首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
N Galtier  D Mouchiroud 《Genetics》1998,150(4):1577-1584
Codon usage in mammals is mainly determined by the spatial arrangement of genomic G + C-content, i.e., the isochore structure. Ancestral G + C-content at third codon positions of 27 nuclear protein-coding genes of eutherian mammals was estimated by maximum-likelihood analysis on the basis of a nonhomogeneous DNA substitution model, accounting for variable base compositions among present-day sequences. Data consistently supported a human-like ancestral pattern, i.e., highly variable G + C-content among genes. The mouse genomic structure-more narrow G + C-content distribution-would be a derived state. The circumstances of isochore evolution are discussed with respect to this result. A possible relationship between G + C-content homogenization in murid genomes and high mutation rate is proposed, consistent with the negative selection hypothesis for isochore maintenance in mammals.  相似文献   

2.
3.
DNA mismatch repair and synonymous codon evolution in mammals   总被引:4,自引:3,他引:1  
It has been suggested that the differences in synonymous codon use between mammalian genes within a genome are due to differences in the efficiency of DNA mismatch repair. This hypothesis was tested by developing a model of mismatch repair, which was used to predict the expected relationship between the rate of substitution and G+C content at silent sites. It was found that the silent-substitution rate should decline with increasing G+C content over most of the G+C-content range, if it is assumed that mismatch repair is G+C biased, an assumption which is supported by data. This prediction was then tested on a set of 58 primate and artiodactyl genes. There was no evidence of a direct decline in substitution rate with increasing G+C content, for either twofold- or fourfold-degenerate sites. It was therefore concluded that variation in the efficiency of mismatch repair is not responsible for the differences in synonymous codon use between mammalian genes. In support of this conclusion, analysis of the model also showed that the parameter range over which mismatch repair can explain the differences in synonymous codon use between genes is very small.   相似文献   

4.
The codon usage in the Vibrio cholerae genome is analyzed in this paper. Although there are much more genes on the chromosome 1 than on chromosome 2, the codon usage patterns of genes on the two chromosomes are quite similar, indicating that the two chromosomes may have coexisted in the same cell for a very long history. Unlike the base frequency pattern observed in other genomes, the G+C content at the third codon position of the V. cholerae genome varies in a rather small interval. The most notable feature of codon usage of V. cholerae genome is that there is a fraction of genes show significant bias in base choice at the second codon position. The 2,006 known genes can be classified into two clusters according to the base frequencies at this position. The smaller cluster contains 227 genes, most of which code for proteins involved in transport and binding functions. The encoding products of these genes have significant bias in amino acids composition as compared with other genes. The codon usage patterns for the 1,836 function unknown ORFs are also analyzed, which is useful to study their functions.  相似文献   

5.
The patterns of synonymous codon usage, both within and among genomes, have been extensively studied over the past two decades. Despite the accumulating evidence that natural selection can shape codon usage, it has not been possible to link a particular pattern of codon usage to a specific external selective force. Here, we have analyzed the patterns of synonymous codon usage in 40 completely sequenced prokaryotic genomes. By combining the genes from several genomes (more than 80 000 genes in all) into a single dataset for this analysis, we were able to investigate variations in codon usage, both within and between genomes. The results show that synonymous codon usage is affected by two major factors: (i) the overall G+C content of the genome and (ii) growth at high temperature. This study focused on the relationship between synonymous codon usage and the ability to grow at high temperature. We have been able to eliminate both phylogenetic history and lateral gene transfer as possible explanations for the characteristic pattern of codon usage among the thermophiles. Thus, these results demonstrate a clear link between a particular pattern of codon usage and an external selective force.  相似文献   

