首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interferon (IFN)-inducible viperin protein restricts a broad range of viruses. However, whether viperin plays a role during herpes simplex virus 1 (HSV-1) infection is poorly understood. In the present study, it was shown for the first time that wild-type (WT) HSV-1 infection couldn''t induce viperin production, and ectopically expressed viperin inhibited the replication of UL41-null HSV-1 but not WT viruses. The underlying molecular mechanism is that UL41 counteracts viperin''s antiviral activity by reducing its mRNA accumulation.  相似文献   

2.
TLR3 functions as a viral nucleic acid sentinel activated by dsRNA viruses and virus replication intermediates within intracellular vesicles. To explore the spectrum of genes induced in human astrocytes by TLR3, we used a microarray approach and the analog polyriboinosinic polyribocytidylic acid (pIC) as ligand. As expected for TLR activation, pIC induced a wide array of cytokines and chemokines known for their role in inflammatory responses, as well as up-regulation of the receptor itself. The data also showed activation of a broad spectrum of antiviral response genes. To determine whether pIC induced an antiviral state in astrocytes, a pseudotyped HIV viral particle, vesicular stomatitis virus g-env-HIV-1, was used. pIC significantly abrogated HIV-1 replication, whereas IL-1, which also potently activates astrocytes, did not. One of the most highly up-regulated genes on microarray was the protein viperin/cig5. We found that viperin/cig5 expression was dependent on IFN regulatory factor 3 and NF-kappaB signaling, and that repetitive stimulation with pIC, but not IL-1, further increased expression. Viperin induction could also be substantially inhibited by neutralizing Abs to IFN-beta, as could HIV-1 replication. To explore a role for viperin in IFN-beta-mediated inhibition of HIV-1, we used an RNA interference (RNAi) approach. RNAi directed against viperin, but not a scrambled RNAi, significantly inhibited viperin expression, and also significantly reversed pIC-induced inhibition of HIV-1 replication. We conclude that viperin contributes to the antiviral state induced by TLR3 ligation in astrocytes, supporting a role for astrocytes as part of the innate immune response against infection in the CNS.  相似文献   

3.
Interferons initiate the host antiviral response by inducing a number of genes, most with no defined antiviral function. Here we show that the interferon-induced protein viperin inhibits influenza A virus release from the plasma membrane of infected cells. Viperin expression altered plasma membrane fluidity by affecting the formation of lipid rafts, which are detergent-resistant membrane microdomains known to be the sites of influenza virus budding. Intracellular interaction of viperin with farnesyl diphosphate synthase (FPPS), an enzyme essential for isoprenoid biosynthesis, decreased the activity of the enzyme. Overexpression of FPPS reversed viperin-mediated inhibition of virus production and restored normal membrane fluidity, and reduction of FPPS levels by siRNA inhibited virus release and replication, indicating that the FPPS interaction underlies viperin's effects. These findings suggest that targeting the release stage of the life cycle may affect the replication of many enveloped viruses. Furthermore, FPPS may be an attractive target for antiviral therapy.  相似文献   

4.
The host protein viperin is an interferon stimulated gene (ISG) that is up-regulated during a number of viral infections. In this study we have shown that dengue virus type-2 (DENV-2) infection significantly induced viperin, co-incident with production of viral RNA and via a mechanism requiring retinoic acid-inducible gene I (RIG-I). Viperin did not inhibit DENV-2 entry but DENV-2 RNA and infectious virus release was inhibited in viperin expressing cells. Conversely, DENV-2 replicated to higher tires earlier in viperin shRNA expressing cells. The anti-DENV effect of viperin was mediated by residues within the C-terminal 17 amino acids of viperin and did not require the N-terminal residues, including the helix domain, leucine zipper and S-adenosylmethionine (SAM) motifs known to be involved in viperin intracellular membrane association. Viperin showed co-localisation with lipid droplet markers, and was co-localised and interacted with DENV-2 capsid (CA), NS3 and viral RNA. The ability of viperin to interact with DENV-2 NS3 was associated with its anti-viral activity, while co-localisation of viperin with lipid droplets was not. Thus, DENV-2 infection induces viperin which has anti-viral properties residing in the C-terminal region of the protein that act to restrict early DENV-2 RNA production/accumulation, potentially via interaction of viperin with DENV-2 NS3 and replication complexes. These anti-DENV-2 actions of viperin show both contrasts and similarities with other described anti-viral mechanisms of viperin action and highlight the diverse nature of this unique anti-viral host protein.  相似文献   

