首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transient receptor potential (TRP) ankyrin 1 (TRPA1) is a Ca(2+)-permeant, nonselective cationic channel. It is predominantly expressed in the C afferent sensory nerve fibers of trigeminal and dorsal root ganglion neurons and is highly coexpressed with the nociceptive ion channel transient receptor potential vanilloid 1 (TRPV1). Several physical and chemical stimuli have been shown to activate the channel. In this study, we have used electrophysiological techniques and behavioral models to characterize the properties of TRPA1. Whole cell TRPA1 currents induced by brief application of lower concentrations of N-methyl maleimide (NMM) or allyl isothiocyanate (AITC) can be reversed readily by washout, whereas continuous application of higher concentrations of NMM or AITC completely desensitized the currents. The deactivation and desensitization kinetics differed between NMM and AITC. TRPA1 current amplitude increased with repeated application of lower concentrations of AITC, whereas saturating concentrations of AITC induced tachyphylaxis, which was more pronounced in the presence of extracellular Ca(2+). The outward rectification exhibited by native TRPA1-mediated whole cell and single-channel currents was minimal as compared with other TRP channels. TRPA1 currents were negatively modulated by protons and polyamines, both of which activate the heat-sensitive channel, TRPV1. Interestingly, neither protein kinase C nor protein kinase A activation sensitized AITC-induced currents, but each profoundly sensitized capsaicin-induced currents. Current-clamp experiments revealed that AITC produced a slow and sustained depolarization as compared with capsaicin. TRPA1 is also expressed at the central terminals of nociceptors at the caudal spinal trigeminal nucleus. Activation of TRPA1 in this area increases the frequency and amplitude of miniature excitatory or inhibitory postsynaptic currents. In behavioral studies, intraplantar and intrathecal administration of AITC induced more pronounced and prolonged changes in nociceptive behavior than those induced by capsaicin. In conclusion, the characteristics of TRPA1 we have delineated suggest that it might play a unique role in nociception.  相似文献   

2.
大鼠初级感觉神经元P2X3受体的表达及其与SP的关系   总被引:1,自引:0,他引:1  
目的研究在大鼠初级感觉神经元细胞上P2X3受体的表达情况及其与P物质的关系。方法取SD大鼠背根神经节(DRG)和三叉神经节(TG)固定后切片;用抗P2X3受体抗体和抗SP抗体进行免疫组织化学反应,并通过两种不同的显色方法同时进行P2X3受体和SP的双标。结果P2X3免疫反应阳性细胞主要集中在小细胞和中等细胞(其中在TG,P2X3-ir阳性神经元约占整个细胞的24.8%;在DRG约31.7%的神经元是P2X3-ir阳性),并且在DRG和TG细胞上均存在有P2X3受体和SP共存(TG上的双标细胞占P2X3-ir阳性细胞总数的36.26%,DRG上占46.81%)。结论由于ATP门控阳离子通道受体P2X3本身就与伤害性感受的初级传入有关,而它与SP的共存可提示当组织中的ATP释放时可以通过P2X3受体作用于含SP的伤害性感觉神经末梢上,促使SP释放引起痛觉过敏。  相似文献   

3.
We examined the effect of p38 mitogen-activated protein kinase (MAPK) inhibitors in models of nociception and correlated this effect with localization and expression levels of p38 MAPK in spinal cord. There was a rapid increase in phosphorylated p38 MAPK in spinal cord following intrathecal administration of substance P or intradermal injection of formalin. Immunocytochemistry revealed that phosphorylated p38 MAPK-immunoreactive cells were predominantly present in laminae I-IV of the dorsal horn. Double-staining with markers for neurons, microglia, astrocytes and oligodendrocytes unexpectedly revealed co-localization with microglia but not with neurons or other glia. Pretreatment with p38 MAPK inhibitors (SB20358 or SD-282) had no effect on acute thermal thresholds. However, they attenuated hyperalgesia in several nociceptive models associated with spinal sensitization including direct spinal activation (intrathecal substance P) and peripheral tissue inflammation (intraplantar formalin or carrageenan). Spinal sensitization, manifested by enhanced expression of cyclo-oxygenase-2 and inflammation-induced appearance of Fos-positive neurons, was blocked by pretreatment, but not post-treatment, with p38 MAPK inhibitors. Taken together, these results indicate that spinal p38 MAPK is involved in inflammation-induced pain and that activated spinal microglia play a direct role in spinal nociceptive processing.  相似文献   

