首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oncolytic potential of the attenuated mumps virus (MV) vaccine strain Leningrad-3 (L-3) was evaluated in a panel of four human metastatic melanoma cell lines. The lines were shown to be susceptible and permissive to MV infection. Efficient MV replication led to death of melanoma cells, but the effect differed among the cell lines. Possible mechanisms mediating the selectivity of MV L-3 towards the cell lines were explored. Replicative and oncolytic activity of MV was found to depend on the expression pattern of type I interferon genes. None of the melanoma cell lines showed induction of expression of the total spectrum of genes required to inhibit virus replication. Based on the results, MV L-3 was assumed to be a promising oncolytic agent for human melanoma cells.  相似文献   

2.
Osteosarcoma (OS) severely threatens the health of young people and understanding on the molecular mechanisms of OS etiology enables gene therapy to become an effective therapeutic modality. However, insufficient expression level of genes using existing vectors limits the clinical application of gene therapy for OS. To solve the problem, we developed an oncolytic adenoviral vector, OAT, which can selectively and efficiently replicate in OS cells to enhance the expression of transferred genes. We demonstrated that OAT-mediated TRAIL expression is significantly elevated after infection of OS cells than replication-incompetent Ad5 vector. Increased antitumor capacity was observed in OS cells after OAT-TRAIL treatment both in vitro and in vivo. In normal cells, adenoviral replication, TRAIL expression and growth-inhibiting effect were quite limited when OAT-TRAIL was administrated, showing a high biosafety of this oncolytic adenoviral vector. Collectively, we generated an efficient and promising expression vector for OS gene therapy.  相似文献   

3.
4.
Respiratory distress and bronchopulmonary dysplasia (BPD) are major problems in preterm infants that are often addressed by glucocorticoid treatment and increased oxygen supply, causing catabolic and injurious side effects. Recombinant human keratinocyte growth factor (rhKGF) is noncatabolic and antiapoptotic and increases surfactant pools in immature lungs. Despite its usefulness in injured neonatal lungs, the mechanisms of improved surfactant homeostasis in vivo and systemic effects on lipid homeostasis are unknown. We therefore exposed newborn rats to 85% vs. 21% oxygen and treated them systemically with rhKGF for 48 h before death at 7 days. We determined type II pneumocyte (PN-II) proliferation, surfactant protein (SP) mRNA expression, and the pulmonary metabolism of individual phosphatidylcholine (PC) species using [D(9)-methyl]choline and tandem mass spectrometry. In addition, we assessed liver and plasma lipid metabolism, addressing PC synthesis de novo, the liver-specific phosphatidylethanolamine methyl transferase (PEMT) pathway, and triglyceride concentrations. rhKGF was found to maintain PN-II proliferation and increased SP-B/C expression and surfactant PC in both normoxic and hyperoxic lungs. We found increased total PC together with decreased [D(9)-methyl]choline enrichment, suggesting decreased turnover rather than increased secretion and synthesis as the underlying mechanism. In the liver, rhKGF increased PC synthesis, both de novo and via PEMT, underlining the organotypic differences of rhKGF actions on lipid metabolism. rhKGF increased the hepatic secretion of newly synthesized polyunsaturated PC, indicating improved systemic supply with choline and essential fatty acids. We suggest that rhKGF has potential as a therapeutic agent in neonates by improving pulmonary and systemic PC homeostasis.  相似文献   

5.
In order to investigate 5-lipoxygenase enzyme regulation in neutrophils during an inflammatory reaction, we studied 5-lipoxygenase mRNA levels, as well as de novo enzyme synthesis, in resting and activated neutrophils isolated from normal individuals and patients with rheumatoid arthritis. The approach used was to analyze these activities in resting peripheral blood neutrophils of normal individuals on the one hand and in peripheral blood and matched synovial fluid neutrophils isolated from patients with rheumatoid arthritis on the other hand. Our first observation was that resting peripheral blood neutrophils of either normal individuals or patients show detectable levels of 5-lipoxygenase mRNA and are able to synthesize the enzyme de novo. Our second observation was that inflammatory activated neutrophils from synovial fluid reveal lower 5-lipoxygenase mRNA levels and enzyme synthesis than do the patient-matched peripheral blood cells. This is in spite of the fact that, for other proteins, synovial fluid neutrophils are equally or more active than their peripheral blood counterparts. We conclude that peripheral blood neutrophils are capable of synthesizing the enzyme, thus ensuring the turnover of the protein. Furthermore, complex regulatory mechanisms appear to take place in response to inflammation as it occurs in synovial fluids of patients with rheumatoid arthritis, leading to decreased mRNA levels and enzyme synthesis. Possible mechanisms of regulation are discussed and are presently under investigation.  相似文献   