6.
Summary Ubiquitin is ubiquitous in all eukaryotes and its amino acid sequence shows extreme conservation. Ubiquitin genes comprise direct repeats of the ubiquitin coding unit with no spacers. The nucleotide sequences coding for 13 ubiquitin genes from 11 species reported so far have been compiled and analyzed. The G+C content of codon third base reveals a positive linear correlation with the genome G+C content of the corresponding species. The slope strongly suggests that the overall G+C content of codons of polyubiquitin genes clearly reflects the genome G+C content by AT/GC substitutions at the codon third position. The G+C content of ubiquitin codon third base also shows a positive linear correlation with the overall G+C content of coding regions of compiled genes, indicating the codon choices among synonymous codons reflect the average codon usage pattern of corresponding species. On the other hand, the monoubiquitin gene, which is different from the polyubiquitin gene in gene organization, gene expression, and function of the encoding protein, shows a different codon usage pattern compared with that of the polyubiquitin gene. From comparisons of the levels of synonymous substitutions among ubiquitin repeats and the homology of the amino acid sequence of the tail of monomeric ubiquitin genes, we propose that the molecular evolution of ubiquitin genes occurred as follows: Plural primitive ubiquitin sequences were dispersed on genome in ancestral eukaryotes. Some of them situated in a particular environment fused with the tail sequence to produce monomeric ubiquitin genes that were maintained across species. After divergence of species, polyubiquitin genes were formed by duplication of the other primitive ubiquitin sequences on different chromosomes. Differences in the environments in which ubiquitin genes are embedded reflect the differences in codon choice and in gene expression pattern between poly- and monomeric ubiquitin genes.  相似文献   

7.
The genomes of the spirochaetes Borrelia burgdorferi and Treponema pallidum show strong strand-specific skews in nucleotide composition, with the leading strand in replication being richer in G and T than the lagging strand in both species. This mutation bias results in codon usage and amino acid composition patterns that are significantly different between genes encoded on the two strands, in both species. There are also substantial differences between the species, with T.pallidum having a much higher G+C content than B. burgdorferi. These changes in amino acid and codon compositions represent neutral sequence change that has been caused by strong strand- and species-specific mutation pressures. Genes that have been relocated between the leading and lagging strands since B. burgdorferi and T.pallidum diverged from a common ancestor now show codon and amino acid compositions typical of their current locations. There is no evidence that translational selection operates on codon usage in highly expressed genes in these species, and the primary influence on codon usage is whether a gene is transcribed in the same direction as replication, or opposite to it. The dnaA gene in both species has codon usage patterns distinctive of a lagging strand gene, indicating that the origin of replication lies downstream of this gene, possibly within dnaN. Our findings strongly suggest that gene-finding algorithms that ignore variability within the genome may be flawed.  相似文献   

8.
9.
Coding information is the main source of heterogeneity (non-randomness) in the sequences of microbial genomes. The heterogeneity corresponds to a cluster structure in triplet distributions of relatively short genomic fragments (200-400 bp). We found a universal 7-cluster structure in microbial genomic sequences and explained its properties. We show that codon usage of bacterial genomes is a multi-linear function of their genomic G+C-content with high accuracy. Based on the analysis of 143 completely sequenced bacterial genomes available in Genbank in August 2004, we show that there are four "pure" types of the 7-cluster structure observed. All 143 cluster animated 3D-scatters are collected in a database which is made available on our web-site (http://www.ihes.fr/~zinovyev/7clusters). The findings can be readily introduced into software for gene prediction, sequence alignment or microbial genomes classification.  相似文献   

10.
Qin H  Wu WB  Comeron JM  Kreitman M  Li WH 《Genetics》2004,168(4):2245-2260
To study the roles of translational accuracy, translational efficiency, and the Hill-Robertson effect in codon usage bias, we studied the intragenic spatial distribution of synonymous codon usage bias in four prokaryotic (Escherichia coli, Bacillus subtilis, Sulfolobus tokodaii, and Thermotoga maritima) and two eukaryotic (Saccharomyces cerevisiae and Drosophila melanogaster) genomes. We generated supersequences at each codon position across genes in a genome and computed the overall bias at each codon position. By quantitatively evaluating the trend of spatial patterns using isotonic regression, we show that in yeast and prokaryotic genomes, codon usage bias increases along translational direction, which is consistent with purifying selection against nonsense errors. Fruit fly genes show a nearly symmetric M-shaped spatial pattern of codon usage bias, with less bias in the middle and both ends. The low codon usage bias in the middle region is best explained by interference (the Hill-Robertson effect) between selections at different codon positions. In both yeast and fruit fly, spatial patterns of codon usage bias are characteristically different from patterns of GC-content variations. Effect of expression level on the strength of codon usage bias is more conspicuous than its effect on the shape of the spatial distribution.  相似文献   

