首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【背景】道路重金属污染问题日益严峻,寻找高效的微生物资源用于环境修复已迫在眉睫。【目的】从乌鲁木齐市道路林带土壤中筛选抗重金属菌株,并对其重金属去除能力进行探究。【方法】使用含5种重金属离子(铅、镉、锌、铜、镍)的4种培养基进行抗性菌株筛选,通过形态学特征和16S rRNA基因序列进行鉴定,采用电感耦合等离子体发射光谱仪(inductively coupled plasma optical emission spectrometer,ICP-OES)检测分离株对重金属离子的去除情况。【结果】4种分离培养基中,TSA是抗重金属菌株筛选的最适培养基,共筛选出16株抗重金属菌,其中4株抗Pb菌、4株抗Cd菌、4株抗Zn菌、3株抗Cu菌和1株抗Ni菌,其抗性分别高达3 000、800、600、300和400mg/L,16株菌中以芽孢杆菌属(Bacillus)数量最多。在初始浓度为700mg/L Pb2+下,菌株Pb6的去除率高达92.48%,菌株Pb11、Pb3和Pb9的去除率分别为27.70%、40.37%和58.88%;在200mg/L Cd2+...  相似文献   

2.
对安徽铜陵铜尾矿区凤丹种植地的土壤和凤丹中重金属污染状况进行了研究.结果表明,尾矿库区种植地极端贫瘠,有机质含量仅1.1~3.4g·kg-1,而土壤Cu、Cd、Pb、Zn含量皆高于对照土壤,其中Cu含量达587.43~1176.44mg·kg-1,Cd含量达3.08~5.16mg·kg-1,约达国家土壤二级标准的10倍.凤丹各部位的Cu、Cd和Pb含量均超过了药用植物的限量标准,尤其是根皮部位Cu含量达31.50~64.00mg·kg-1,Cd含量达0.98~1.45mg·kg-1,超出标准1.6~3.6倍,表明种植地和凤丹都受到严重污染.凤丹不同部位中的Zn、Cd、Pb和Cu分别以茎、叶、叶和根皮中的含量最高.凤丹对Cd、Zn的富集比Cu和Pb高,但在根皮中的富集系数均较小.  相似文献   

3.
Microorganisms are important for phytoremediation of soil contaminated with heavy metals. In the present study, bacteria Bacillus sp., Pseudomonas sp., Alcaligenes sp., and Flavobacterium sp. isolated from the Zhangshi Irrigation Area were applied to bioadsorbed Cd and Pb in liquid cultures with root exudates of sunflower as a sole carbon source. The experimental data demonstrated that these bacteria had a high potential of enrichment of Cd and Pb, and Bacillus sp. and Alcaligenes sp. had better ability to accumulate Cd or Pb than the others; the distinct bioadsorption of Cd and Pb by bacteria might depend on the physiology of bacteria, categories of heavy metals, and environmental factors (such as pH). In addition, root exudates of sunflower could not only support the growth of these bacteria, but also influence the toxicity and bioavailability of Cd and Pb. Our results indicated that amendment with bacteria isolated from heavy-metal-polluted soil and root exudates could be considered as a potential approach to enhance the phytoremediation of Cd- or Pb-contaminated soil.  相似文献   

4.
夏枯草药材和种植土壤中农药及重金属残留分析   总被引:1,自引:0,他引:1  
采用气相色谱及ICP-AES法测定了安徽庐江和江苏洪泽2个种植基地的土壤和夏枯草(Prunella vulgaris L.)果穗及全草中有机氯农药及重金属含量,并根据污染指数和相关标准对土壤及药材的安全性进行了评价.测定结果表明:来源于2个基地的土壤及药材中有机氯农药及重金属含量有明显差异.庐江产果穗和全草中Pb、Cd、Cu、Cr、As及BHC含量分别为3.361和3.953、0.172和0.190、8.258和7.722、3.423和2.658、0.284和0.355、0.003和0.004 mg·kg-1,Hg和DDT未检出;洪泽产果穗和全草中Pb、Cd、Cu、Cr、Hg及BHC含量分别为2.399和1.558、0.155和0.111、7.682和6.756、4.259和3.801、0.077和0.102、0.003和0.006 mg·kg-1,As未检出,果穗中也未检出DDT.庐江基地土壤中Cd、Cu、Cr、As、Hg、BHC和DDT含量分别为0.001、12.943、47.417、1.008、0.003、0.003和0.002 mg·kg-1,Pb未检出;洪泽基地土壤中Pb、Cd、Cu、Cr、As、Hg和BHC含量分别为3.443、0.002、18.655、63.385、3.701、0.141和0.004 mg·kg-1,DDT未检出.比较结果表明:夏枯草果穗中重金属残留量均高于全草,但均低于国家限量标准;土壤中有机氯农药及重金属单项污染指数均小于1,且庐江和洪泽基地土壤的综合污染指数分别为0.286和0.399,因此,土壤污染等级属安全级且污染水平为清洁级.  相似文献   