6.
7.
In the present study we describe a live vaccine against measles virus (MV) infection on the basis of attenuated Salmonella typhimurium aroA secreting MV antigens via the Escherichia coli alpha-hemolysin secretion system. Two well-characterized MV epitopes, a B-cell epitope of the MV fusion protein (amino acids 404-414) and a T-cell epitope of the MV nucleocapsid protein (amino acids 79-99) were fused as single or repeating units to the C-terminal secretion signal of the E. coli hemolysin and expressed in secreted form by the attenuated S. typhimurium aroA SL7207. Immunization of MV-susceptible C3H mice revealed that S. typhimurium SL7207 secreting these antigens provoked a humoral and a cellular MV-specific immune response, respectively. Mice vaccinated orally with a combination of both recombinant S. typhimurium strains showed partial protection against a lethal MV encephalitis after intracerebral challenge with a rodent-adapted, neurotropic MV strain.  相似文献   

8.
The ZD55-tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and ZD55-interleukin (IL)-24 were constructed by inserting TRAIL or IL-24 gene separately into the oncolytic adenovirus named ZD55 (with adenovirus E1B-55kD deletion). The resulting ZD55-TRAIL and ZD55-IL-24 were used in combination to treat xenograft tumors in nude mice model. The results showed that it can not only completely eliminate BEL7404 hepatoma xenograft but also have excellent antitumor effect against gaster, lung, prostate, and breast carcinomas. It was also found that ZD55-TRAIL could not only suppress the tumor growth promoting effect by ZD55-IL-24 at lower dosage, but also substantially reduce the cancer cell viability in their combined use. This is because ZD55-IL-24 and ZD55-TRAIL could mutually enhance each other's antitumor effect greatly. All these findings conspicuously showed the synergistic antitumor effect of TRAIL and IL-24, which is also the reason for the antitumor effect by the combined use of TRAIL and IL-24 in vitro and also in vivo.  相似文献   

9.
Measles virus (MV) with attenuated pathogenicity has potential as oncolytic agent. However, the clinical translation of this therapy concept has one major hurdle: the production of sufficient amounts of infectious oncolytic MV particles. The current study describes oncolytic MV production in Vero cells grown on microcarrier using serum‐free medium. The impact of the number of harvests, cell concentration at infection (CCI), multiplicity of infection (MOI), and temperature on MV production was determined in different production scales/systems (static T‐flasks, dynamic spinner, and bioreactor system) and modes (batch, repeated‐batch, and perfusion). Cell growth, metabolic, and production kinetics were analyzed. It was found that the number of harvests had the strongest positive impact on MV yield in each production scale, and that high temperatures affected MV yield adversely. Moderate MV titers were produced in T‐ and spinner flasks at 37°C (~107 TCID50 mL?1, where TCID50 is tissue culture infective doses 50%), but stirred tank reactor (STR) MV production at 37°C yielded up to 10 000‐fold lower MV titers. In contrast, at lower temperatures (32°C, 27°C), 1.4 × 107 TCID50 mL?1 were achieved in the STR. Variations in MOI and CCI had almost no influence on MV production yield. The current study improves oncolytic MV production process understanding and identifies process bottlenecks for large‐scale production.  相似文献   

10.
Recent studies reported an increased expression of osteopontin (OPN) in metastatic breast cancer cells, but the mechanisms modulating OPN production and the interaction of the cells with the secreted protein are far from clear. In this work, we utilized as an experimental system the cell line MDA-231 and we showed that HGF and M-CSF significantly enhance their adhesion onto OPN. Furthermore, in the presence of HGF and M-CSF, MDA-231 cells can adhere when plated onto BSA via increased OPN secretion. Moreover HGF and M-CSF induce de novo synthesis of OPN. In conclusion, these data suggest that HGF and M-CSF stimulate OPN production by MDA-231 cells, and that OPN is subsequently used as a substrate for cell adhesion.  相似文献   

