首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
p33(ING1) enhances UVB-induced apoptosis in melanoma cells   总被引:14,自引:0,他引:14  
The biological functions of the tumor suppressor ING1 have been studied extensively in the past few years since it was cloned. It shares many biological functions with p53 and has been reported to mediate growth arrest, senescence, apoptosis, anchorage-dependent growth, chemosensitivity, and DNA repair. Some of these functions, such as cell cycle arrest and apoptosis, have been shown to be dependent on the activity of both ING1 and p53 proteins. Two recent reports by Scott and colleagues demonstrate that p33(ING1) (one of the ING1 isoforms) translocates to the nucleus and binds to PCNA upon UV irradiation. Here we report that p33(ING1) mediates UV-induced cell death in melanoma cells. We found that overexpression of p33(ING1) increased while the introduction of an antisense p33(ING1) plasmid reduced the apoptosis rate in melanoma cells after UVB irradiation. We also demonstrated that enhancement of UV-induced apoptosis by p33(ING1) required the presence of p53. Moreover, we found that p33(ING1) enhanced the expression of endogenous Bax and altered the mitochondrial membrane potential. Taken together, these observations strongly suggest that p33(ING1) cooperates with p53 in UVB-induced apoptosis via the mitochondrial cell death pathway in melanoma cells.  相似文献   

3.
Osteosarcoma is the most common malignant primary bone tumor in children and adolescents. The clinical outcome for osteosarcoma remains discouraging despite aggressive surgery and intensive radiotherapy and chemotherapy regimens. Thus, novel therapeutic approaches are needed. Previously, we have shown that inorganic phosphate (Pi) inhibits proliferation and aggressiveness of human osteosarcoma U2OS cells identifying adenylate cyclase, beta3 integrin, Rap1, ERK1/2 as proteins whose expression and function are relevantly affected in response to Pi. In this study, we investigated whether Pi could affect chemosensitivity of osteosarcoma cells and the underlying molecular mechanisms. Here, we report that Pi inhibits proliferation of p53‐wild type U2OS cells (and not of p53‐null Saos and p53‐mutant MG63 cells) by slowing‐down cell cycle progression, without apoptosis occurrence. Interestingly, we found that Pi strongly enhances doxorubicin‐induced cytotoxicity in U2OS, and not in Saos and MG63 cells, by apoptosis induction, as revealed by a marked increase of sub‐G1 population, Bcl‐2 downregulation, caspase‐3 activation, and PARP cleavage. Remarkably, Pi/doxorubicin combination‐induced cytotoxicity was accompanied by an increase of p53 protein levels and of p53 target genes mdm2, p21 and Bax, and was significantly reduced by the p53 inhibitor pifithrine‐alpha. Moreover, the doxorubicin‐induced cytotoxicity was associated with ERK1/2 pathway inhibition in response to Pi. Altogether, our data enforce the evidence of Pi as a novel signaling molecule capable of inhibiting ERK pathway and inducing sensitization to doxorubicin of osteosarcoma cells by p53‐dependent apoptosis, implying that targeting Pi levels might represent a rational strategy for improving osteosarcoma therapy. J. Cell. Physiol. 228: 198–206, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
The biological functions of the tumor suppressor ING1 have been studied extensively in the past few years since it was cloned. It shares many biological functions with p53 and has been reported to mediate growth arrest, senescence, apoptosis, anchorage-dependent growth, chemosensitivity, and DNA repair. Some of these functions, such as cell cycle arrest and apoptosis, have been shown to be dependent on the activity of both ING1 and p53 proteins. Two recent reports by Scott and colleagues demonstrate that p33ING1 (one of the ING1 isoforms) translocates to the nucleus and binds to PCNA upon UV irradiation. Here we report that p33ING1 mediates UV-induced cell death in melanoma cells. We found that overexpression of p33ING1 increased while the introduction of an antisense p33ING1 plasmid reduced the apoptosis rate in melanoma cells after UVB irradiation. We also demonstrated that enhancement of UV-induced apoptosis by p33ING1 required the presence of p53. Moreover, we found that p33ING1 enhanced the expression of endogenous Bax and altered the mitochondrial membrane potential. Taken together, these observations strongly suggest that p33ING1 cooperates with p53 in UVB-induced apoptosis via the mitochondrial cell death pathway in melanoma cells.  相似文献   