5.
Pollution in industrial areas is a serious environmental concern, and interest in bacterial resistance to heavy metals is of practical significance. Mercury (Hg), Cadmium (Cd), and lead (Pb) are known to cause damage to living organisms, including human beings. Several marine bacteria highly resistant to mercury (BHRM) capable of growing at 25 ppm (mg L(-1)) or higher concentrations of mercury were tested during this study to evaluate their potential to detoxify Cd and Pb. Results indicate their potential of detoxification not only of Hg, but also Cd and Pb. Through biochemical and 16S rRNA gene sequence analyses, these bacteria were identified to belong to Alcaligenes faecalis (seven isolates), Bacillus pumilus (three isolates), Bacillus sp. (one isolate), Pseudomonas aeruginosa (one isolate), and Brevibacterium iodinium (one isolate). The mechanisms of heavy metal detoxification were through volatilization (for Hg), putative entrapment in the extracellular polymeric substance (for Hg, Cd and Pb) as revealed by the scanning electron microscopy and energy dispersive x-ray spectroscopy, and/or precipitation as sulfide (for Pb). These bacteria removed more than 70% of Cd and 98% of Pb within 72 and 96 h, respectively, from growth medium that had initial metal concentrations of 100 ppm. Their detoxification efficiency for Hg, Cd and Pb indicates good potential for application in bioremediation of toxic heavy metals.  相似文献   

6.
铜尾矿区土壤与凤丹植株重金属富集研究   总被引:7,自引:0,他引:7  
对安徽铜陵铜尾矿区凤丹种植地的土壤和凤丹中重金属污染状况进行了研究,结果表明,尾矿库区种植地极端贫瘠,有机质含量仅1.1~3.4g·kg^-1,而土壤Cu、Cd、Pb、Zn含量皆高于对照土壤,其中Cu含量达587.43~1176.44mg·kg^-1,Cd含量达3.08~5.16mg·kg^-1,约达国家土壤二级标准的10倍,凤丹各部位的Cu、CA和Pb含量均超过了药用植物的限量标准,尤其是根皮部位Cu含量达31.50~64.00mg·kg^-1,Cd含量达0.98~1.45mg·kg^-1,超出标准1.6~3.6倍,表明种植地和凤丹都受到严重污染.凤丹不同部位中的Zn、Cd、Pb和Cu分别以茎、叶、叶和根皮中的含量最高.凤丹对Cd、Zn的富集比Cu和Pb高,但在根皮中的富集系数均较小。  相似文献   

7.
In laboratory experiments, the rhizobacteria Azospirillum lipoferum 137, Arthrobacter mysorens 7, Agrobacterium radiobacter 10, and Flavobacterium sp. L30 were found to have a relatively high resistance to the toxic heavy metals lead and cadmium (except that strain L30 was found to be sensitive to Cd). When introduced by means of seed bacterization, the heavy metal-resistant strains actively colonized the rhizosphere of barley plants cultivated in uncontaminated and contaminated soils. In both pot and field experiments, seed bacterization improved the growth of barley plants and the uptake of nutrient elements from soil contaminated with Pb and Cd. The bacterization also prevented the accumulation of Pb and Cd in barley plants, thereby mitigating the toxic effect of these heavy metals on the plants.  相似文献   