11.
Wall DP  Herbeck JT 《Journal of molecular evolution》2003,56(6):673-88; discussion 689-90
In this study we reconstruct the evolution of codon usage bias in the chloroplast gene rbcL using a phylogeny of 92 green-plant taxa. We employ a measure of codon usage bias that accounts for chloroplast genomic nucleotide content, as an attempt to limit plausible explanations for patterns of codon bias evolution to selection- or drift-based processes. This measure uses maximum likelihood-ratio tests to compare the performance of two models, one in which a single codon is overrepresented and one in which two codons are overrepresented. The measure allowed us to analyze both the extent of bias in each lineage and the evolution of codon choice across the phylogeny. Despite predictions based primarily on the low G + C content of the chloroplast and the high functional importance of rbcL, we found large differences in the extent of bias, suggesting differential molecular selection that is clade specific. The seed plants and simple leafy liverworts each independently derived a low level of bias in rbcL, perhaps indicating relaxed selectional constraint on molecular changes in the gene. Overrepresentation of a single codon was typically plesiomorphic, and transitions to overrepresentation of two codons occurred commonly across the phylogeny, possibly indicating biochemical selection. The total codon bias in each taxon, when regressed against the total bias of each amino acid, suggested that twofold amino acids play a strong role in inflating the level of codon usage bias in rbcL, despite the fact that twofolds compose a minority of residues in this gene. Those amino acids that contributed most to the total codon usage bias of each taxon are known through amino acid knockout and replacement to be of high functional importance. This suggests that codon usage bias may be constrained by particular amino acids and, thus, may serve as a good predictor of what residues are most important for protein fitness.  相似文献   

12.
To study the possible codon usage and base composition variation in the bacteriophages, fourteen mycobacteriophages were used as a model system here and both the parameters in all these phages and their plating bacteria, M. smegmatis had been determined and compared. As all the organisms are GC-rich, the GC contents at third codon positions were found in fact higher than the second codon positions as well as the first + second codon positions in all the organisms indicating that directional mutational pressure is strongly operative at the synonymous third codon positions. Nc plot indicates that codon usage variation in all these organisms are governed by the forces other than compositional constraints. Correspondence analysis suggests that: (i) there are codon usage variation among the genes and genomes of the fourteen mycobacteriophages and M. smegmatis, i.e., codon usage patterns in the mycobacteriophages is phage-specific but not the M. smegmatis-specific; (ii) synonymous codon usage patterns of Barnyard, Che8, Che9d, and Omega are more similar than the rest mycobacteriophages and M. smegmatis; (iii) codon usage bias in the mycobacteriophages are mainly determined by mutational pressure; and (iv) the genes of comparatively GC rich genomes are more biased than the GC poor genomes. Translational selection in determining the codon usage variation in highly expressed genes can be invoked from the predominant occurrences of C ending codons in the highly expressed genes. Cluster analysis based on codon usage data also shows that there are two distinct branches for the fourteen mycobacteriophages and there is codon usage variation even among the phages of each branch.  相似文献   

13.
Analysis of synonymous codon usage bias in Chlamydia   总被引:9,自引:0,他引:9  
Chlamydiae are obligate intracellular bacterial pathogens that cause ocular and sexuallytransmitted diseases,and are associated with cardiovascular diseases.The analysis of codon usage mayimprove our understanding of the evolution and pathogenesis of Chlamydia and allow reengineering of targetgenes to improve their expression for gene therapy.Here,we analyzed the codon usage of C.muridarum,C.trachomatis(here indicating biovar trachoma and LGV),C.pneumoniae,and C.psittaci using the codonusage database and the CUSP(Create a codon usage table)program of EMBOSS(The European MolecularBiology Open Software Suite).The results show that the four genomes have similar codon usage patterns,with a strong bias towards the codons with A and T at the third codon position.Compared with Homosapiens,the four chlamydial species show discordant seven or eight preferred codons.The ENC(effectivenumber of codons used in a gene)-plot reveals that the genetic heterogeneity in Chlamydia is constrained bythe G+C content,while translational selection and gene length exert relatively weaker influences.Moreover,mutational pressure appears to be the major determinant of the codon usage variation among the chlamydialgenes.In addition,we compared the codon preferences of C.trachomatis with those of E.coli,yeast,adenovirus and Homo sapiens.There are 23 codons showing distinct usage differences between C.trachomatisand E.coli,24 between C.trachomatis and adenovirus,21 between C.trachomatis and Homo sapiens,butonly six codons between C.trachomatis and yeast.Therefore,the yeast system may be more suitable for theexpression of chlamydial genes.Finally,we compared the codon preferences of C.trachomatis with those ofsix eukaryotes,eight prokaryotes and 23 viruses.There is a strong positive correlation between the differ-ences in coding GC content and the variations in codon bias(r=0.905,P<0,001).We conclude that thevariation of codon bias between C.trachomatis and other organisms is much less influenced by phylogeneticlineage and primarily determined by the extent of disparities in GC content.  相似文献   