5.
Jiang D  Guo H  Xu C  Chang J  Gu B  Wang L  Block TM  Guo JT 《Journal of virology》2008,82(4):1665-1678
Hepatitis C virus (HCV) infection is a common cause of chronic hepatitis and is currently treated with alpha interferon (IFN-alpha)-based therapies. However, the underlying mechanism of IFN-alpha therapy remains to be elucidated. To identify the cellular proteins that mediate the antiviral effects of IFN-alpha, we created a HEK293-based cell culture system to inducibly express individual interferon-stimulated genes (ISGs) and determined their antiviral effects against HCV. By screening 29 ISGs that are induced in Huh7 cells by IFN-alpha and/or up-regulated in HCV-infected livers, we discovered that viperin, ISG20, and double-stranded RNA-dependent protein kinase (PKR) noncytolytically inhibited the replication of HCV replicons. Mechanistically, inhibition of HCV replication by ISG20 and PKR depends on their 3'-5' exonuclease and protein kinase activities, respectively. Moreover, our work, for the first time, provides strong evidence suggesting that viperin is a putative radical S-adenosyl-l-methionine (SAM) enzyme. In addition to demonstrating that the antiviral activity of viperin depends on its radical SAM domain, which contains conserved motifs to coordinate [4Fe-4S] cluster and cofactor SAM and is essential for its enzymatic activity, mutagenesis studies also revealed that viperin requires an aromatic amino acid residue at its C terminus for proper antiviral function. Furthermore, although the N-terminal 70 amino acid residues of viperin are not absolutely required, deletion of this region significantly compromises its antiviral activity against HCV. Our findings suggest that viperin represents a novel antiviral pathway that works together with other antiviral proteins, such as ISG20 and PKR, to mediate the IFN response against HCV infection.  相似文献   

6.
Type I interferon (IFN) signaling coordinates an early antiviral program in infected and uninfected cells by inducing IFN-stimulated genes (ISGs) that modulate viral entry, replication, and assembly. However, the specific antiviral functions in vivo of most ISGs remain unknown. Here, we examined the contribution of the ISG viperin to the control of West Nile virus (WNV) in genetically deficient cells and mice. While modest increases in levels of WNV replication were observed for primary viperin(-/-) macrophages and dendritic cells, no appreciable differences were detected in deficient embryonic cortical neurons or fibroblasts. In comparison, viperin(-/-) adult mice infected with WNV via the subcutaneous or intracranial route showed increased lethality and/or enhanced viral replication in central nervous system (CNS) tissues. In the CNS, viperin expression was induced in both WNV-infected and adjacent uninfected cells, including activated leukocytes at the site of infection. Our experiments suggest that viperin restricts the infection of WNV in a tissue- and cell-type-specific manner and may be an important ISG for controlling viral infections that cause CNS disease.  相似文献   

7.
Many enveloped viruses bud from cholesterol-rich lipid rafts on the cell membrane. Depleting cellular cholesterol impedes this process and results in viral particles with reduced viability. Viperin (Virus Inhibitory Protein, Endoplasmic Reticulum-associated, Interferon iNducible) is an endoplasmic reticulum membrane–associated enzyme that exerts broad-ranging antiviral effects, including inhibiting the budding of some enveloped viruses. However, the relationship between viperin expression and the retarded budding of virus particles from lipid rafts on the cell membrane is unclear. Here, we investigated the effect of viperin expression on cholesterol biosynthesis using transiently expressed genes in the human cell line human embryonic kidney 293T (HEK293T). We found that viperin expression reduces cholesterol levels by 20% to 30% in these cells. Following this observation, a proteomic screen of the viperin interactome identified several cholesterol biosynthetic enzymes among the top hits, including lanosterol synthase (LS) and squalene monooxygenase (SM), which are enzymes that catalyze key steps in establishing the sterol carbon skeleton. Coimmunoprecipitation experiments confirmed that viperin, LS, and SM form a complex at the endoplasmic reticulum membrane. While coexpression of viperin was found to significantly inhibit the specific activity of LS in HEK293T cell lysates, coexpression of viperin had no effect on the specific activity of SM, although did reduce SM protein levels by approximately 30%. Despite these inhibitory effects, the coexpression of neither LS nor SM was able to reverse the viperin-induced depletion of cellular cholesterol levels, possibly because viperin is highly expressed in transfected HEK293T cells. Our results establish a link between viperin expression and downregulation of cholesterol biosynthesis that helps explain viperin''s antiviral effects against enveloped viruses.  相似文献   

