共查询到20条相似文献,搜索用时 15 毫秒
1.
Vartapetian AB Tuzhikov AI Chichkova NV Taliansky M Wolpert TJ 《Cell death and differentiation》2011,18(8):1289-1297
Activities displaying caspase cleavage specificity have been well documented in various plant programmed cell death (PCD) models. However, plant genome analyses have not revealed clear orthologues of caspase genes, indicating that enzyme(s) structurally unrelated yet possessing caspase specificity have functions in plant PCD. Here, we review recent data showing that some caspase-like activities are attributable to the plant subtilisin-like proteases, saspases and phytaspases. These proteases hydrolyze a range of tetrapeptide caspase substrates following the aspartate residue. Data obtained with saspases implicate them in the proteolytic degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) during biotic and abiotic PCD, whereas phytaspase overproducing and silenced transgenics provide evidence that phytaspase regulates PCD during both abiotic (oxidative and osmotic stresses) and biotic (virus infection) insults. Like caspases, phytaspases and saspases are synthesized as proenzymes, which are autocatalytically processed to generate a mature enzyme. However, unlike caspases, phytaspases and saspases appear to be constitutively processed and secreted from healthy plant cells into the intercellular space. Apoplastic localization presumably prevents enzyme-mediated protein fragmentation in the absence of PCD. In response to death-inducing stimuli, phytaspase has been shown to re-localize to the cell interior. Thus, plant PCD-related proteases display both common (D-specific protein fragmentation during PCD) and distinct (enzyme structure and activity regulation) features with animal PCD-related proteases. 相似文献
2.
3.
Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria 总被引:5,自引:0,他引:5
Denecker G Vercammen D Steemans M Vanden Berghe T Brouckaert G Van Loo G Zhivotovsky B Fiers W Grooten J Declercq W Vandenabeele P 《Cell death and differentiation》2001,8(8):829-840
In L929sAhFas cells, tumor necrosis factor (TNF) leads to necrotic cell death, whereas agonistic anti-Fas antibodies elicit apoptotic cell death. Apoptosis, but not necrosis, is correlated with a rapid externalization of phosphatidylserine and the appearance of a hypoploid population. During necrosis no cytosolic and organelle-associated active caspase-3 and -7 fragments are detectable. The necrotic process does not involve proteolytic generation of truncated Bid; moreover, no mitochondrial release of cytochrome c is observed. Bcl-2 overexpression slows down the onset of necrotic cell death. In the case of apoptosis, active caspases are released to the culture supernatant, coinciding with the release of lactate dehydrogenase. Following necrosis, mainly unprocessed forms of caspases are released. Both TNF-induced necrosis and necrosis induced by anti-Fas in the presence of the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone are prevented by the serine protease inhibitor N-tosyl-L-phenylalanine chloromethylketone and the oxygen radical scavenger butylated hydroxyanisole, while Fas-induced apoptosis is not affected. 相似文献
4.
The investigations performed over recent few years have proved the existence of caspase-like proteases in plants. Three groups
of caspase-like proteases: metacaspases, legumain family proteases (VPEs) and saspases have been identified and characterized
in plants so far. A considerable amount of evidence supports the role of these enzymes in programmed cell death (PCD) occurring
during plant development, their organ senescence as well as hypersensitive response (HR) after pathogen attack. Current knowledge
of these enzyme molecular and biochemical structures is summarized in the paper. The homology of caspase-like proteases to
animal caspases has been also indicated. Some future perspectives of research concerning the signal pathway during PCD, the
regulation of activity and mode of action of these proteases are presented in the article. 相似文献
5.
Lauer-Fields JL Minond D Sritharan T Kashiwagi M Nagase H Fields GB 《The Journal of biological chemistry》2007,282(1):142-150
Protease-substrate interactions are governed by a variety of structural features. Although the substrate sequence specificities of numerous proteases have been established, "topological specificities," whereby proteases may be classified based on recognition of distinct three-dimensional structural motifs, have not. The aggrecanase members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family cleave a variety of proteins but do not seem to possess distinct sequence specificities. In the present study, the topological substrate specificity of ADAMTS-4 (aggrecanase-1) was examined using triple-helical or single-stranded poly(Pro) II helical peptides. Substrate topology modulated the affinity and sequence specificity of ADAMTS-4 with K(m) values indicating a preference for triple-helical structure. In turn, non-catalytic ADAMTS-4 domains were critical for hydrolysis of triple-helical and poly(Pro) II helical substrates. Comparison of ADAMTS-4 with MMP-1 (collagenase 1), MMP-13 (collagenase 3), trypsin, and thermolysin using triple-helical peptide (THP) and single-stranded peptide (SSP) substrates demonstrated that all five proteases possessed efficient "triple-helical peptidase" activity and fell into one of two categories: (k(cat)/K(m))(SSP) > (k(cat)/K(m))(THP) (thermolysin, trypsin, and MMP-13) or (k(cat)/K(m))(THP) > or = (k(cat)/K(m))(SSP) and (K(m))(SSP) > (K(m))(THP) (MMP-1 and ADAMTS-4). Overall these results suggest that topological specificity may be a guiding principle for protease behavior and can be utilized to design specific substrates and inhibitors. The triple-helical and single-stranded poly(Pro) II helical peptides represent the first synthetic substrates successfully designed for aggrecanases. 相似文献
6.