8.
土壤重金属污染对蚯蚓的急性毒性效应研究   总被引:43,自引:9,他引:43  
测定了草甸棕壤条件下 ,Cu、Zn、Pb、Cd单一 /复合污染对蚯蚓的急性致死及亚致死效应 .结果表明 ,Cu、Pb浓度与蚯蚓死亡率显著相关 (α=0 .0 5 ,RCu=0 .86 ,RPb=0 .87) ,Cu浓度与生长抑制率显著相关 (α=0 .0 5 ,RCu=0 .84) ,其他供试重金属浓度与蚯蚓死亡率和生长抑制率相关性不显著 .蚯蚓个体对重金属毒性的耐受程度差别较大 .其毒性阈值 (引起个体蚯蚓死亡浓度 )分别为 :Cu 30 0mg·kg-1,Zn 130 0mg·kg-1,Pb 170 0mg·kg-1,Cd 30 0mg·kg-1.LC50 分别为 :Cu 40 0~ 45 0mg·kg-1,Zn15 0 0~ 190 0mg·kg-1,Pb2 35 0~ 2 40 0mg·kg-1,Cd 90 0mg·kg-1.在Cu、Zn、Pb、Cd单一污染引起 >10 %蚯蚓死亡的浓度下 ,复合污染导致 10 0 %蚯蚓死亡 ,表明复合污染极强的协同效应 .  相似文献   

9.
攀钢冶炼渣堆土壤与优势植物的重金属含量   总被引:3,自引:0,他引:3  
魏敏  刘新  陈朝琼  余小平  彭晓莉 《生态学报》2008,28(6):2931-2931~2936
采用原子吸收分光光度法测定攀钢西渣场冶炼渣堆土壤和6科12种优势植物中Mn、Pb、 Ni、 Cu、Cd等5种重金属含量,并计算优势植物对重金属的富积系数和转移系数.结果表明:渣堆土壤中重金属含量Mn最高(3869.14 mg/kg),次后顺序为Pb>Ni>Cu>Cd;植物与土壤的重金属分布基本一致;所测优势植物中,多数植物对重金属的富积系数较低,而转移系数却较高,如天名精对Cu的转移系数为5.1,羽芒菊对Pb转移系数为3.3,五月艾对Cd的转移系数为6.0,其中8种植物(天名精、羽芒菊等)对Mn的转移系数均大于1.该结果为重金属污染土壤的植物修复提供了参考物种,同时也为植物重金属耐受机制的研究提供了筛选对象.  相似文献   

10.
利用乙二胺四乙酸淋洗修复重金属污染的土壤及其动力学   总被引:32,自引:0,他引:32  
通过室内模拟试验,采用振荡淋洗的方法研究了乙二胺四乙酸(EDTA)浓度、pH、淋洗时间对重金属去除效果的影响.利用一级反应动力学模型对试验数据进行拟合,并测定了EDTA处理前后土壤中重金属形态的变化.结果表明,EDTA溶液在浓度为0.1 mol·L-1、pH 7、淋洗时间1 d的条件下能达到对污染土壤重金属的最大去除率,去除率分别为Cd 89.14%、Pb 34.78%、Cu 14.96%、Zn 45.14%.模型拟合结果表明,Cd的质量转移系数最大,其次是Zn、Pb和Cu.说明在土壤淋洗过程中,Cd和Zn最先达到质量转移的平衡状态,然后是Pb和Cu.形态分级结果表明,EDTA能有效地去除交换态、碳酸盐结合态和氧化物结合态重金属,而对有机态和残余态部分重金属作用效果不明显.  相似文献   

