca2+ concentration and to the incubation temperature. Veratridine resulted in a marked decrease in tissue levels of ATP and creatine phosphate; these levels remained quite low upon tetrodotoxin addition. Despite the different respiration rates, control and pyrithiamine-treated slices showed the same ATP and creatine phosphate levels in response to veratridine and tetrodotoxin.  相似文献   

10.
Inactivation of Na+, K+ -ATPase from cattle brain by sodium fluoride   总被引:3,自引:0,他引:3  
The influence of the physiological ligands and modifiers on the plasma membrane Na+, K+ -ATPase from calf brain inactivation by sodium fluoride (NaF) is studied. ATP-hydrolyzing activity of the enzyme was found to be more stable as to NaF inhibition than its K+ -pNPPase activity. The activatory ions of Na+, K+ -ATPase have different effects on the process of the enzyme inhibition by NaF. K+ intensifies inhibition, but Na+ does not affect it. An increase of [Mg2+free] in the incubation medium (from 0.5 to 3.0 mM) rises the sensitivity of Na+, K+ -ATPase to NaF inhibition. But an increase of [ATP] from 0.3 to 1.5 mM has no effect on this process. Ca and Mg ions modify Na+, K+ -ATPase inhibition by fluoride differently. Ca2+free levels this process, and Mg2+free on the contrary increases it. In the presence of Ca ions and in the neutral-alkaline medium (pH 7.0-8.5) the recovery of activity of the transport ATPase inhibited by-NaF takes place. Sodium citrate also protects both ATP-hydrolizing and K-pNPPase activity of the Na+, K+ -ATPase from NaF inhibition. Under the modifing membranous effects (the treatment of plasma membranes by Ds-Na and digitonin) the partial loss of Na+, K+ -ATPase sensitivity to NaF inhibition is observed. It is concluded that Na+, K+ -ATPase inactivation by NaF depends on the influence of the physiological ligands and modifiers as well as on the integrity of membrane structure.  相似文献   

11.
Solubilization and purification of the tetrodotoxin (TTX) binding protein of the lobster walking-leg nerve Na+ channel were carried out utilizing [3H]tetrodotoxin [( 3H]tetrodotoxin) as a marker. The nerve membrane was solubilized with Lubrol-PX and the Na+ channel protein was purified with diethylaminoethyl Bio-Gel A, Bio-Gel hydroxylapatite powder and two Sepharose 6B columns. Care was taken to keep the temperature of the Na+ channel preparation as close to 1 degrees C as possible and to use solutions (pH 7.5) that contain Na channel protectors, i.e., egg phosphatidylcholine/Lubrol-PX mixture, TTX, EDTA, EGTA, phenylmethylsulfonyl fluoride, pepstatin A, iodoacetamide, antipain, phosphoramidon, soybean trypsin inhibitor, leupeptin and bacitracin. From an initial specific binding of 20.1 pmol of [3H]TTX/mg protein for the solubilized membrane, the binding increased to 1241 pmol/mg protein for the most active fraction of the last Sepharose 6B column. The [3H]TTX specific binding of the Sepharose 6B fractions correlated with a large peptide of Mr 260,000 (240-280K), although other peptides were also present in lesser amounts.  相似文献   

12.
We have previously demonstrated that Na+, K(+)-ATPase activity is present in both differentiated plasma membranes from Electrophorus electricus (L.) electrocyte. Considering that the alpha subunit is responsible for the catalytic properties of the enzyme, the aim of this work was to study the presence and localization of alpha isoforms (alpha1 and alpha2) in the electrocyte. Dose-response curves showed that non-innervated membranes present a Na+, K(+)-ATPase activity 2.6-fold more sensitive to ouabain (I50=1.0+/-0.1 microM) than the activity of innervated membranes (I50=2.6+/-0.2 microM). As depicted in [3H]ouabain binding experiments, when the [3H]ouabain-enzyme complex was incubated in a medium containing unlabeled ouabain, reversal of binding occurred differently: the bound inhibitor dissociated 32% from Na+, K(+)-ATPase in non-innervated membrane fractions within 1 h, while about 50% of the ouabain bound to the enzyme in innervated membrane fractions was released in the same time. These data are consistent with the distribution of alpha1 and alpha2 isoforms, restricted to the innervated and non-innervated membrane faces, respectively, as demonstrated by Western blotting from membrane fractions and immunohistochemical analysis of the main electric organ. The results provide direct evidence for a distinct distribution of Na+, K(+)-ATPase alpha-subunit isoforms in the differentiated membrane faces of the electrocyte, a characteristic not yet described for any polarized cell.  相似文献   

13.
Lysolecithin has been used to solubilize the axon plasma membrane preparation from lobster walking legs. This was accomplished with complete recovery of activity of the axonal cholinergic binding macromolecule and retention of the basic properties of the membrane-bound macromolecule. Sedimentation of the soluble protein through a sucrose gradient containing [3H]nicotine enabled the separation of the axonal cholinergic binding macromolecule from acetylcholinesterase and demonstrated the apparent dissociation of the axonal cholinergic binding macromolecule in low ionic strength solutions.  相似文献   