14.
Insects, the most biodiverse taxonomic group, have high AT content in their mitochondrial genomes. Although codon usage tends to be AT-rich, base composition and codon usage of mitochondrial genomes may vary among taxa. Thus, we compare base composition and codon usage patterns of 49 insect mitochondrial genomes. For protein coding genes, AT content is as high as 80% in the Hymenoptera and Lepidoptera and as low as 72% in the Orthopotera. The AT content is high at positions 1 and 3, but A content is low at position 2. A close correlation occurs between codon usage and tRNA abundance in nuclear genomes. Optimal codons can pair well with the antr codons of the most abundant tRNAs. One tRNA gene translates a synonymous codon family in vertebrate mitochondrial genomes and these tRNA anticodons can pair with optimal codons. However, optimal codons cannot pair with anticodons in mtDNA ofCochiiomyia hominivorax (Dipteral: CaLliphoridae). Ten optimal codons cannot pair with tRNA anticodons in all 49 insect mitochondrial genomes; non-optimal codon-anticodon usage is common and codon usage is not influenced by tRNA abundance.  相似文献   

15.
The Horizontal Gene Transfer DataBase (HGT-DB) is a genomic database that includes statistical parameters such as G+C content, codon and amino-acid usage, as well as information about which genes deviate in these parameters for prokaryotic complete genomes. Under the hypothesis that genes from distantly related species have different nucleotide compositions, these deviated genes may have been acquired by horizontal gene transfer. The current version of the database contains 88 bacterial and archaeal complete genomes, including multiple chromosomes and strains. For each genome, the database provides statistical parameters for all the genes, as well as averages and standard deviations of G+C content, codon usage, relative synonymous codon usage and amino-acid content. It also provides information about correspondence analyses of the codon usage, plus lists of extraneous group of genes in terms of G+C content and lists of putatively acquired genes. With this information, researchers can explore the G+C content and codon usage of a gene when they find incongruities in sequence-based phylogenetic trees. A search engine that allows searches for gene names or keywords for a specific organism is also available. HGT-DB is freely accessible at http://www.fut.es/~debb/HGT.  相似文献   

16.
In special coordinates (codon position-specific nucleotide frequencies), bacterial genomes form two straight lines in 9-dimensional space: one line for eubacterial genomes, another for archaeal genomes. All the 348 distinct bacterial genomes available in Genbank in April 2007, belong to these lines with high accuracy. The main challenge now is to explain the observed high accuracy. The new phenomenon of complementary symmetry for codon position-specific nucleotide frequencies is observed. The results of analysis of several codon usage models are presented. We demonstrate that the mean-field approximation, which is also known as context-free, or complete independence model, or Segre variety, can serve as a reasonable approximation to the real codon usage. The first two principal components of codon usage correlate strongly with genomic G+C content and the optimal growth temperature, respectively. The variation of codon usage along the third component is related to the curvature of the mean-field approximation. First three eigenvalues in codon usage PCA explain 59.1%, 7.8% and 4.7% of variation. The eubacterial and archaeal genomes codon usage is clearly distributed along two third order curves with genomic G+C content as a parameter.  相似文献   