11.
水培条件下四种植物对Cd、Pb富集特征   总被引:17,自引:0,他引:17  
利用水培方法测定了不同浓度下向日葵、蓖麻、紫花苜蓿及芥菜的生物量和植物体内重金属Cd、Pb含量,分析了植物对重金属的富集特征。结果表明:经过5周培养后,4种植物根部与地上部对重金属的富集量随着浓度的增加而增加,Cd浓度为20mg·L-1时,向日葵的根部Cd含量最高,达到237.86mg·kg-1,地上部Cd含量为89.48mg·kg-1;而Pb浓度为200mg·L-1时,芥菜根部对Pb的吸收量较高,达到597.22mg·kg-1,地上部Pb含量最高的则出现在向日葵处理Pb100mg·L-1中,为318.33mg·kg-1。4种植物对Cd、Pb的富集系数随重金属浓度的增加而减小;根部及地上部富集系数与生物量和重金属浓度呈现出一定的相关性;另外,在Cd、Pb复合处理中,一种重金属的存在会在不同程度上影响植物对另一种重金属的吸收。通过比较4种植物根部与地上部的生物量和对Cd、Pb富集特征,认为相对于其他3种植物向日葵对Cd、Pb具有较强的吸收潜力,并可以作为Cd、Pb污染土壤植物修复的备选植物。  相似文献   

12.
Heavy metal contamination represents an important environmental issue due to the toxic effects of metals on different organisms. Filamentous fungi play an important impact in the bioremediation of heavy metal-contaminated wastewater and soil. The purpose of this investigation was to observe fungal uptake behavior toward heavy metal. For this aim Trichoderma asperellum TS141 and T. harzianum TS103 at growth period were screened for their tolerance and uptake capability of cadmium (Cd), lead (Pb) and nickel (Ni) at different concentrations (0, 25, 50, 100, and 200 mg/L) in PDB media (potato dextrose broth as a complex medium). Results showed that both fungi were able to survive at the maximum concentration of 200 mg/L of the heavy metals, and remove them. T. asperellum had a better uptake capacity for Cd compared to Pb and Ni in the highest metal concentration in media. Maximum removal efficiency of Pb (68.4%) at 100 mg/L and Ni (78%) at 200 mg/L was performed by T. asperellum. For Cd, the highest removal efficiency (82.1%) was recorded by T. harzianum at 200 mg/L Cd in aqueous solution. The uptake of Cd was highly dependent on pH of solution than Pb and Ni so that the optimal pH of Cd uptake was 9 for T. asperellum and 4 for T. harzianum. Also, optimal temperature was 35°C for Cd and Pb uptake in both fungi, whereas for Ni uptake was 30 and 35°C in T. harzianum and T. asperellum, respectively. We propose that T. asperellum TS141 and T. harzianum TS103 can be used as a bioremediation agent for metal remediation from wastewater and heavy metal-contaminated soils.  相似文献   

13.
Abstract

Heavy metals in vegetables are of great concern worldwide due to their potential bioaccumulation in human. This review-based study researched the concentrations of heavy metals in vegetables from all provinces of China between 2004 and 2018, and assessed the health risk for the residents. The results displayed the highest Pb, Cd, Cu, and Zn concentrations in vegetables were 0.192?mg/kg (west area), 0.071?mg/kg (central area), 3.961?mg/kg (central area), and 10.545?mg/kg (central area), which were lower than the maximum allowable concentration. In the national scale, the weighted average level of heavy metals in vegetables was found to be in the order of Zn?>?Cu?>?Pb?>?Cd. The hazard index (HI) of each province showed that beside Anhui and Hunan province, residents in other provinces of China faced a low high risk of Pb, Cd, Cu, and Zn. However, people consuming vegetables faced a high risk of Pb, Cd, Cu, and Zn in Anhui and Hunan provinces. This research may provide insight into heavy metal accumulation in vegetables and forecast to residents to cope with these problems for improved human health.  相似文献   