14.
A lipoidal-protein complex has been isolated from rat gastrocnemius tissue which exhibits a highly specific binding capacity for [3H]veratridine. Purification of the complex has been accomplished by a number of chromatographic steps including affinity chromatography in organic solvents utilizing a resin synthesized by oxirane coupling of veratridine to Sephadex LH-20. The purified complex binds veratridine but not tetrodotoxin or a number of cholinergic ligands. Veratridine binding to the complex is inhibited by aconitine but not tetrodotoxin or cholinergic ligands. The complex has both veratridine saturable (KD= 13 μm ) and non-saturable (KD1 Mm ) binding components. Preliminary chemical analysis showed that the complex is a proteoglycolipid with a protein: carbohydrate: phosphorous ratio of 1.5:1.1:1.0. A discussion is presented favoring the identity of the isolated proteoglycoiipid as a portion of the macromolecular complex comprising the axonal sodium action potential ionophore.  相似文献   

15.
It is presently unknown whether Ca2+ plays a role in the physiological control of Na+/K+-ATPase or sodium pump activity. Because the enzyme is exposed to markedly different intra- and extracellular Ca2+ concentrations, tissue homogenates or purified enzyme preparations may not provide pertinent information regarding this question. Therefore, the effects of Ca2+ on the sodium pump were examined with studies of [3H]ouabain binding and 86Rb+ uptake using viable myocytes isolated from guinea-pig heart and apparently maintaining ion gradients. In the presence of K+, a reduction of the extracellular Ca2+ increased specific [3H]ouabain binding observed at apparent binding equilibria: a half-maximal stimulation was observed when extracellular Ca2+ was lowered to about 50 microM. The change in [3H]ouabain binding was caused by a change in the number of binding sites accessible by ouabain instead of a change in their affinity for the glycoside. Ouabain-sensitive 86Rb+ uptake was increased by a reduction of extracellular Ca2+ concentration. Benzocaine in concentrations reported to reduce the rate of Na+ influx failed to influence the inhibitory effect of Ca2+ on glycoside binding. When [3H]ouabain binding was at equilibrium, the addition of Ca2+ decreased and that of EGTA increased the glycoside binding. Mn2+, which does not penetrate the cell membrane, had effects similar to Ca2+. In the absence of K+, cells lose their tolerance to Ca2+. Reducing Ca2+ concentration prevented the loss of rod-shaped cells but failed to affect specific [3H]ouabain binding observed in the absence of K+. These results indicate that a large change in extracellular Ca2+ directly affects the sodium pump in cardiac myocytes isolated from guinea pigs.  相似文献   

16.
Na+,K(+)-ATPase concentration in rat cerebral cortex was studied by vanadate-facilitated [3H]ouabain binding to intact samples and by K(+)-dependent 3-O-methylfluorescein phosphatase activity determinations in crude homogenates. Methodological errors of both methods were evaluated. [3H]Ouabain binding to cerebral cortex obtained from 12-week-old rats measured incubating samples in buffer containing [3H]ouabain, and ouabain at a final concentration of 1 x 10(-6) mol/L gave a value of 11,351 +/- 177 (n = 5) pmol/g wet weight (mean +/- SEM) without any significant variation between the lobes. Evaluation of affinity for ouabain was in agreement with a heterogeneous population of [3H]ouabain binding sites. K(+)-dependent 3-O-methylfluorescein phosphatase activity in crude cerebral homogenates of age-matched rats was 7.24 +/- 0.14 (n = 5) mumol/min/g wet weight, corresponding to a Na+,K(+)-ATPase concentration of 12,209 +/- 236 pmol/g wet weight. It was concluded that the present methods were suitable for quantitative studies of cerebral cortex Na+,K(+)-ATPase. The concentration of rat cerebral cortex Na+,K(+)-ATPase showed approximately 10-fold increase within the first 4 weeks of life to reach a plateau of approximately 11,000-12,000 pmol/g wet weight, indicating a larger synthesis of Na+,K+ pumps than tissue mass in rat cerebral cortex during the first 4 weeks of development. K+ depletion induced by K(+)-deficient fodder for 2 weeks resulted in a slight tendency toward a reduction in K+ content (6%, p > 0.5) and Na+,K(+)-ATPase concentration (3%, p > 0.4) in cerebral cortex, whereas soleus muscle K+ content and Na+,K(+)-ATPase concentration were decreased by 30 (p < 0.02) and 32% (p < 0.001), respectively. Hence, during K+ depletion, cerebral cortex can maintain almost normal K+ homeostasis, whereas K+ as well as Na+,K+ pumps are lost from skeletal muscles.  相似文献   