17.
Synonymous codon usage is a commonly used means for estimating gene expression levels of Escherichia coli genes and has also been used for predicting highly expressed genes for a number of prokaryotic genomes. By comparison of expression level-dependent features in codon usage with protein abundance data from two proteome studies of exponentially growing E. coli and Bacillus subtilis cells, we try to evaluate whether the implicit assumption of this approach can be confirmed with experimental data. Log-odds ratio scores are used to model differences in codon usage between highly expressed genes and genomic average. Using these, the strength and significance of expression level-dependent features in codon usage were determined for the genes of the Escherichia coli, Bacillus subtilis and Haemophilus influenzae genomes. The comparison of codon usage features with protein abundance data confirmed a relationship between these to be present, although exceptions to this, possibly related to functional context, were found. For species with expression level-dependent features in their codon usage, the applied methodology could be used to improve in silico simulations of the outcome of two-dimensional gel electrophoretic experiments.  相似文献   

18.
Codon usage in chloroplasts is different from that in prokaryotic and eukaryotic nuclear genomes. However, no experimental approach has been made to analyse the translation efficiency of individual codons in chloroplasts. We devised an in vitro assay for translation efficiencies using synthetic mRNAs, and measured the translation efficiencies of five synonymous codon groups in tobacco chloroplasts. Among four alanine codons (GCN, where N is U, C, A or G), GCU was the most efficient for translation, whereas the chloroplast genome lacks tRNA genes corresponding to GCU. Phenylalanine and tyrosine are each encoded by two codons (UUU/C and UAU/C, respectively). Phenylalanine UUC and tyrosine UAC were translated more than twice as efficiently than UUU and UAU, respectively, contrary to their codon usage, whereas translation efficiencies of synonymous codons for alanine, aspartic acid and asparagine were parallel to their codon usage. These observations indicate that translation efficiencies of individual codons are not always correlated with codon usage in vitro in chloroplasts. This raises an important issue for foreign gene expression in chloroplasts.  相似文献   

19.
Evolution of codon usage and base contents in kinetoplastid protozoans   总被引:2,自引:0,他引:2  
In this study we analyze and compare the trends in codon usage in five representative species of kinetoplastid protozoans (Crithidia fasciculata, Leishmania donovani, L. major, Trypanosoma cruzi and T. brucei), with the purpose of investigating the processes underlying these trends. A principal component analysis shows that the G+C content at the third codon position represents the main source of codon-usage variation, both within species (among genes) and among species. The non- Trypanosoma species exhibit narrow distributions in codon usage, while both Trypanosoma species present large within-species heterogeneity. The three non-Trypanosoma species have very similar codon-usage preferences. These codon preferences are also shared by the highly expressed genes of T. cruzi and to a lesser degree by those of T. brucei. This leads to the conclusion that the codon preferences shared by these species are the ancestral ones in the kinetoplastids. On the other hand, the study of noncoding sequences shows that Trypanosoma species exhibit mutational biases toward A + T richness, while the non- Trypanosoma species present mutational pressure in the opposite direction. These data taken together allow us to infer the origin of the different codon-usage distributions observed in the five species studied. In C. fasciculata and Leishmania, both mutational biases and (translational) selection pull toward G + C richness, resulting in a narrow distribution. In Trypanosoma species the mutational pressure toward A + T richness produced a shift in their genomes that differentially affected coding and noncoding sequences. The effect of these pressures on the third codon position of genes seems to have been inversely proportional to the level of gene expression.   相似文献   

20.
Codon usage in mitochondrial genome of the six different plants was analyzed to find general patterns of codon usage in plant mitochondrial genomes. The neutrality analysis indicated that the codon usage patterns of mitochondrial genes were more conserved in GC content and no correlation between GC12 and GC3. T and A ending codons were detected as the preferred codons in plant mitochondrial genomes. The Parity Rule 2 plot analysis showed that T was used more frequently than A. The ENC-plot showed that although a majority of the points with low ENC values were lying below the expected curve, a few genes lied on the expected curve. Correspondence analysis of relative synonymous codon usage yielded a first axis that explained only a partial amount of variation of codon usage. These findings suggest that natural selection is likely to be playing a large role in codon usage bias in plant mitochondrial genomes, but not only natural selection but also other several factors are likely to be involved in determining the selective constraints on codon bias in plant mitochondrial genomes. Meantime, 1 codon (P. patens), 6 codons (Z. mays), 9 codons (T. aestivum), 15 codons (A. thaliana), 15 codons (M. polymorpha) and 15 codons (N. tabacum) were defined as the preferred codons of the six plant mitochondrial genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号