8.
9.
Chan YL  Chang TH  Liao CL  Lin YL 《Journal of virology》2008,82(21):10455-10464
Viperin is identified as an antiviral protein induced by interferon (IFN), viral infections, and pathogen-associated molecules. In this study, we found that viperin is highly induced at the RNA level by Japanese encephalitis virus (JEV) and Sindbis virus (SIN) and that viperin protein is degraded in JEV-infected cells through a proteasome-dependent mechanism. Promoter analysis revealed that SIN induces viperin expression in an IFN-dependent manner but that JEV by itself activates the viperin promoter through IFN regulatory factor-3 and AP-1. The overexpression of viperin significantly decreased the production of SIN, but not of JEV, whereas the proteasome inhibitor MG132 sustained the protein level and antiviral effect of viperin in JEV-infected cells. Knockdown of viperin expression by RNA interference also enhanced the replication of SIN, but not that of JEV. Our results suggest that even though viperin gene expression is highly induced by JEV, it is negatively regulated at the protein level to counteract its antiviral effect. In contrast, SIN induces viperin through the action of IFN, and viperin exhibits potent antiviral activity against SIN.  相似文献   

10.
Myeloid dendritic cells (mDCs) have long been thought to function as classical APCs for T cell responses. However, we demonstrate that influenza viruses induce rapid differentiation of human monocytes into mDCs. Unlike the classic mDCs, the virus-induced mDCs failed to upregulate DC maturation markers and were unable to induce allogeneic lymphoproliferation. Virus-induced mDCs secreted little, if any, proinflammatory cytokines; however, they secreted a substantial amount of chemoattractants for monocytes (MCP-1 and IP-10). Interestingly, the differentiated mDCs secreted type I IFN and upregulated the expression of IFN-stimulated genes (tetherin, IFITM3, and viperin), as well as cytosolic viral RNA sensors (RIG-I and MDA5). Additionally, culture supernatants from virus-induced mDCs suppressed the replication of virus in vitro. Furthermore, depletion of monocytes in a mouse model of influenza infection caused significant reduction of lung mDC numbers, as well as type I IFN production in the lung. Consequently, increased lung virus titer and higher mortality were observed. Taken together, our results demonstrate that the host responds to influenza virus infection by initiating rapid differentiation of circulating monocytes into IFN-producing mDCs, which contribute to innate antiviral immune responses.  相似文献   

11.
Viperin是近年来发现的具有重要免疫活性的宿主蛋白之一,其在细胞内的表达在病毒感染或干扰素诱导后明显上升,显示出广泛的抗病毒活性。已证实它可以影响许多囊膜病毒在宿主细胞中的组装和释放,但在不同的病毒中所表现的具体抗病毒活性不同。黄病毒属病毒为单股正链具囊膜的RNA病毒,该种属病毒具有相似的结构特征。Viperin蛋白可以抑制多数黄病毒在细胞中的复制。就Viperin抗几种黄病毒属病毒作用机制进行综述,为相关研究提供参考。  相似文献   

12.
Viperin is an interferon-inducible protein inhibiting many DNA and RNA viruses. It contains an N-terminal transmembrane helix, a highly conserved C-terminus and a middle region carrying a CX3CX2C motif, characteristic of radical S-adenosyl-l-methionine (SAM) enzymes. So far no structural characterization has been reported and reconstitution of the [4Fe-4S] cluster in viperin all failed. Here, by dissecting the 361-residue human viperin into 12 fragments, followed by extensive CD and NMR characterization, Viperin (45-361) was identified to be soluble and structured in buffers. Most importantly, we have successfully reconstituted the [4Fe-4S] cluster in Viperin (45-361), thus providing the first experimental evidence confirming that viperin is indeed a radical SAM enzyme. Furthermore, the C-terminus Viperin (214-361) which is insoluble in buffers but again can be solubilized in salt-free water appears to be only partially folded. Our results thus imply that the radical SAM enzyme activity may play a key role in the broad antiviral actions of viperin.  相似文献   

13.
Enveloped viruses, which include many medically important viruses such as human immunodeficiency virus, influenza virus and hepatitis C virus, are intracellular parasites that acquire lipid envelopes from their host cells. Success of replication is intimately linked to their ability to hijack host cell mechanisms, particularly those related to membrane dynamics and lipid metabolism. Despite recent progress, our knowledge of lipid mediated virus–host interactions remains highly incomplete. In addition, diverse experimental systems are used to study different stages of virus replication thus complicating comparisons. This review aims to present a unifying view of the widely diverse strategies used by enveloped viruses at distinct stages of their replication cycles.  相似文献   