17.
Recent studies have suggested that the colonic H+,K+-ATPase (HKalpha2) can secrete either Na+ or H+ in exchange for K+. If correct, this view would indicate that the transporter could function as either a Na+ or a H+ pump. To investigate this possibility a series of experiments was performed using apical membranes from rat colon which were enriched in colonic H+,K+-ATPase protein. An antibody specific for HKalpha2 was employed to determine whether HKalpha2 functions under physiological conditions as a Na+-dependent or Na+-independent K+-ATPase in this same membrane fraction. K+-ATPase activity was measured as [gamma-32P]ATP hydrolysis. The Na+-dependent K+-ATPase accounted for approximately 80% of overall K+-ATPase activity and was characterized by insensitivity to Sch-28080 but partial sensitivity to ouabain. The Na+-independent K+-ATPase activity was insensitive to both Sch-28080 and ouabain. Both types of K+-ATPase activity substituted NH4+ for K+ in a similar manner. Furthermore, our results demonstrate that when incubated with native distal colon membranes, the blocking antibody inhibited dramatically Na+-dependent K+-ATPase activity. Therefore, these data demonstrate that HKalpha2 can function in native distal colon apical membranes as a Na+-dependent K+-ATPase. Elucidation of the role of the pump as a transporter of Na+ versus H+ or NH4+ versus K+ in vivo will require additional studies.  相似文献   

18.
Na+,K+-ATPase, the enzymatic moiety that operates as the electrogenic sodium-potassium pump of the cell plasma membrane, is inhibited by cardiac glycosides, and this specific interaction of a drug with an enzyme has been considered to be responsible for digitalis-induced vascular smooth muscle contraction. Although studies aimed at localization, isolation, and measurement of the Na+,K+-ATPase activity (or Na+, K- pump activity) indicate its presence in vascular smooth muscle sarcolemma, its characterization as the putative vasopressor receptor site for cardiac glycosides has depended on pharmacological studies of vascular response in vivo and on isolated artery contractile responses in vitro. More recently, radioligand-binding studies using [3H]ouabain have aided in the characterization of drug-enzyme interaction. Such studies indicate that in canine superior mesenteric artery (SMA), Na+,K+-ATPase is the only specific site of interaction of ouabain with resultant inhibition of the enzyme. The characteristics of [3H]ouabain binding to this site are similar to those of purified or partially purified Na+,K+-ATPase of other tissues, which suggests that if Na+,K+-ATPase inhibition is causally related to digitalis-mediated effects on vascular smooth muscle contraction, then therapeutic concentrations of cardiac glycosides could act to cause SMA vasoconstriction. The additional finding from radioligand-binding studies that Na+,K+-ATPase exists in much smaller quantities (density of sites per cell) in SMA than in either heart or kidney may have implications concerning its physiological, biochemical or pharmacological role in modulating vascular muscle tone.  相似文献   

19.
A rapid and reproducible method has been developed for the simultaneous isolation of basolateral and brush-border membranes from the rabbit renal cortex. The basolateral membrane preparation was enriched 25-fold in (Na+ + K+)-ATPase and the brush-border membrane fraction was enriched 12-fold in alkaline phosphatase, whereas the amount of cross-contamination was low. Contamination of these preparations by mitochondria and lysosomes was minimal as indicated by the low specific activities of enzyme markers, i.e., succinate dehydrogenase and acid phosphatase. The basolateral fraction consisted of 35-50% sealed vesicles, as demonstrated by detergent (sodium dodecyl sulfate) activation of (Na+ + K+)-ATPase activity and [3H]ouabain binding. The sidedness of the basolateral membranes was estimated from the latency of ouabain-sensitive (Na+ + K+)-ATPase activity assayed in the presence of gramicidin, which renders the vesicles permeable to Na+ and K+. These studies suggest that nearly 90% of the vesicles are in a right-side-out orientation.  相似文献   

20.
The interaction of the cardiac glycoside [3H]ouabain with the Na+, K+ pump of resealed human erythrocyte ghosts was investigated. Binding of [3H]ouabain to high intracellular Na+ ghosts was studied in high extracellular Na+ media, a condition determined to produce maximal ouabain binding rates. Simultaneous examination of both the number of ouabain molecules bound per ghost and the corresponding inhibition of the Na+, K+-ATPase revealed that one molecule of [3H]ouabain inhibited one Na+, K+-ATPase complex. Intracellular magnesium or magnesium plus inorganic phosphate produced the lowest ouabain binding rate. Support of ouabain binding by adenosine diphosphate (ADP) was negligible, provided synthesis of adenosine triphosphate (ATP) through the residual adenylate kinase activity was prevented by the adenylate kinase inhibitor Ap5A. Uridine 5'-triphosphate (UTP) alone did not support ouabain binding after inhibition of the endogenous nucleoside diphosphokinase by trypan blue and depletion of residual ATP by the incorporation of hexokinase and glucose. ATP acting solely at the high- affinity binding site of the Na+, K+ pump (Km approximately 1 microM) promoted maximal [3H]ouabain binding rates. Failure of 5'-adenylyl-beta- gamma-imidophosphate (AMP-PNP) to stimulate significantly the rate of ouabain binding suggests that phosphorylation of the pump was required to expose the ouabain receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号