A functional role for death proteases in s-Myc- and c-Myc-mediated apoptosis. 总被引:6,自引:0,他引:6 下载免费PDF全文
S Kagaya C Kitanaka K Noguchi T Mochizuki A Sugiyama A Asai N Yasuhara Y Eguchi Y Tsujimoto Y Kuchino 《Molecular and cellular biology》1997,17(11):6736-6745
Upon activation, cell surface death receptors, Fas/APO-1/CD95 and tumor necrosis factor receptor-1 (TNFR-1), are attached to cytosolic adaptor proteins, which in turn recruit caspase-8 (MACH/FLICE/Mch5) to activate the interleukin-1 beta-converting enzyme (ICE)/CED-3 family protease (caspase) cascade. However, it remains unknown whether these apoptotic proteases are generally involved in apoptosis triggered by other stimuli such as Myc and p53. In this study, we provide lines of evidence that a death protease cascade consisting of caspases and serine proteases plays an essential role in Myc-mediated apoptosis. When Rat-1 fibroblasts stably expressing either s-Myc or c-Myc were induced to undergo apoptosis by serum deprivation, a caspase-3 (CPP32)-like protease activity that cleaves a specific peptide substrate, Ac-DEVD-MCA, appeared in the cell lysates. Induction of s-Myc- and c-Myc-mediated apoptotic cell death was effectively prevented by caspase inhibitors such as Z-Asp-CH2-DCB and Ac-DEVD-CHO. Furthermore, exposing the cells to a serine protease inhibitor, 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), also significantly inhibited s-Myc- and c-Myc-mediated apoptosis and the appearance of the caspase-3-like protease activity in vivo. However, AEBSF did not directly inhibit caspase-3-like protease activity in the apoptotic cell lysates in vitro. Together, these results indicate that caspase-3-like proteases play a critical role in both s-Myc- and c-Myc-mediated apoptosis and that caspase-3-like proteases function downstream of the AEBSF-sensitive step in the signaling pathway of Myc-mediated apoptosis. 相似文献
7.
Proteases perform a wide variety of functions, inside and outside cells, regulating many biological processes. Recent years have witnessed a number of significant advances in the structural biology of proteases, including aspects of intracellular protein and peptide degradation by self-compartmentalizing proteases, activation of proteases in proteolytic cascades of regulatory pathways, and mechanisms of microbial proteases in pathogenicity. 相似文献
8.
Plant auto-inhibited Ca2+-ATPase 8 (ACA8) and animal plasma membrane Ca2+-ATPase 4b (PMCA4b) are representatives of plant and animal 2B P-type ATPases with a regulatory auto-inhibitory domain localized at the N- and C-terminus, respectively. To check whether the regulatory domain works independently of its terminal localization and if auto-inhibitory domains of different organisms are interchangeable, a mutant in which the N-terminus of ACA8 is repositioned at the C-terminus and chimeras in which PMCA4b C-terminus is fused to the N- or C-terminus of ACA8 were analysed in the yeast mutant K616 devoid of endogenous Ca2+-ATPases. Results show that the regulatory function of the terminal domain is independent from its position in ACA8 and that the regulatory domain belonging to PMCA4b is able to at least partially auto-inhibit ACA8. 相似文献
9.