14.
Rates of evolutionary change in viruses: patterns and determinants   总被引:1,自引:0,他引:1  
Understanding the factors that determine the rate at which genomes generate and fix mutations provides important insights into key evolutionary mechanisms. We review our current knowledge of the rates of mutation and substitution, as well as their determinants, in RNA viruses, DNA viruses and retroviruses. We show that the high rate of nucleotide substitution in RNA viruses is matched by some DNA viruses, suggesting that evolutionary rates in viruses are explained by diverse aspects of viral biology, such as genomic architecture and replication speed, and not simply by polymerase fidelity.  相似文献   

15.
Viperin, an evolutionarily highly conserved interferon-inducible multifunctional protein, has previously been reported to exhibit antiviral activity against a wide range of DNA and RNA viruses. Utilizing the complete nucleotide coding sequence data of fish viperin antiviral genes, and employing the maximum likelihood-based codon substitution models, the present study reports the pervasive role of positive selection in the evolution of viperin antiviral protein in fishes. The overall rate of nonsynonymous (dN) to synonymous (dS) substitutions (dN/dS) for the three functional domains of viperin (N-terminal, central domain and C-terminal) were 1.1, 0.12, and 0.24, respectively. Codon-by-codon substitution analyses have revealed that while most of the positively selected sites were located at the N-terminal amphipathic α-helix domain, few amino acid residues at the C-terminal domain were under positive selection. However, none of the sites in the central domain were under positive selection. These results indicate that, although viperin is evolutionarily highly conserved, the three functional domains experienced differential selection pressures. Taken together with the results of previous studies, the present study suggests that the persistent antagonistic nature of surrounding infectious viral pathogens might be the likely cause for such adaptive evolutionary changes of certain amino acids in fish viperin antiviral protein.  相似文献   

16.
Double-stranded RNA (dsRNA) longer than 30 bp is a key activator of the innate immune response against viral infections. It is widely assumed that the generation of dsRNA during genome replication is a trait shared by all viruses. However, to our knowledge, no study exists in which the production of dsRNA by different viruses is systematically investigated. Here, we investigated the presence and localization of dsRNA in cells infected with a range of viruses, employing a dsRNA-specific antibody for immunofluorescence analysis. Our data revealed that, as predicted, significant amounts of dsRNA can be detected for viruses with a genome consisting of positive-strand RNA, dsRNA, or DNA. Surprisingly, however, no dsRNA signals were detected for negative-strand RNA viruses. Thus, dsRNA is indeed a general feature of most virus groups, but negative-strand RNA viruses appear to be an exception to that rule.  相似文献   

17.
Holmes EC 《Journal of virology》2011,85(11):5247-5251
Despite recent advances in our understanding of diverse aspects of virus evolution, particularly on the epidemiological scale, revealing the ultimate origins of viruses has proven to be a more intractable problem. Herein, I review some current ideas on the evolutionary origins of viruses and assess how well these theories accord with what we know about the evolution of contemporary viruses. I note the growing evidence for the theory that viruses arose before the last universal cellular ancestor (LUCA). This ancient origin theory is supported by the presence of capsid architectures that are conserved among diverse RNA and DNA viruses and by the strongly inverse relationship between genome size and mutation rate across all replication systems, such that pre-LUCA genomes were probably both small and highly error prone and hence RNA virus-like. I also highlight the advances that are needed to come to a better understanding of virus origins, most notably the ability to accurately infer deep evolutionary history from the phylogenetic analysis of conserved protein structures.  相似文献   

18.
Iwasaki A 《Autophagy》2007,3(4):354-356
Plasmacytoid dendritic cells (pDCs) detect viruses in the acidified endosomes via Toll-like receptors (TLRs) upon endocytosis of virions. Yet, pDC responses to certain single-stranded RNA viruses occur only following live viral infection. In our recent study, we presented evidence that the recognition of such viruses by TLR7 requires autophagy. We speculate that the requirement for autophagy in viral recognition reflects the necessity for transportation of cytosolic viral replication intermediates into the lysosome where TLR7 is activated. In addition, autophagy was found to be required for pDCs to produce type I interferon (IFN) in response to both ssRNA and dsDNA viruses. These results indicated that autophagy plays a key role in mediating virus detection and IFNalpha secretion in pDCs, and suggest that cytosolic replication intermediates of ssRNA viruses serve as pathogen signatures recognized by TLR7.  相似文献   

