首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Compilation of tRNA sequences and sequences of tRNA genes.   总被引:57,自引:25,他引:32       下载免费PDF全文
  相似文献   

3.
Compilation of sequences of tRNA genes   总被引:4,自引:9,他引:4       下载免费PDF全文
  相似文献   

4.
Compilation of sequences of tRNA genes   总被引:15,自引:11,他引:4       下载免费PDF全文
  相似文献   

5.
Compilation of tRNA sequences.   总被引:10,自引:12,他引:10       下载免费PDF全文
This compilation presents in a small space the tRNA sequences so far published. The numbering of tRNAPhe from yeast is used following the rules proposed by the participants of the Cold Spring Harbor Meeting on tRNA 1978 (1,2;Fig. 1). This numbering allows comparisons with the three dimensional structure of tRNAPhe. The secondary structure of tRNAs is indicated by specific underlining. In the primary structure a nucleoside followed by a nucleoside in brackets or a modification in brackets denotes that both types of nucleosides can occupy this position. Part of a sequence in brackets designates a piece of sequence not unambiguosly analyzed. Rare nucleosides are named according to the IUPACIUB rules (for complicated rare nucleosides and their identification see Table 1); those with lengthy names are given with the prefix x and specified in the footnotes. Footnotes are numbered according to the coordinates of the corresponding nucleoside and are indicated in the sequence by an asterisk. The references are restricted to the citation of the latest publication in those cases where several papers deal with one sequence. For additional information the reader is referred either to the original literature or to other tRNA sequence compilations (3-7). Mutant tRNAs are dealt with in a compilation by J. Celis (8). The compilers would welcome any information by the readers regarding missing material or erroneous presentation. On the basis of this numbering system computer printed compilations of tRNA sequences in a linear form and in cloverleaf form are in preparation.  相似文献   

6.
Compilation of tRNA sequences.   总被引:7,自引:16,他引:7       下载免费PDF全文
This compilation presents in a small space the tRNA sequences so far published in order to enable rapid orientation and comparison. The numbering of tRNAPhe from yeast is used as has been done earlier (1) but following the rules proposed by the participants of the Cold Spring Harbor Meeting on tRNA 1978 (2) (Fig. 1). This numbering allows comparisons with the three dimensional structure of tRNAPhe, the only structure known from X-ray analysis. The secondary structure of tRNAs is indicated by specific underlining. In the primary structure a nucleoside followed by a nucleoside in brackets or a modification in brackets denotes that both types of nucleosides can occupy this position. Part of a sequence in brackets designates a piece of sequence not unambiguously analyzed. Rare nucleosides are named according to the IUPAC-IUB rules (for some more complicated rare nucleosides and their identification see Table 1); those with lengthy names are given with the prefix x and specified in the footnotes. Footnotes are numbered according to the coordinates of the corresponding nucleoside and are indicated in the sequence by an asterisk. The references are restricted to the citation of the latest publication in those cases where several papers deal with one sequence. For additional information the reader is referred either to the original literature or to other tRNA sequence compilations (3--7). Mutant tRNAs are dealt with in a separate compilation prepared by J. Celis (see below). The compilers would welcome any information by the readers regarding missing material or erroneous presentation. On the basis of this numbering system computer printed compilations of tRNA sequences in a linear form and in cloverleaf form are in preparation.  相似文献   