Raspail C Graindorge M Moreau Y Crouzy S Lefèbvre B Robin AY Dumas R Matringe M 《The Journal of biological chemistry》2011,286(29):26061-26070
4-Hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the conversion of 4-hydroxyphenylpyruvate (HPP) into homogentisate. HPPD is the molecular target of very effective synthetic herbicides. HPPD inhibitors may also be useful in treating life-threatening tyrosinemia type I and are currently in trials for treatment of Parkinson disease. The reaction mechanism of this key enzyme in both plants and animals has not yet been fully elucidated. In this study, using site-directed mutagenesis supported by quantum mechanical/molecular mechanical theoretical calculations, we investigated the role of catalytic residues potentially interacting with the substrate/intermediates. These results highlight the following: (i) the central role of Gln-272, Gln-286, and Gln-358 in HPP binding and the first nucleophilic attack; (ii) the important movement of the aromatic ring of HPP during the reaction, and (iii) the key role played by Asn-261 and Ser-246 in C1 hydroxylation and the final ortho-rearrangement steps (numbering according to the Arabidopsis HPPD crystal structure 1SQD). Furthermore, this study reveals that the last step of the catalytic reaction, the 1,2 shift of the acetate side chain, which was believed to be unique to the HPPD activity, is also catalyzed by a structurally unrelated enzyme. 相似文献
10.
Overhulse KA 《Lab animal》2002,31(6):39-42
The author discusses the role of an animal research facility trainer in helping to teach laboratory animal facility staff how to recognize negative behavior patterns, manage grief, and help to prevent feelings of guilt. 相似文献
11.
It is becoming clear that "apoptotic" caspases can effect cellular processes other than cell death. A recent paper in Cell points to a novel role of the Drosophila caspase inhibitor DIAP1 as a determinant of cell migration. 相似文献
12.
The mitochondrial membrane bound dihydroorotate dehydrogenase (DHODH; EC 1.3.99.11) catalyzes the fourth step of pyrimidine biosynthesis. By the present correction of a known cDNA sequence for Arabidopsis thaliana DHODH we revealed the importance of the very C-terminal part for its catalytic activity and the reason why--in contrast to mammalian and insect species--the recombinant plant flavoenzyme was unaccessible to date for in vitro characterization. Structure-activity relationship studies explained that potent inhibitors of animal DHODH do not significantly affect the plant enzyme. These difference could be exploited for a novel approach to herb or pest growth control by limitation of pyrimidine nucleotide pools. 相似文献
13.
《Journal of biological education》2012,46(3):178-182
A series of review articles by authors of the Institute of Biology's ‘Studies in Biology’ series (published by Edward Arnold) intended to keep teachers up to date on current ideas in particular areas of biology 相似文献
14.
Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold 总被引:42,自引:0,他引:42
Evidence is presented, based on sequence comparison and secondary structure prediction, of structural and evolutionary relationship between chymotrypsin-like serine proteases, cysteine proteases of positive strand RNA viruses (3C proteases of picornaviruses and related enzymes of como-, nepo- and potyviruses) and putative serine protease of a sobemovirus. These observations lead to re-identification of principal catalytic residues of viral proteases. Instead of the pair of Cys and His, both located in the C-terminal part of 3C proteases, a triad of conserved His, Asp(Glu) and Cys(Ser) has been identified, the first two residues resident in the N-terminal, and Cys in the C-terminal beta-barrel domain. These residues are suggested to form a charge-transfer system similar to that formed by the catalytic triad of chymotrypsin-like proteases. Based on the structural analogy with chymotrypsin-like proteases, the His residue previously implicated in catalysis, together with two partially conserved Gly residues, is predicted to constitute part of the substrate-binding pocket of 3C proteases. A partially conserved ThrLys/Arg dipeptide located in the loop preceding the catalytic Cys is suggested to confer the primary cleavage specificity of 3C toward Glx/Gly(Ser) sites. These observations provide the first example of relatedness between proteases belonging, by definition, to different classes. 相似文献
15.
Plant and animal rhabdovirus host range: a bug's view 总被引:1,自引:0,他引:1
Rhabdoviruses affect human health, terrestrial and aquatic livestock and crops. Most rhabdoviruses are transmitted by insects to their vertebrate or plant hosts. For insect transmission to occur, rhabdoviruses must negotiate barriers to acquisition, replication, movement, escape and inoculation. A better understanding of the molecular interactions of rhabdoviruses with insects will clarify the complexities of rhabdovirus infection processes and epidemiology. A unique opportunity for studying how insects become hosts and vectors of rhabdoviruses is provided by five maize-infecting rhabdoviruses that are differentially transmitted by one or more related species of two divergent homopteran families. 相似文献
16.