5.
6.
7.
8.
Garate M  Wong RP  Campos EI  Wang Y  Li G 《EMBO reports》2008,9(6):576-581
The tumour suppressor p33(ING1b) ((ING1b) for inhibitor of growth family, member 1b) is important in cellular stress responses, including cell-cycle arrest, apoptosis, chromatin remodelling and DNA repair; however, its degradation pathway is still unknown. Recently, we showed that genotoxic stress induces p33(ING1b) phosphorylation at Ser 126, and abolishment of Ser 126 phosphorylation markedly shortened its half-life. Therefore, we suggest that Ser 126 phosphorylation modulates the interaction of p33(ING1b) with its degradation machinery, stabilizing this protein. Combining the use of inhibitors of the main degradation pathways in the nucleus (proteasome and calpains), partial isolation of the proteasome complex, and in vitro interaction and degradation assays, we set out to determine the degradation mechanism of p33(ING1b). We found that p33(ING1b) is degraded in the 20S proteasome and that NAD(P)H quinone oxidoreductase 1 (NQO1), an oxidoreductase previously shown to modulate the degradation of p53 in the 20S proteasome, inhibits the degradation of p33(ING1b). Furthermore, ultraviolet irradiation induces p33(ING1b) phosphorylation at Ser 126, which, in turn, facilitates its interaction with NQO1.  相似文献   

9.
Osteosarcoma becomes the second leading cause of cancer death in the younger population. Current outcomes of chemotherapy on osteosarcoma were unsatisfactory to date, demanding development of effective therapies. Tea is a commonly used beverage beneficial to human health. As a major component of tea, theabrownin has been reported to possess anti‐cancer activity. To evaluate its anti‐osteosarcoma effect, we established a xenograft model of zebrafish and employed U2OS cells for in vivo and in vitro assays. The animal data showed that TB significantly inhibited the tumour growth with stronger effect than that of chemotherapy. The cellular data confirmed that TB‐triggered DNA damage and induced apoptosis of U2OS cells by regulation of Mki67, PARP, caspase 3 and H2AX, and Western blot assay showed an activation of p53 signalling pathway. When P53 was knocked down by siRNA, the subsequent downstream signalling was blocked, indicating a p53‐dependent mechanism of TB on U2OS cells (p53 wt). Using osteosarcoma cell lines with p53 mutations (HOS, SAOS‐2 and MG63), we found that TB exerted stronger inhibitory effect on U2OS cells than that on p53‐mut cell lines, but it also exerted obvious effect on SAOS‐2 cells (p53 null), suggesting an activation of p53‐independent pathway in the p53‐null cells. Interestingly, theabrownin was found to have no toxicity on normal tissue in vivo and could even increase the viability of p53‐wt normal cells. In sum, theabrownin could trigger DNA damage and induce apoptosis on U2OS cells via a p53‐dependent mechanism, being a promising candidate for osteosarcoma therapy.  相似文献   

10.
Objectives: This study was performed to explore the strategy of combining Chk1 inhibitors with ionizing radiation (IR) to selectively target p53‐deficient cancer cells. Materials and methods: Survival and cell cycle progression were measured in response to IR and the Chk1 inhibitors, UCN‐01 and CEP‐3891, in colon carcinoma HCT116 p53+/+ and p53?/? cells, and in osteosarcoma U2OS‐VP16 cells with conditional expression of dominant‐negative p53 (p53DD). Results: Clonogenic survival was selectively reduced in HCT116 p53?/? compared to p53+/+ cells after treatment with UCN‐01 and IR, and HCT116 p53+/+ cells also displayed strong p53‐dependent G1 arrest in the 1st cell cycle after IR. In contrast, clonogenic survival was affected similarly in U2OS‐VP16 cells with and without expression of p53DD. However, death of U2OS‐VP16 cells was p53 dependent as assessed by cell viability assay at 72 h, and this was associated with p53‐dependent G1 arrest in the 2nd cell cycle after treatment. Notably, HCT116 cells were overall more resistant than U2OS cells to cytotoxic effects of Chk1 inhibitors. Conclusion: Our results suggest that p53‐dependent G1 arrest in both 1st and 2nd cell cycles may protect human cancer cells from cell death after treatment with IR and Chk1 inhibitors. However, a challenge for future clinical use will be that different cancers display different intrinsic sensitivity to such inhibitors.  相似文献   

11.
p53-independent apoptosis is induced by the p19ARF tumor suppressor   总被引:6,自引:0,他引:6  
p19(ARF) is a potent tumor suppressor. By inactivating Mdm2, p19(ARF) upregulates p53 activities to induce cell cycle arrest and sensitize cells to apoptosis in the presence of collateral signals. It has also been demonstrated that cell cycle arrest is induced by overexpressed p19(ARF) in p53-deficient mouse embryonic fibroblasts, only in the absence of the Mdm2 gene. Here, we show that apoptosis can be induced without additional apoptosis signals by expression of p19(ARF) using an adenovirus-mediated expression system in p53-intact cell lines as well as p53-deficient cell lines. Also, in primary mouse embryonic fibroblasts (MEFs) lacking p53/ARF, p53-independent apoptosis is induced irrespective of Mdm2 status by expression of p19(ARF). In agreement, p19(ARF)-mediated apoptosis in U2OS cells, but not in Saos2 cells, was attenuated by coexpression of Mdm2. We thus conclude that there is a p53-independent pathway for p19(ARF)-induced apoptosis that is insensitive to inhibition by Mdm2.  相似文献   