11.
Long H  Cameron S  Yu L  Rao Y 《Genetics》2006,172(3):1633-1642
Guanine nucleotides are key players in mediating growth-cone signaling during neural development. The supply of cellular guanine nucleotides in animals can be achieved via the de novo synthesis and salvage pathways. The de novo synthesis of guanine nucleotides is required for lymphocyte proliferation in animals. Whether the de novo synthesis pathway is essential for any other cellular processes, however, remains unknown. In a search for genes required for the establishment of neuronal connectivity in the fly visual system, we identify the burgundy (bur) gene as an essential player in photoreceptor axon guidance. The bur gene encodes the only GMP synthetase in Drosophila that catalyzes the final reaction of de novo GMP synthesis. Loss of bur causes severe defects in axonal fasciculation, retinotopy, and growth-cone morphology, but does not affect photoreceptor differentiation or retinal patterning. Similar defects were observed when the raspberry (ras) gene, encoding for inosine monophosphate dehydrogenase catalyzing the IMP-to-XMP conversion in GMP de novo synthesis, was mutated. Our study thus provides the first in vivo evidence to support an essential and specific role for de novo synthesis of guanine nucleotides in axon guidance.  相似文献   

12.
Measles virus (MV) is among the most infectious viruses that affect humans and is transmitted via the respiratory route. In macaques, MV primarily infects lymphocytes and dendritic cells (DCs). Little is known about the initial target cell for MV infection. Since DCs bridge the peripheral mucosal tissues with lymphoid tissues, we hypothesize that DCs are the initial target cells that capture MV in the respiratory tract and transport the virus to the lymphoid tissues where MV is transmitted to lymphocytes. Recently, we have demonstrated that the C-type lectin DC-SIGN interacts with MV and enhances infection of DCs in cis. Using immunofluorescence microscopy, we demonstrate that DC-SIGN+ DCs are abundantly present just below the epithelia of the respiratory tract. DC-SIGN+ DCs efficiently present MV-derived antigens to CD4+ T-lymphocytes after antigen uptake via either CD150 or DC-SIGN in vitro. However, DC-SIGN+ DCs also mediate transmission of MV to CD4+ and CD8+ T-lymphocytes. We distinguished two different transmission routes that were either dependent or independent on direct DC infection. DC-SIGN and CD150 are both involved in direct DC infection and subsequent transmission of de novo synthesized virus. However, DC-SIGN, but not CD150, mediates trans-infection of MV to T-lymphocytes independent of DC infection. Together these data suggest a prominent role for DCs during the initiation, dissemination, and clearance of MV infection.  相似文献   

13.
Plasmacytoid dendritic cells (pDCs) respond to viral infection by production of alpha interferon (IFN-α), proinflammatory cytokines, and cell differentiation. The elimination of hepatitis C virus (HCV) in more than 50% of chronically infected patients by treatment with IFN-α suggests that pDCs can play an important role in the control of HCV infection. pDCs exposed to HCV-infected hepatoma cells, in contrast to cell-free HCV virions, produce large amounts of IFN-α. To further investigate the molecular mechanism of HCV sensing, we studied whether exposure of pDCs to HCV-infected hepatoma cells activates, in parallel to interferon regulatory factor 7 (IRF7)-mediated production of IFN-α, nuclear factor kappa B (NF-κB)-dependent pDC responses, such as expression of the differentiation markers CD40, CCR7, CD86, and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and secretion of the proinflammatory cytokines TNF-α and interleukin 6 (IL-6). We demonstrate that exposure of pDCs to HCV-infected hepatoma cells surprisingly did not induce phosphorylation of NF-κB or cell surface expression of CD40, CCR7, CD86, or TRAIL or secretion of TNF-α and IL-6. In contrast, CpG-A and CpG-B induced production of TNF-α and IL-6 in pDCs exposed to the HCV-infected hepatoma cells, showing that cell-associated virus did not actively inhibit Toll-like receptor (TLR)-mediated NF-κB phosphorylation. Our results suggest that cell-associated HCV signals in pDCs via an endocytosis-dependent mechanism and IRF7 but not via the NF-κB pathway. In spite of IFN-α induction, cell-associated HCV does not induce a full functional response of pDCs. These findings contribute to the understanding of evasion of immune responses by HCV.  相似文献   