DNA fragmentation is a hallmark of apoptosis that is induced by apoptotic stimuli in various cell types. Apoptotic signal pathways, which eventually cause DNA fragmentation, are largely mediated by the family of cysteinyl aspartate-specific protease caspases. Caspases mediate apoptotic signal transduction by cleavage of apoptosis-implicated proteins and the caspases themselves. In the process of caspase activation, reversible protein phosphorylation plays an important role. The activation of various proteins is regulated by phosphorylation and dephosphorylation, both upstream and downstream of caspase activation. Many kinases/phosphatases are involved in the control of cell survival and death, including the mitogen-activated protein kinase signal transduction pathways. Reversible protein phosphorylation is involved in the widespread regulation of cellular signal transduction and apoptotic processes. Therefore, phosphatase/kinase inhibitors are commonly used as apoptosis inducers/inhibitors. Whether protein phosphorylation induces apoptosis depends on many factors, such as the type of phosphorylated protein, the degree of activation and the influence of other proteins. Phosphorylation signaling pathways are intricately interrelated; it was previously shown that either induction or inhibition of phosphorylation causes cell death. Determination of the relationship between protein and phosphorylation helps to reveal how apoptosis is regulated. Here we discuss DNA fragmentation and protein phosphorylation, focusing on caspase and serine/threonine protein phosphatase activation. 相似文献
17.
H Koga N Mori H Yamada Y Nishimura K Tokuda K Kato T Imoto 《Journal of biochemistry》1991,110(6):939-944
We found that rat cathepsin H showed strong transacylation activity under physiological conditions. It is a feature of cathepsin H to utilize amino acid amides not only as acyl-acceptors but also as acyl-donors in the reaction. The pH-dependence of the transacylation activity was distinct from those of other papain-superfamily proteases. The alkaline limb (pKapp = 7.5) could be regarded as the pKa of the alpha-amino group of the acyl-donor, which was also involved in the original amino-peptidase activity. The acidic limb (pKapp = 5.8) was suggested to be involved in the deacylation step, where amino acid amide attacked the acyl-intermediate as a nucleophile in place of water in the hydrolysis. Although the N alpha-deprotonated acyl-acceptor, which is supposed to govern the nucleophilic attack, has a small population in the acidic pH range (above pH5), the transacylation was detectable even at the acidic pH-range because of the high S1'-site binding ability and suitable nucleophilicity of the acyl-acceptor. In the transacylation between various amino acid amides, the S1 and S1' site appeared to prefer hydrophobic residues without and regardless of a branch at beta-carbon, respectively. From these results and the sequence homology in the papain superfamily, we concluded that the reaction was governed by the acyl-donor having a protonated amino group, the acyl-acceptor having a deprotonated amino group and the remarkable hydrophobic character (especially favoring tryptophan amide) of the S1' site, presumably reflecting the good conservation of Trp177 in papain-superfamily proteases. 相似文献
18.
In the latest two decades, the interest received by plant proteases has been on the rise. Serine proteases (EC 3.4.21)-in particular those from cucurbits, cereals and trees-share indeed a number of biochemical and physiological features, that may prove useful toward understanding of several mechanisms at the subcellular level. This critical review focuses on the characterization of most plant serine proteases, and comprehensively lists information produced by more and more sophisticated research tools that have led to the current state of the art in knowledge of these unique enzymes. 相似文献
19.
Nina V Chichkova Jane Shaw Raisa A Galiullina Georgina E Drury Alexander I Tuzhikov Sang Hyon Kim Markus Kalkum Teresa B Hong Elena N Gorshkova Lesley Torrance Andrey B Vartapetian Michael Taliansky 《The EMBO journal》2010,29(6):1149-1161
Caspases are cysteine‐dependent proteases and are important components of animal apoptosis. They introduce specific breaks after aspartate residues in a number of cellular proteins mediating programmed cell death (PCD). Plants encode only distant homologues of caspases, the metacaspases that are involved in PCD, but do not possess caspase‐specific proteolytic activity. Nevertheless, plants do display caspase‐like activities indicating that enzymes structurally distinct from classical caspases may operate as caspase‐like proteases. Here, we report the identification and characterisation of a novel PCD‐related subtilisin‐like protease from tobacco and rice named phytaspase (plant aspartate‐specific protease) that possesses caspase specificity distinct from that of other known caspase‐like proteases. We provide evidence that phytaspase is synthesised as a proenzyme, which is autocatalytically processed to generate the mature enzyme. Overexpression and silencing of the phytaspase gene showed that phytaspase is essential for PCD‐related responses to tobacco mosaic virus and abiotic stresses. Phytaspase is constitutively secreted into the apoplast before PCD, but unexpectedly is re‐imported into the cell during PCD providing insights into how phytaspase operates. 相似文献
20.
Plant and animal microRNAs: similarities and differences 总被引:15,自引:0,他引:15