4.
A series of 31 resveratrol derivatives was designed, synthesized and evaluated for activation and inhibition of the TRPA1 channel. Most acted as activators and desensitizers of TRPA1 channels like resveratrol or allyl isothiocyanate (AITC). Compound 4z (HUHS029) exhibited higher inhibitory activity than resveratrol with an IC50 value of 16.1 μM. The activity of 4z on TRPA1 was confirmed in TRPA1-expressing HEK293 cells, as well as in rat dorsal root ganglia neurons by a whole cell patch clamp recording. Furthermore, pretreatment with 4z exhibited an analgesic effect on AITC-evoked TRPA1-related pain behavior in vivo.  相似文献   

5.
Ciguatoxins are sodium channel activator toxins that cause ciguatera, the most common form of ichthyosarcotoxism, which presents with peripheral sensory disturbances, including the pathognomonic symptom of cold allodynia which is characterized by intense stabbing and burning pain in response to mild cooling. We show that intraplantar injection of P-CTX-1 elicits cold allodynia in mice by targeting specific unmyelinated and myelinated primary sensory neurons. These include both tetrodotoxin-resistant, TRPA1-expressing peptidergic C-fibres and tetrodotoxin-sensitive A-fibres. P-CTX-1 does not directly open heterologously expressed TRPA1, but when co-expressed with Nav channels, sodium channel activation by P-CTX-1 is sufficient to drive TRPA1-dependent calcium influx that is responsible for the development of cold allodynia, as evidenced by a large reduction of excitatory effect of P-CTX-1 on TRPA1-deficient nociceptive C-fibres and of ciguatoxin-induced cold allodynia in TRPA1-null mutant mice. Functional MRI studies revealed that ciguatoxin-induced cold allodynia enhanced the BOLD (Blood Oxygenation Level Dependent) signal, an effect that was blunted in TRPA1-deficient mice, confirming an important role for TRPA1 in the pathogenesis of cold allodynia.  相似文献   

6.
Zhang FE  Cao JL  Zhang LC  Zeng YM 《生理学报》2005,57(5):545-551
本研究旨在观察脊髓p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)在坐骨神经压迫性损伤所致神经病理性痛中的作用。雄性Sprague-Dawley大鼠鞘内置管后,4-0丝线松结扎左侧坐骨神经制作慢性压迫性损伤(chronic constriction injury,CCI)模型。CCI后第5天,鞘内注射不同剂量的p38 MAPK特异性抑制剂SB203580,并在给药前及给药后不同时间点,分别用von Frey机械痛敏监测仪和热辐射刺激仪监测大鼠损伤侧后爪机械和热刺激反应闽值,用免疫印迹技术(Western blot)观察给药前后脊髓磷酸化p38 MAPK(p-p38 MAPK)和磷酸化环磷酸腺苷反应元件结合蛋白(phosphorylated cAMP response element binding protein,pCREB)表达变化。结果发现:坐骨神经压迫性损伤引起脊髓p-p38 MAPK蛋白表达明显增加;鞘内注射SB203580能剂量依赖性逆转CCI引起的机械性痛觉异常和热痛觉过敏及脊髓水平p-p38 MAPK表达的增加,也明显抑制CCI引起的脊髓pCREB表达的增加。结果提示,脊髓水平p38 MAPK激活参与坐骨神经压迫性损伤所致神经病理性痛的发展,其作用可能通过pCREB介导。  相似文献   