7.
Compilation of tRNA sequences   总被引:16,自引:27,他引:16       下载免费PDF全文
  相似文献   

8.
Compilation of tRNA sequences   总被引:10,自引:21,他引:10       下载免费PDF全文
  相似文献   

9.
Compilation of tRNA sequences   总被引:29,自引:19,他引:10       下载免费PDF全文
  相似文献   

10.
Compilation of mutant suppressor tRNA sequences   总被引:5,自引:6,他引:5       下载免费PDF全文
  相似文献   

11.
Identifying potential tRNA genes in genomic DNA sequences.   总被引:16,自引:0,他引:16  
We have developed an algorithm that automatically and reproducibly identifies potential tRNA genes in genomic DNA sequences, and we present a general strategy for testing the sensitivity of such algorithms. This algorithm is useful for the flagging and characterization of long genomic sequences that have not been experimentally analyzed for identification of functional regions, and for the scanning of nucleotide sequence databases for errors in the sequences and the functional assignments associated with them. In an exhaustive scan of the GenBank database, 97.5% of the 744 known tRNA genes were correctly identified (true-positives), and 42 previously unidentified sequences were predicted to be tRNAs. A detailed analysis of these latter predictions reveals that 16 of the 42 are very similar to known tRNA genes, and we predict that they do, in fact, code for tRNA, yielding a false-positive rate for the algorithm of 0.003%. The new algorithm and testing strategy are a considerable improvement over any previously described strategies for recognizing tRNA genes, and they allow detections of genes (including introns) embedded in long genomic sequences.  相似文献   

12.
Transcription and processing of intervening sequences in yeast tRNA genes.   总被引:85,自引:0,他引:85  
Genes for yeast tRNATyr and tRNAPhe have been sequenced (Goodman, Olson and Hall, 1977; Valenzuela et al., 1978) which contain additional nucleotides (intervening sequences) within the middle of the gene that are not present in the mature tRNA. We have isolated precursors to rRNATyr and tRNAPhe from a yeast temperature-sensitive mutant (at the rna1 locus) which accumulates only certain precursor tRNAs at the nonpermissive temperature. The tRNATyr and tRNAPhe precursors were analyzed by oligonucleotide mapping; they each contain the intervening sequence and fully matured 5' and 3' termini. Furthermore, these precursors were used as substrates to search for an enzymatic activity which can remove the intervening sequences and religate the ends. We have shown that wild-type yeast contains such an activity, and that this activity specifically removes the intervening sequences to produce mature-sized RNAs.  相似文献   

13.
Nucleotide sequences of nine tRNA genes from Micrococcus luteus.   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

14.
15.
16.
17.
18.
Nucleotide sequences of three cloned restriction fragments of Tetrahymena mtDNA which showed hybridization with mitochondrial tRNA have been determined. EcoRI fragment 5 (4.1 kbp) contains the tRNAphe gene sequence with anticodon GAA; Hind III fragment 6 (2.0 kbp) the tRNAhis with anticodon GTG; and EcoRI fragment 7 (1.9 kbp) the tRNAtrp with anticodon TCA. The CCA end is not encoded. All three tRNAs show usual features with common invariant and semi-invariant bases and can be folded into a cloverleaf structure with standard loops and regular base pairs in the stems. However, some minor irregular features are present including several GT pairs and an unmatched TT in the stems, and TCC instead of T psi C. All exhibit high G+C contents (about 50%); in contrast, the flanking regions are extremely A+T rich (about 80%). Several short coding frames can be deduced in these sequences, but their significance is not known.  相似文献   

19.
Compilation and analysis of intein sequences.   总被引:18,自引:3,他引:15       下载免费PDF全文
We have compiled a list of all the inteins (protein splicing elements) whose sequences have been published or were available from on-line sequence databases as of September 18, 1996. Analysis of the 36 available intein sequences refines the previously described intein motifs and reveals the presence of another intein motif, Block H. Furthermore, analysis of the new inteins reshapes our view of the conserved splice junction residues, since three inteins lack the intein penultimate His seen in prior examples. Comparison of intein sequences suggests that, in general, (i) inteins present in the same location within extein homologs from different organisms are very closely related to each other in paired sequence comparison or phylogenetic analysis and we suggest that they should be considered intein alleles; (ii) multiple inteins present in the same gene are no more similar to each other than to inteins present in different genes; (iii) phylogenetic analysis indicates that inteins are so divergent that trees with statistically significant branches cannot be generated except for intein alleles.  相似文献   

20.
Compilation of published signal sequences.   总被引:195,自引:16,他引:195       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号