12.
Osteosarcoma is the most common primary bone cancer that affects adolescents with early metastatic potential and drastically reduces their long-term survival rate if pulmonary metastases are detected at diagnosis. The natural naphthoquinol compound deoxyshikonin exhibits anticancer properties, so we hypothesized that it has an apoptotic effect on osteosarcoma U2OS and HOS cells and studied its mechanisms. After deoxyshikonin treatment, dose-dependent decreases in cell viability, induction of cell apoptosis and arrest in the sub-G1 phase of U2OS and HOS cells were observed. The increases in cleaved caspase 3 expression and the decreases in X-chromosome-linked IAP (XIAP) and cellular inhibitors of apoptosis 1 (cIAP-1) expressions after deoxyshikonin treatment in the human apoptosis array were identified in HOS cells, and dose-dependent expression changes of IAPs and cleaved caspase 3, 8 and 9 were verified by Western blotting in U2OS and HOS cells. Phosphorylation of extracellular signal-regulated protein kinases (ERK)1/2, c-Jun N-terminal kinases (JNK)1/2 and p38 expressions in U2OS and HOS cells was also increased by deoxyshikonin in a dose-dependent manner. Subsequently, cotreatment with inhibitors of ERK (U0126), JNK (JNK-IN-8) and p38 (SB203580) was performed to show that p38 signalling is responsible for deoxyshikonin-induced apoptosis in U2OS and HOS cells, but not via the ERK and JNK pathways. These discoveries demonstrate that deoxyshikonin may be a possible chemotherapeutic candidate to induce cell arrest and apoptosis by activating extrinsic and intrinsic pathways through p38 for human osteosarcoma.  相似文献   

13.
DNA damage induces cell cycle arrest through both Chk1 and the p53 tumor suppressor protein, the latter arresting cells through induction of p21waf1 protein. Arrest permits cells to repair the damage and recover. The frequent loss of p53 in tumor cells makes them more dependent on Chk1 for arrest and survival. However, some p53 wild type tumor cell lines, such as HCT116 and U2OS, are also sensitive to inhibition of Chk1 due to attenuated p21waf1 induction upon DNA damage. The purpose of this study is to determine the cause of this attenuated p21waf1 protein induction. We find that neither the induction of p21waf1 mRNA nor protein half-life is sufficient to explain the low p21waf1 protein levels in HCT116 and U2OS cells. The induced mRNA associates with polysomes but little protein is made suggesting these two cell lines have a reduced rate of p21waf1 mRNA translation. This represents a novel mechanism for disruption of the p53-p21waf1 pathway as currently known mechanisms involve either mutation of p53 or reduction of p53 protein levels. As a consequence, this attenuated p21waf1 expression may render some p53 wild type tumors sensitive to a combination of DNA damage plus checkpoint inhibition.  相似文献   

14.
DNA damage induces cell cycle arrest through both Chk1 and the p53 tumor suppressor protein, the latter arresting cells through induction of p21waf1 protein. Arrest permits cells to repair the damage and recover. The frequent loss of p53 in tumor cells makes them more dependent on Chk1 for arrest and survival. However, some p53 wild type tumor cell lines, such as HCT116 and U2OS, are also sensitive to inhibition of Chk1 due to attenuated p21waf1 induction upon DNA damage. The purpose of this study is to determine the cause of this attenuated p21waf1 protein induction. We find that neither the induction of p21waf1 mRNA nor protein half-life is sufficient to explain the low p21waf1 protein levels in HCT116 and U2OS cells. The induced mRNA associates with polysomes but little protein is made suggesting these two cell lines have a reduced rate of p21waf1 mRNA translation. This represents a novel mechanism for disruption of the p53-p21waf1 pathway as currently known mechanisms involve either mutation of p53 or reduction of p53 protein levels. As a consequence, this attenuated p21waf1 expression may render some p53 wild type tumors sensitive to a combination of DNA damage plus checkpoint inhibition.  相似文献   

15.
p193/CUL7 is an E3 ubiquitin ligase initially identified as an SV40 Large T Antigen binding protein. Expression of a dominant interfering variant of mouse p193/CUL7 (designated 1152stop) conferred resistance to MG132- and etoposide-induced apoptosis in U2OS cells. Immune precipitation/Western analyses revealed that endogenous p193/CUL7 formed a complex with Parc (a recently identified parkin-like ubiquitin ligase) and p53. Apoptosis resistance did not result from 1152stop-mediated disruption of the endogenous p193/CUL7 binding partners. Moreover, 1152stop molecule did not directly bind to endogenous p193/CUL7, Parc or p53. These data suggested a role for p193/CUL7 in the regulation of apoptosis independently of p53 and Parc activity.  相似文献   