7.
Intraplantar (i.pl.) injection of BmK I, a receptor site 3-specific modulator of voltage-gated sodium channels (VGSCs) from the venom of scorpion Buthus martensi Karsch (BmK), was shown to induce long-lasting and spontaneous nociceptive responses as demonstrated through experiments utilizing primary thermal and mirror-imaged mechanical hypersensitivity with different time course of development in rats. In this study, microglia was activated on both sides of L4–L5 spinal cord by i.pl. injection of BmK I. Meanwhile, the activation of p38/MAPK in L4–L5 spinal cord was found to be co-expressed with OX-42, the cell marker of microglia. The unilateral thermal and bilateral mechanical pain hypersensitivity of rat induced by BmK I was suppressed in a dose-dependent manner following pretreatment with SB203580 (a specific inhibitor of p-p38). Interestingly, microglia activity was also reduced in the presence of SB203580, which suggests that BmK I-induced microglial activation is mediated by p38/MAPK pathway. Combined with previously published literature, the results of this study demonstrate that p38-dependent microglial activation plays a role in scorpion envenomation-induced pain-related behaviors.  相似文献   

8.
Thermosensitive transient receptor potential (TRP) channels, especially TRPV1 and TRPA1, are activated by the pungent compounds present in spices. TRPV1 activation by the intake of capsaicin, the irritant in hot pepper, induces adrenaline secretion and increases energy consumption. TRPV1 is mainly expressed in the sensory neurons and coexpressed with TRPA1 at a high frequency. However, the mechanism underlying adrenaline secretion by TRPA1 agonists such as allyl isothiocyanate (AITC) and cinnamaldehyde (CNA), the pungent ingredients in mustard and cinnamon, is not known. We examined whether AITC and CNA could induce adrenaline secretion in anesthetized rats. An intravenous injection of AITC or CNA (10 mg/kg) increased adrenaline secretion. These responses disappeared completely in capsaicin-treated rats with an impaired sensory nerve function. Moreover, pretreatment with cholinergic blockers (hexamethonium and atropine) attenuated the AITC- or CNA-induced adrenaline secretion. These results suggest that TRPA1 agonists activate the sensory nerves and induce adrenaline secretion via the central nervous system.  相似文献   

9.
10.
Activation of p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal protein kinase (JNK) in the dorsal root ganglia (DRG) is critical for the development of neuropathic pain. Tetraodontoxin-sensitive Nav1.3 channel, expressed at a very low level in the adult nervous system, is up-regulated in DRG neurons after peripheral nerve injury or peri-sciatic administration of rat recombinant tumour necrosis factor-alpha (rrTNF-α). To test if activation of p38 MAPK and JNK is required for the re-expression of Nav1.3 channel in cultured adult rat DRG neurons, we administrated rrTNF to cultured adult rat DRG neurons to induce Nav1.3 re-expression, and pre-treated with p38 MAPK inhibitor (SB203580 at 2.65, 26.5 and 265 μM) or JNK inhibitor (SP600125 at 1, 10 and 100 μM) 2 h before rrTNF to observe changes of Nav1.3-immunoreactivity. Compared with the DMSO vehicle pre-treatment group, SB203580 at 2.65 μM partially blocked the re-expression of Nav1.3 (P<0.001), and at 26.5 and 265 μM completely blocked Nav1.3 (P<0.001). Similarly, SP600125 at the concentration of 1 μM blocked the re-expression of Nav1.3 partially (P<0.001), and at 10 and 100 μM blocked Nav1.3 completely (P<0.001). These data show that the activation of both p38 MAPK and JNK in DRG neurons was involved in the re-expression of Nav1.3 channel triggered by TNF-α, which might contribute to neuropathic pain.  相似文献   