14.
Ferrylmyoglobin (ferrylMb) may play a major role in vivo under certain pathological conditions. Preliminary experiments showed that ferrylmyoglobin induced a mild oxidative stress in rat hepatocytes, mainly reflected by early lipid peroxidation. One of the major functions of hepatocytes is the synthesis, secretion and distribution of lipids to other cells. The aim of this work was to examine whether ferrylMb affected the synthesis and secretion of triacylglycerols (TAG), and the possible involvement of lipid peroxidation on these effects. The heme protein completely impaired VLDL secretion, affecting both the lipid and apoB components of the lipoprotein particle. The incorporation of [(3)H]-oleate into newly synthesized diacylglycerol and TAG was not altered by ferrylMb. The co-treatment of cells with alpha-tocopherol prevented lipid peroxidation and concomitantly reverted VLDL TAG secretion to control values. Importantly, although ferrylMb dramatically blocked prelabeled TAG secretion, newly synthesized TAG secretion was not impaired. These data indicate that lipid peroxidation elicited by ferrylMb modulates the VLDL TAG secretion process, specifically affecting the stored intracellular TAG mobilization, rather than de novo synthesis. Apart from its potential role in vivo, ferrylmyoglobin constitutes a useful model for studying the interactions between lipid peroxidation and the specific TAG pool dependence for VLDL secretion.  相似文献   

15.
At inflammatory sites, neutrophils are stimulated by a range of proinflammatory molecules which elicit a number of cellular responses. Considerable information on the cytoplasmic events that occur following activation of neutrophils at the cell membrane level already exists. In this study, we have focused on the ability of neutrophil agonists to initiate nuclear signaling events by investigating the induction of de novo RNA synthesis. Of a total of 14 different known potent leukocyte agonists, only three had a significant effect on the induction of RNA synthesis in neutrophils; the formylated oligopeptide formyl-methionyl-leucylphenylalanine (fMet-Leu-Phe), granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor alpha. All three agonists induced de novo RNA synthesis in neutrophils at concentrations known to be optimal for the activation of a number of other cellular responses occurring in inflammation. Of significance was the observation that activation of RNA synthesis in neutrophils is a G-protein-mediated event, is also dependent on tyrosine phosphorylation, but is not influenced by cAMP. Finally, we have demonstrated that all three agonists also induce de novo synthesis of a limited number of proteins, with granulocyte-macrophage colony-stimulating factor and fMet-Leu-Phe having the most potent effect. These studies define the effects of neutrophil agonists on de novo RNA and protein synthesis in a proinflammatory context and suggest that these events in neutrophils occur in a restricted fashion, highly dependent on the stimuli present at sites of inflammation.  相似文献   

16.
High rates of de novo lipid synthesis have been discovered in certain kinds of tumours, including gallbladder cancer (GBC). Unlike several other tumours, GBC is highly insensitive to standard adjuvant therapy, which makes its treatment even more challenging. Although several potential targets and signalling pathways underlying GBC chemoresistance have been revealed, the precise mechanisms are still elusive. In this study, we found that α‐Mangostin, as a dietary xanthone, repressed the proliferation and clone formation ability, induced cell cycle arrest and the apoptosis, and suppressed de novo lipogenesis of gallbladder cancer cells. The underlying mechanisms might involve the activation of AMPK and, therefore, the suppression of SREBP1 nuclear translocation to blunt de novo lipogenesis. Furthermore, SREBP1 silencing by siRNA or α‐mangostin enhanced the sensitivity of gemcitabine in gallbladder cancer cells. In vivo studies also displayed that MA or gemcitabine administration to nude mice harbouring NOZ tumours can reduce tumour growth, and moreover, MA administration can significantly potentiate gemcitabine‐induced inhibition of tumour growth. Corroborating in vitro findings, tumours from mice treated with MA or gemcitabine alone showed decreased levels of proliferation with reduced Ki‐67 expression and elevated apoptosis confirmed by TUNEL staining, furthermore, the proliferation inhibition and apoptosis up‐regulation were obviously observed in MA combined with gemcitabine treatment group. Therefore, inhibiting de novo lipogenesis via targeting the AMPK/SREBP1 signalling by MA might provide insights into a potential strategy for sensitizing GBC cells to chemotherapy.  相似文献   