16.
The INK4A/ARF locus on chromosome 9 is a tumor suppressor gene frequently mutated in human cancers. In order to study the effects of p14ARF expression in tumor cells, we constructed a recombinant adenovirus containing p14ARF cDNA (Adp14ARF). Adp14ARF infection of U2OS osteosarcoma cells which has wild type p53 and mutant p14ARF revealed high levels of p14 (ARF) expression within 24h. In addition, Adp14ARF-mediated expressing of p14 (ARF) was associated with increased levels of p53, p21, and mdm2 protein. Growth inhibition assays following Adp14ARF infection demonstrated that the growth of U2OS cells was inhibited relative to infection with control virus. Furthermore, TUNEL analysis as well as PARP cleavage assays demonstrated that Adp14ARF infection was associated with increased apoptosis in U2OS cell line and that it was associated with Adp14ARF induced overexpression of Fas and Fas-L. Addition of Fas-L neutralizing antibody NOK-1 decreased Adp14-mediated cell death, indicating that p14 (ARF) induction of the Fas pathway is associated with increased apoptosis. The finding that Adp14ARF infection did not induce Fas expression in U2OS/E6 and MCF/E6 cells suggests that wild type p53 expression may be necessary for Adp14ARF-mediated induction of Fas. The observation that overexpression of p53 by Adp53 infection in MCF-7 does not induce increased Fas protein levels nor apoptotic cell death suggests that p53 overexpression is required but not sufficient enough for apoptosis. These studies suggest there are other mechanisms other than induction of p53 in ARF-mediated apoptosis and gene therapy using Adp14ARF may be a promising treatment option for human cancers containing wild type p53 and mutant or deleted p14 expression.  相似文献   

17.
Studies have shown that exosomes can mediate the chemoresistance of drug-resistant cells by transmitting circular RNAs (circRNAs). However, the role of exosome-derived hsa_circ_103801 (exosomal hsa_circ_103801) in osteosarcoma (OS) remains unclear. The level of hsa_circ_103801 was upregulated in the serum exosomes from patients with OS, and OS patients with high hsa_circRNA_103801 expression had a shorter survival time relative to patients with low hsa_circ_103801 expression. The expression of hsa_circ_103801 was upregulated in cisplatin-resistant MG63 (MG63/CDDP) cells compared with that in MG63 cells. In addition, hsa_circ_103801 was highly enriched in exosomes derived from CDDP-resistant OS cells and could be delivered to MG63 and U2OS cells through exosomes. Exosomes derived from CDDP-resistant cells were shown to reduce the sensitivity of MG63 and U2OS cells to CDDP, inhibit apoptosis, and increase the expression of multidrug resistance-associated protein 1 and P-glycoprotein. Moreover, exosomal hsa_circ_103801 could strengthen the promotive effect of exosomes on the chemoresistance of MG63 and U2OS cells to CDDP. Hence, serum exosomal hsa_circ_103801 may serve as an effective prognostic biomarker for OS, and exosomal hsa_circ_103801 could be a potential target for overcoming OS chemoresistance.  相似文献   

18.
Recent studies have focused on the anti-tumor activity of capsaicin. However, the potential effects of capsaicin in osteosarcoma cells and the underlying mechanisms are not fully understood. In the current study, we observed that capsaicin-induced growth inhibition and apoptosis in cultured osteosarcoma cells (U2OS and MG63), which were associated with a significant AMP-activated protein kinase (AMPK) activation. AMPK inhibition by compound C or RNA interference suppressed capsaicin-induced cytotoxicity, while AMPK activators (AICAR and A769662) promoted osteosarcoma cell death. For the mechanism study, we found that AMPK activation was required for capsaicin-induced mTORC1 (mTOR complex 1) inhibition, B cell lymphoma 2 (Bcl-2) downregulation and Bax upregulation in MG63 cells. Capsaicin administration induced p53 activation, mitochondrial translocation and Bcl-2 killer association, such effects were dependent on AMPK activation. Interestingly, we observed a significant pro-apoptotic c-Jun NH2-terminal kinases activation by capsaicin in MG63 cells, which appeared to be AMPK independent. In conclusion, capsaicin possessed strong efficacy against human osteosarcoma cells. Molecular studies revealed that capsaicin activated AMPK-dependent and AMPK-independent signalings to mediate cell apoptosis. The results of this study should have significant translational relevance in managing this deadly malignancy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号