11.
Cannabinoids are known to have multiple sites of action in the nociceptive system, leading to reduced pain sensation. However, the peripheral mechanism(s) by which this phenomenon occurs remains an issue that has yet to be resolved. Because phosphorylation of TRPV1 (transient receptor potential subtype V1) plays a key role in the induction of thermal hyperalgesia in inflammatory pain models, we evaluated whether the cannabinoid agonist WIN 55,212-2 (WIN) regulates the phosphorylation state of TRPV1. Here, we show that treatment of primary rat trigeminal ganglion cultures with WIN led to dephosphorylation of TRPV1, specifically at threonine residues. Utilizing Chinese hamster ovary cell lines, we demonstrate that Thr(144) and Thr(370) were dephosphorylated, leading to desensitization of the TRPV1 receptor. This post-translational modification occurred through activation of the phosphatase calcineurin (protein phosphatase 2B) following WIN treatment. Furthermore, knockdown of TRPA1 (transient receptor potential subtype A1) expression in sensory neurons by specific small interfering RNA abolished the WIN effect on TRPV1 dephosphorylation, suggesting that WIN acts through TRPA1. We also confirm the importance of TRPA1 in WIN-induced dephosphorylation of TRPV1 in Chinese hamster ovary cells through targeted expression of one or both receptor channels. These results imply that the cannabinoid WIN modulates the sensitivity of sensory neurons to TRPV1 activation by altering receptor phosphorylation. In addition, our data could serve as a useful strategy in determining the potential use of certain cannabinoids as peripheral analgesics.  相似文献   

12.
Protease-activated receptor-4 (PAR4) is localized in primary sensory neurons and is believed to implicate in the modulation of nociceptive mechanisms. The pro-inflammatory cytokine interleukin-1β (IL-1β) is involved in the generation of hyperalgesia in pathological states such as neuropathy and inflammation. Previous studies have shown that IL-1β enhances the expression of PAR4 in many cell types but the effect of this cytokine on primary sensory neuron PAR4 expression is less clear. In the present study, we evaluated in rat dorsal root ganglion (DRG) neurons the influence of IL-1β on PAR4 mRNA and protein levels after IL-1β intraplantar injection into the hind-paw or treatment of cultured DRG neurons. The expression of PAR4 in cultured DRG neurons was also assessed after treatment with IL-1β with pre-addition of phorbol-12-myristate 13-acetate (PMA, a PKC activator) or chelerythrine chloride (a PKC inhibitor). We found that IL-1β intraplantar injection into the hind-paw or long-term exposure of cultured DRG neurons to IL-1β significantly increased the proportion of DRG neurons expressing PAR4 immunoreactivity. Real-time PCR and western blotting showed that IL-1β treatment also significantly elevated PAR4 mRNA and protein levels in DRG neurons. This IL-1β effect was enhanced in DRG neurons when DRG cultures were pre-treatment with the PMA. But pre-incubation with chelerythrine chloride strongly inhibited the IL-1β-induced increase of PAR4 mRNA and protein levels. These results demonstrate that the expression of PAR4 mRNA and protein induced by IL-1β is PKC signaling pathway dependent.  相似文献   

13.
Antagonist studies show that spinal p38 mitogen-activated protein kinase plays a crucial role in spinal sensitization. However, there are two p38 isoforms found in spinal cord and the relative contribution of these two to hyperalgesia is not known. Here we demonstrate that the isoforms are distinctly expressed in spinal dorsal horn: p38alpha in neurons and p38beta in microglia. In lieu of isoform selective inhibitors, we examined the functional role of these two individual isoforms in nociception by using intrathecal isoform-specific antisense oligonucleotides to selectively block the expression of the respective isoform. In these rats, down-regulation of spinal p38beta, but not p38alpha, prevented nocifensive flinching evoked by intraplantar injection of formalin and hyperalgesia induced by activation of spinal neurokinin-1 receptors through intrathecal injection of substance P. Both intraplantar formalin and intrathecal substance P produced an increase in spinal p38 phosphorylation and this phosphorylation (activation) was prevented when spinal p38beta, but not p38alpha, was down-regulated. Thus, spinal p38beta, probably in microglia, plays a significant role in spinal nociceptive processing and represents a potential target for pain therapy.  相似文献   