19.
Viperin is an evolutionarily conserved interferon-inducible protein that localizes to the endoplasmic reticulum (ER) and inhibits a number of DNA and RNA viruses. In this study, we report that viperin specifically localizes to the cytoplasmic face of the ER and that an amphipathic α-helix at its N terminus is necessary for the ER localization of viperin and sufficient to promote ER localization of a reporter protein, dsRed. Overexpression of intact viperin but not the amphipathic α-helix fused to dsRed induced crystalloid ER. Consistent with other proteins that induce crystalloid ER, viperin self-associates, and it does so independently of the amphipathic α-helix. Viperin expression also affected the transport of soluble but not membrane-associated proteins. Expression of intact viperin or an N-terminal α-helix-dsRed fusion protein significantly reduced secretion of soluble alkaline phosphatase and reduced its rate of ER-to-Golgi trafficking. Similarly, viperin expression inhibited bulk protein secretion and secretion of endogenous α1-antitrypsin and serum albumin from HepG2 cells. Converting hydrophobic residues in the N-terminal α-helix to acidic residues partially or completely restored normal transport of soluble alkaline phosphatase, suggesting that the extended amphipathic nature of the N-terminal α-helical domain is essential for inhibiting protein secretion.Type I interferons are the first line of defense against viral infections. The significance of the interferon pathway is illustrated by the susceptibility of interferon signaling mutants to infection and by viral mechanisms that counteract this pathway (1, 2). Although many genes are induced upon interferon stimulation, very few of these genes have been functionally characterized. Viperin is highly induced by both Type I and II interferons and has a broad range of antiviral activity, inhibiting DNA viruses, notably human cytomegalovirus (3); RNA viruses such as influenza, hepatitis C virus (HCV),2 and alphaviruses (4-6); and retroviruses such as human immunodeficiency virus (7). Upon expression, viperin localizes to the endoplasmic reticulum (ER), where it interacts with farnesyl-diphosphate synthase, an enzyme involved in lipid biosynthesis. This interaction appears to result in the disruption of lipid raft microdomains and prevention of influenza virus from budding from the plasma membrane (4).Although recent studies have explored the antiviral functions of viperin, the general biochemical properties of this protein remain largely undefined. Viperin is highly conserved across both mammals and lower vertebrates and shares homology with the MoaA family of “radical S-adenosylmethionine” enzymes that bind Fe-S clusters (3, 8). In addition to a putative Fe-S cluster-binding domain, viperin has a 42-amino acid residue N-terminal amphipathic α-helix, and similar domains in other proteins have been shown to bind membranes and induce membrane curvature (9, 10).In this study, we examined the role of the viperin N-terminal α-helical domain in both cellular localization and ER membrane morphology and analyzed the biochemical properties of viperin. We discovered that viperin forms dimers and induces a tightly ordered, visually striking array of ER membranes, known as crystalloid ER(11-13), upon overexpression. In addition, viperin expression impedes the secretion of a variety of soluble proteins. Although the N-terminal amphipathic α-helix is not sufficient to induce crystalloid ER formation, it is both necessary and sufficient to mediate ER localization and to inhibit protein secretion.  相似文献   

20.
Bats are known to harbor a number of emerging and re-emerging zoonotic viruses, many of which are highly pathogenic in other mammals but result in no clinical symptoms in bats. The ability of bats to coexist with viruses may be the result of rapid control of viral replication early in the immune response. IFNs provide the first line of defense against viral infection in vertebrates. Type III IFNs (IFN-λs) are a recently identified IFN family that share similar antiviral activities with type I IFNs. To our knowledge, we demonstrate the first functional analysis of type III IFNs from any species of bat, with the investigation of two IFN-λ genes from the pteropid bat, Pteropus alecto. Our results demonstrate that bat type III IFN has similar antiviral activity to type I and III IFNs from other mammals. In addition, the two bat type III IFNs are differentially induced relative to each other and to type I IFNs after treatment or transfection with synthetic dsRNA. Infection with the bat paramyxovirus, Tioman virus, resulted in no upregulation of type I IFN production in bat splenocytes but was capable of inducing a type III IFN response in three of the four bats tested. To our knowledge, this is the first report to describe the simultaneous suppression of type I IFN and induction of type III IFN after virus infection. These results may have important implications for the role of type III IFNs in the ability of bats to coexist with viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号