17.
Peroxisomes are single-membrane bounded organelles that in humans play a dual role in lipid metabolism, including the degradation of very long-chain fatty acids and the synthesis of ether lipids/plasmalogens. The first step in de novo ether lipid synthesis is mediated by the peroxisomal enzyme glyceronephosphate O-acyltransferase, which has a strict substrate specificity reacting only with the long-chain acyl-CoAs. The aim of this study was to determine the origin of these long-chain acyl-CoAs. To this end, we developed a sensitive method for the measurement of de novo ether phospholipid synthesis in cells and, by CRISPR-Cas9 genome editing, generated a series of HeLa cell lines with deficiencies of proteins involved in peroxisomal biogenesis, beta-oxidation, ether lipid synthesis, or metabolite transport. Our results show that the long-chain acyl-CoAs required for the first step of ether lipid synthesis can be imported from the cytosol by the peroxisomal ABCD proteins, in particular ABCD3. Furthermore, we show that these acyl-CoAs can be produced intraperoxisomally by chain shortening of CoA esters of very long-chain fatty acids via beta-oxidation. Our results demonstrate that peroxisomal beta-oxidation and ether lipid synthesis are intimately connected and that the peroxisomal ABC transporters play a crucial role in de novo ether lipid synthesis.  相似文献   

18.
Juric V  Chen CC  Lau LF 《PloS one》2012,7(2):e31303
Although TNFα is a strong inducer of apoptosis, its cytotoxicity in most normal cells in vitro requires blockade of NFκB signaling or inhibition of de novo protein synthesis, typically by the addition of cycloheximide. However, several members of CCN (CYR61/CTGF/NOV) family of extracellular matrix proteins enable TNFα-dependent apoptosis in vitro without inhibiting NFκB or de novo protein synthesis, and CCN1 (CYR61) is essential for optimal TNFα cytotoxicity in vivo. Previous studies showed that CCN1 unmasks the cytotoxicity of TNFα by binding integrins α(v)β(5), α(6)β(1), and the cell surface heparan sulfate proteoglycan syndecan 4 to induce the accumulation of a high level of reactive oxygen species (ROS), leading to a biphasic activation of JNK necessary for apoptosis. Here we show for the first time that CCN1 interacts with the low density lipoprotein receptor-related protein 1 (LRP1) in a protein complex, and that binding to LRP1 is critical for CCN1-induced ROS generation and apoptotic synergism with TNFα. We also found that neutral sphingomyelinase 1 (nSMase1), which contributes to CCN1-induced ROS generation, is required for CCN1/TNFα-induced apoptosis. Furthermore, CCN1 promotes the activation of p53 and p38 MAPK, which mediate enhanced cytochrome c release to amplify the cytotoxicity of TNFα. By contrast, LRP1, nSMase1, p53, and p38 MAPK are not required when TNFα-dependent apoptosis is facilitated by the presence of cycloheximide, indicating that they function in the CCN1 signaling pathway that converges with TNFα-induced signaling events. Since CCN1/CYR61 is a physiological regulator of TNFα cytotoxicity at least in some contexts, these findings may reveal important mediators of TNFα-induced apoptosis in vivo and identify potential therapeutic targets for thwarting TNFα-dependent tissue damage.  相似文献   

19.
20.
为了探讨溶瘤疱疹病毒表达病毒融膜糖蛋白对食管癌细胞的杀伤效果,采用基因酶切技术构建携带GALV.fus基因的致融性溶瘤疱疹病毒Synco-l和Synco-2以及非致融性溶瘤疱疹病毒Baco-1,通过体内外实验观察三种病毒对食管癌细胞Eca-109的杀伤效果。结果发现,Synco-1和Synco-2能引起食管癌细胞融合,有效地杀灭食管癌细胞。体外实验Synco-1和Synco-2能分别使Eca-109细胞存活率降低至28%和25%,体内实验能使实体肿瘤体积明显缩小,接种4周后,均能使小鼠70%的癌细胞完全消失,其杀伤食管癌细胞的效果明显强于非致融性溶瘤疱疹病毒Baco-1。实验结果提示,溶瘤疱疹病毒通过表达病毒融膜糖蛋白能显著增强其抗肿瘤效果,Synco-1和Synco-2有可能成为治疗食管癌的有效工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号