14.
Neurokinin-1 receptor (NK-1) plays an important role in nociception. The present study was to explore whether activation of peripheral NK-1 receptor, especially expressed on primary sensory afferents, could induce hyperalgesia and sensitize C-type sensory afferents. (1) Intraplantar administration of NK-1 agonist [Sar9, Met(O2)11]SP (Sar-SP, 0.2, 1 nmol, 20 microl) produced significant thermal hyperalgesia and edema, which was blocked by co-injection of NK-1 antagonist WIN51,708 (10 nmol). But in the rats with compound 48/80 treatment for mast cell depletion, the Sar-SP-induced edema, but not hyperalgesia, was attenuated. (2) Close-arterial injection of Sar-SP (1 nmol, 0.1 ml) excited and sensitized sensory C afferents of the sural nerve to heat stimuli. The results suggest involvement of NK-1 receptors expressed on the peripheral afferent terminals in thermal hyperalgesia mediated by directly sensitizing C-type sensory afferents.  相似文献   

15.

Background

Honeybee's sting on human skin can induce ongoing pain, hyperalgesia and inflammation. Injection of bee venom (BV) into the intraplantar surface of the rat hindpaw induces an early onset of spontaneous pain followed by a lasting thermal and mechanical hypersensitivity in the affected paw. The underlying mechanisms of BV-induced thermal and mechanical hypersensitivity are, however, poorly understood. In the present study, we investigated the role of mitogen-activated protein kinase (MAPK) in the generation of BV-induced pain hypersensitivity.

Results

We found that BV injection resulted in a quick activation of p38, predominantly in the L4/L5 spinal dorsal horn ipsilateral to the inflammation from 1 hr to 7 d post-injection. Phosphorylated p38 (p-p38) was expressed in both neurons and microglia, but not in astrocytes. Intrathecal administration of the p38 inhibitor, SB203580, prevented BV-induced thermal hypersensitivity from 1 hr to 3 d, but had no effect on mechanical hypersensitivity. Activated ERK1/2 was observed exclusively in neurons in the L4/L5 dorsal horn from 2 min to 1 d, peaking at 2 min after BV injection. Intrathecal administration of the MEK inhibitor, U0126, prevented both mechanical and thermal hypersensitivity from 1 hr to 2 d. p-ERK1/2 and p-p38 were expressed in neurons in distinct regions of the L4/L5 dorsal horn; p-ERK1/2 was mainly in lamina I, while p-p38 was mainly in lamina II of the dorsal horn.

Conclusion

The results indicate that differential activation of p38 and ERK1/2 in the dorsal horn may contribute to the generation and development of BV-induced pain hypersensitivity by different mechanisms.  相似文献   

16.
目的:观察内皮素-1(ET-1)对大鼠血管平滑肌细胞(VSMCs)产生单核细胞趋化蛋白-1(MCP-1)的影响及其机制。方法:培养大鼠血管平滑肌细胞(VSMCs)。细胞分为2组:ET-1刺激组:以不同浓度ET-1刺激VSMCs不同时间;阻断剂干预组:VSMCs分别与不同阻断剂[ETAR、ETBR阻断剂BQ123、BQ788,抗氧化剂N-乙酰半胱氨酸(NAC),ERK、p38MAPK、JNK及NF-κB抑制剂PD98059、SB203580、SP600125及PDTC]预先孵育30 min,再加入ET-1刺激24 h。在预定时间,以酶联免疫吸附(ELISA)法、逆转录聚合酶链反应(RT-PCR)法分别测定不同因素下VSMCs MCP-1蛋白质及mRNA表达量。VSMCs分别与不同阻断剂(BQ123、BQ788、NAC、PD98059、SB203580及SP600125预先孵育20 min,再加入ET-1刺激5 min,免疫印迹(WB)法测定VSMCs胞浆中细胞外调节蛋白激酶(ERK)、p38丝裂原活化蛋白激酶(p38MAPK)、c-Jun氨基末端激酶(JNK)及其各自磷酸化蛋白质的水平。各项检测均重复3次。结果:ET-1能刺激VSMCs MCP-1蛋白质及mRNA表达,其表达量随ET-1浓度及刺激时间的增加呈升高趋势(P<0.05,P<0.01);BQ123、NAC、PD98059、SB203580及PDTC能显著抑制ET-1诱导的大鼠VSMCs MCP-1蛋白质及mRNA表达(P<0.01),而BQ788及SP600125对此作用无明显影响。BQ123、NAC与PD98059或SB203580能分别抑制ET-1刺激后VSMCs胞浆内ERK及p38MAPK的磷酸化(P<0.05,P<0.01),而ET-1对JNK的磷酸化无明显激活作用。结论:ET-1通过ETAR、ROS、ERK、p38MAPK及NF-κB诱导大鼠VSMCs产生MCP-1。  相似文献   