14.
Soil and wastewater treatment sludge are commonly brought together in mixtures for a variety of beneficial purposes. The mixtures contain bioacidifying (i.e., sulfur-oxidizing) microorganisms that can easily be activated through providing the appropriate substrate and environmental conditions. In this study, contaminated soil and sludge mixtures were subjected to controlled bio-acidification and the impacts of the process on the partitioning of heavy metals, nitrogen, and phosphorus were examined. Three successive bio-acidification cycles resulted in significant leaching of metals from sludge. The leaching results, expressed as fraction of total mass of metals in the sludge, averaged 67% for Cr, 96% for Ni, 24% for Zn; 16% for Cu; 23% for Cd; and 96% for Pb. Bio-acidification of the sludge also converted 28 to 45% of the organic nitrogen into ammonia and increased the soluble orthophosphates fraction of total phosphorus by approximately 18 to 20%. Bio-acidification also resulted in significant metals leaching from the contaminated soils in the soil/sludge mixtures. Soil/sludge mixtures were prepared using six soil particle sizes (less than 0.075?mm to 2.38?mm) contaminated with 22,500?mg/kg Zn, 14,000?mg/kg Pb, 1500?mg/kg Cr, 9500?mg/kg Cu, 1000?mg/kg Ni, and 1000?mg/kg Cd. The addition of metals to the soil inhibited the sulfur-oxidizing microorganisms, preventing bio-acidification in the mixtures containing 4 to 50?g soil in 130?ml sludge, and considerably slowing bio-acidification in the mixtures containing 1 to 3?g soil. Using a mixture that contained 2-g soil samples, three successive bio-acidification cycles resulted in significant cumulative metals leaching results. The leaching results, expressed as percentage of the mass of metals added to the soil, were in the range of 56 to 98% for Cr, 77 to 95% for Zn, 33 to 66% for Ni, 64 to 82% for Cu, and 10 to 33% for Pb, with the higher results in each range belonging to the larger size soil particles. On the other hand, only Cr was leached in neutralized soil samples. The results confirmed the potential for inhibition of the sulfur-oxidizing microorganisms and bio-acidification in contaminated soil/sludge mixtures, and the significant impacts of bio-acidification on the mobility of metals, nitrogen, and phosphorus. In addition, the results confirmed the potential for using controlled bioacidification for removing heavy metals from contaminated soil using the indigenous sulfur oxidizing microorganisms in sludge.  相似文献   

15.
The study was conducted at three locations in the Savinjska region of Slovenia, where soil is contaminated with heavy metals due to the zinc industry (Cinkarna Celje). In Ponikva the soil to a depth of 30 cm contains 0.8 mg kg(-1) Cd, 32.2 mg kg(-1) Pb, and 86 mg Zn kg(-1), in Medlog 1.4 mg kg(-1) Cd, 37.4 mg kg(-1) Pb, and 115 mg kg(-1) Zn and in Skofja vas 10.9 mg kg(-1) Cd, 239.7 mg kg(-1) Pb, and 1356 mg kg(-1) Zn. The pH at the selected sites was between 7.3 and 7.6. In the beginning of September 2006 two hybrids of Brassica napus L. var. napus, PR45 D01 and PR46 W31 suitable for production of biodiesel obtained from Pioneer Seeds Holding GmbH, were sown. After 96 days juvenile and after 277 days mature plants were collected. Parts of plants (root, shoot and seed) were separated and Cd, Pb, Zn, Mo, and S determined by ultra-trace ICP-MS. We compared the uptake of Cd, Pb, Zn, Mo and S in different parts of juvenile and mature plants of the two different hybrids, TF (translocation factor), BAF (bioaccumulation factor), and PP (phytoextraction potential) were calculated. The mature hybrid PR46 W31 had higher shoot/root ratio and higher PP for metals (Cd, Pb, and Zn) and lower PP for the micronutrient (Mo) and macronutrient (S) on the polluted site. The study demonstrated the potential use of oilseed rape on multiply polluted soils for production of 1st and 2nd generation biofuels. The potential restoration of degraded land could also disburden the use of agricultural land.  相似文献   

16.
Joint effects of Cd and other heavy metals (Pb, Cu, Zn and As) on the growth and development of rice plants and the uptake of these heavy metals by rice were studied using the pot-culture method combined with chemical and statistical analyses. The results showed that the growth and development of rice plants were strongly influenced by the double-element combined pollution. There was an average decrease in the height of rice plants of 4.0–5.0 cm, and grain yield was decreased by 20.0–30.0%, compared with the control. The uptake of Cd by rice plants was promoted due to the interactions between Cd and the other heavy metals added to the soil. The Cd concentration in roots, stems/leaves and seeds increased 31.6–47.7, 16.7–61.5 and 19.6–78.6%, respectively. Due to interactions, uptake of Pb, Cu and Zn by roots and stems/leaves was inhibited, accumulation of Pb, Cu and Zn in seeds was increased, uptake of As by roots was promoted and uptake of As by stems/leaves was inhibited. In particular, the upward transporting ability of the heavy metals absorbed by rice plants was significantly increased.  相似文献   