17.
18.
Heat and cold hyperalgesia is a common feature of inflammatory pain. To investigate whether activation of extracellular signal-regulated protein kinase 5 (ERK5), also known as big mitogen-activated protein kinase 1, in primary sensory neurons participates in inflammatory pain, we examined the phosphorylation of ERK5 in the dorsal root ganglion (DRG) after peripheral inflammation. Inflammation induced by complete Freund's adjuvant produced heat and cold hyperalgesia on the ipsilateral hind paw and induced an increase in the phosphorylation of ERK5, mainly in tyrosine kinase A-expressing small- and medium-size neurons. In contrast, there was no change in ERK5 phosphorylation in the spinal dorsal horn. ERK5 antisense, but not mismatch, oligodeoxynucleotide decreased the activation of ERK5 and suppressed inflammation-induced heat and cold hyperalgesia. Furthermore, the inhibition of ERK5 blocked the induction of transient receptor potential channel TRPV1 and TRPA1 expression in DRG neurons after peripheral inflammation. Our results show that ERK5 activated in DRG neurons contribute to the development of inflammatory pain. Thus, blocking ERK5 signaling in sensory neurons that has the potential for preventing pain after inflammation.  相似文献   

19.
The ability of sensory neurons to detect potentially harmful stimuli relies on specialized molecular signal detectors such as transient receptor potential (TRP) A1 ion channels. TRPA1 is critically implicated in vertebrate nociception and different pain states. Furthermore, TRPA1 channels are subject to extensive modulation and regulation - processes which consequently affect nociceptive signaling. Here we show that the neuropeptide Nocistatin sensitizes TRPA1-dependent calcium influx upon application of the TRPA1 agonist mustard oil (MO) in cultured sensory neurons of dorsal root ganglia (DRG). Interestingly, TRPV1-mediated cellular calcium responses are unaffected by Nocistatin. Furthermore, Nocistatin-induced TRPA1-sensitization is likely independent of the Nocistatin binding partner 4-Nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1) as assessed by siRNA-mediated knockdown in DRG cultures. In conclusion, we uncovered the sensitization of TRPA1 by Nocistatin, which may represent a novel mechanism how Nocistatin can modulate pain.  相似文献   

20.
目的:探讨CREB和NF-κB在p38MAPK所致脊髓星形胶质细胞活化中的作用,明确脊髓星形胶质细胞活化中p38MAPK细胞信号转导途径的作用。方法:分离培养SPF大鼠脊髓星形胶质细胞,设正常组、SP刺激组(SP组,10-7mol/L)、SP刺激+SB203580(10μmol/L)阻断p38MAPK组(SP+SB组)、SP刺激+PD98059(10μmol/L)阻断CREB组(SP+PD组)、SP刺激+SN50(10μmol/L)阻断NF-κB(SP+SN组)。WB法、免疫荧光法、ELISA法检测12 h和24 h时p-p38、p-CREB、NF-κBp65水平及GFAP、TNF-、IL-1β水平变化。结果:SP组脊髓星形胶质细胞p-p38、p-CREB、NF-κBp65显著升高,GFAP水平显著增高,同时TNF-和IL-1β水平显著增高。与SP组比较,用SB203580阻断p38MAPK通路后,SP+SB组p-p38、p-CREB、NF-κBp65显著降低,GFAP、TNF-和IL-1β水平显著降低。用PD98059阻断CREB通路后,SP+PD组p-p38、NF-κBp65无显著变化,p-CREB显著降...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号