17.
In laboratory experiments, the rhizobacteria Azospirillum lipoferum 137, Arthrobacter mysorens7, Agrobacterium radiobacter 10, and Flavobacterium sp. L30 were found to have a relatively high resistance to the toxic heavy metals lead and cadmium (except that strain L30 was found to be sensitive to Cd). When introduced by means of seed bacterization, the heavy metal–resistant strains actively colonized the rhizosphere of barley plants cultivated in uncontaminated and contaminated soils. In both pot and field experiments, seed bacterization improved the growth of barley plants and the uptake of nutrient elements from soil contaminated with Pb and Cd. The bacterization also prevented the accumulation of Pb and Cd in barley plants, thereby mitigating the toxic effect of these heavy metals on the plants.  相似文献   

18.
为了解华南地区典型燃煤电厂周边表层土壤重金属空间分布特征,对韶关市燃煤电厂周边20处农田表层土壤中7种重金属(镍(Ni)、铜(Cu)、锌(Zn)、镉(Cd)、铅(Pb)、铬(Cr)及砷(As))的总量进行检测,并分析了其相应的空间分布规律,同时评估了周边土壤重金属的生态风险并分析其来源。结果表明:该燃煤电厂周边土壤中重金属Ni、Cu、Zn、Cd、Pb、Cr及As的平均含量分别是17.79、19.59、159.08、3.14、111.01、96.61 mg/kg和21.48 mg/kg,Cd、Pb污染情况突出,重金属Zn、Cd、Pb、Cr的分布与盛行风向密切相关。综合污染指数法表明,Cd、Pb及Zn处于重污染状态;潜在生态风险指数法表明,Cd处于严重潜在生态风险状态;地累积指数法表明,Ni、Cu整体处于无污染状态,Cd整体处于高污染状态。多种统计方法表明,Zn、Cd、Pb及Cr受燃煤电厂影响明显,Cu、As的来源不仅受燃煤电厂等工业的影响,还与该地区农业灌溉用水密切相关,Ni的分布最为均匀,受自然因素影响明显。  相似文献   

19.
抗锌细菌Sphingomonas sp. DX-T3-03分离、鉴定及性质   总被引:1,自引:0,他引:1  
从江西德兴铜矿重金属污染土壤中筛选得到一株对重金属锌具有极强抗性的菌株,命名为DX-T3-03。对该菌株进行形态观察、生理生化试验,采用16S rRNA序列分析,鉴定该菌为鞘氨醇单胞菌属(Sphingomonas sp.)。研究其最佳生长条件及抗重金属特性。试验结果表明:该菌株的最适应生长条件为温度35°C,pH约6.7,转速150r/min;对重金属锌有极高抗性,可以达到25mmol/L及以上,并能够在多种单一及复合重金属(Cu70mg/L、Cd300mg/L、Pb400mg/L、Ni60mg/L)中生长。  相似文献   

20.
The objective of the present study was to obtain by mutation and selection techniques bacterial strains capable of removing heavy metals at high efficiency. Four of the bacteria most promising in metal uptake, Staphylococcus aureus, Bacillus Sphaericus, B. licheniformis and Arthrobacter sp. were selected after isolation from water heavily polluted with heavy metals. Two mutagenic agents were used: U.V. irradiation at 245nm (physical) and 1% ethidium bromide (chemical). Optimum conditions for metal removal by most of the tested bacteria were: pH 9, 50°C and 200rev/min agitation speed. Induction of mutation both physically or chemically resulted in mutants that were superior over their wild types in removing heavy metals under investigation. The highest removal efficiencies (REs) achieved were in the following order: Cd(89.9–100%); Cr(87.3–99.7%); Zn(47.7–100%); Cu(40.8–84.7%); Pb(40.2–51%); Fe(17.5–28.7%); Ni(13.8–23.9%) and finally Co(17.2–18.4%). Using mixed cultures of the wild and the selected mutants enhanced the RE(s) of some metals compared to those obtained by individual species, and the time required to achieve the highest RE was reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号