首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
含SH2结构域的肌醇磷酸酶(SHIP)属于5’磷酸酯酶家族成员。SHIP能将磷脂酰肌醇-3,4,5-三磷酸(PI-3,4,5-P3,PIP3)水解为磷脂酰肌醇-3,4-二磷酸(PI-3,4-P2),是主要表达于造血细胞的磷脂酰肌醇3-激酶(PI3K)信号抑制分子,通过参与调节PI3K途径而影响细胞增殖、存活及信号转导等诸多细胞活动,与白血病的发生发展密切相关。  相似文献   

3.
目的:观察SHIP 在溃疡性结肠炎(UC)和克罗恩病(CD)患者结肠组织标本中的表达情况,探讨其在炎症性肠病发生过程中 所起的作用及意义。方法:收集活动期UC患者,活动期CD 患者,及结直肠癌旁正常粘膜组织(NC组)标本各20 例。将活检标本 进行苏木精- 伊红染色及SHIP 免疫组化染色观察;利用Western blot 半定量比较分析SHIP 蛋白表达及组间差异;Real-time RT-PCR 分析SHIP在RNA水平的表达情况和组间差异。统计学处理采用Student''s t检验。结果:免疫组化染色示UC组SHIP阳 性表达积分为(7.20± 2.53),CD 组积分为(6.50± 2.76),对照组积分为(1.10± 0.74)。t 检验组间比较UC组和CD组无统计学差异 (t=0.59,P>0.05);而UC组与NC组(t=7.32,P<0.05),CD组与NC组(t=5.98, P<0.05),差异均有统计学意义。Western blot 检测 结肠组织SHIP表达,UC组SHIP 相对表达量为(0.314± 0.021),CD组(0.301± 0.019),NC 组(0.163± 0.027)。UC和CD组表达 无差异(t=1.44,P>0.05),而UC组,CD组与NC 组相比表达明显升高(t=13.88、13.16, P均<0.05)。Real-time RT PCR 检测UC 组 结肠粘膜SHIP mRNA相对表达量为(0.649± 0.028),CD 组为(0.645± 0.021),NC 组为(0.140± 0.015)。同样,UC组与CD 组没 有统计学差异,而其相较对照组表达均升高(P<0.05)。结论:炎症性肠病患者结肠组织SHIP 表达明显高于正常结肠组织,但其在 溃疡性结肠炎和克罗恩病间没有明显差异;提示SHIP可能在炎症性肠病的发病中发挥重要作用。  相似文献   

4.
Many agents that activate hematopoietic cells use phos pha tidyl ino si tol 3,4,5-trisphosphate (PtdIns 3,4,5-P3) to initiate signaling cascades. The SH2 domain-containing inositol 5′ phosphatase, SHIP1, regulates hematopoietic cell function by opposing the action of phos pha tidyl ino si tol 3-kinase and reducing the levels of PtdIns 3,4,5-P3. Activation of the cyclic AMP-de pend ent protein kinase (PKA) also opposes many of the pro-inflammatory responses of hematopoietic cells. We tested to see whether the activity of SHIP1 was regulated via phos pho ryl a tion with PKA. We prepared pure recombinant SHIP1 from HEK-293 cells and found it can be rapidly phos pho ryl a ted by PKA to a stoichiometry of 0.6 mol of PO4/mol of SHIP1. In 32P-labeled HEK-293 cells transfected with SHIP1, stimulation with Sp-adenosine 3′,5′-cyclic monophosphorothioate triethylammonium salt hydrate (Sp-cAMPS) or activation of the β-adrenergic receptor increased the phos pho ryl a tion state of SHIP1. Inhibition of protein phosphatase activity with okadaic acid also increased the phos pho ryl a tion of SHIP1. Phosphorylation of SHIP1 in vitro or in cells by PKA increased the 5′ phosphatase activity of SHIP1 by 2–3-fold. Elevation of Ca2+ in DT40 cells in response to B cell receptor cross-linking, an indicator of PtdIns 3,4,5-P3 levels, was markedly blunted by pretreatment with Sp-cAMPS. This effect was absent in SHIP−/− DT40 cells showing that the effect of Sp-cAMPS in DT40 cells is SHIP1-de pend ent. Sp-cAMPS also blunted the ability of the B cell receptor to increase the phos pho ryl a tion of Akt in DT40 and A20 cells. Overall, activation of G protein-coupled receptors that raise cyclic AMP cause SHIP1 to be phos pho ryl a ted and stimulate its inositol phosphatase activity. These results outline a novel mechanism of SHIP1 regulation.Activation of phosphatidylinositol 3-kinase (PtdIns 3-kinase)2 is central to regulation of multiple cell functions including cell shape changes, cell migration, cell activation, and proliferation (1). PtdIns 3-kinase phosphorylates phosphatidylinositol 4,5-bisphosphate in the inner leaflet of the plasma membrane to generate phosphatidylinositol 3,4,5-trisphosphate (PtdIns 3,4,5-P3) (2). PtdIns 3,4,5-P3 then activates downstream signaling pathways by interacting with pleckstrin homology domain-containing proteins, such as phosphoinositide-dependent kinase 1 and the serine-threonine kinase Akt (3). The finding of abnormal activation of the PtdIns 3-kinase pathway in cancer cells has led to interest in the development of inhibitors for PtdIns 3-kinase (4).The level of PtdIns 3,4,5-P3 is stimulated by multiple members of the PtdIns 3-kinase family (2) and is opposed by two phosphatidylinositol phosphatases: the Src homology 2 (SH2) domain-containing inositol 5′ phosphatase (SHIP) and the 3′ inositol phosphatase, phosphatase and tensin homolog (PTEN) (5). PTEN removes phosphate from the 3′ position in the inositol ring of PtdIns 3,4,5-P3 and converts it to phosphatidylinositol 4,5-bisphosphate (6). PTEN has a C2 domain, a PDZ-binding motif, and a N-terminal phosphatidylinositol 4,5-bisphosphate binding motif essential for translocation to the membrane and interaction with other regulatory proteins (7). There are serine and threonine residues in PTEN that have been found to be phosphorylated, but their role in regulating the activity of the enzyme is not clear (8). Mutations in the PTEN protein have been observed in many tumors, suggesting a role for this enzyme in cancer (9).In contrast, SHIP dephosphorylates the 5′ position on the inositol ring and produces phosphatidylinositol 3,4-bisphosphate (10). There are three isoforms of SHIP: the 145-kDa hematopoietic cell restricted SHIP (also known as SHIP1); the 104-kDa stem cell-restricted SHIP, sSHIP; and the more widely expressed 150-kDa SHIP2 (11). SHIP1 is the major inositol phosphatase regulating PtdIns 3,4,5-P3 in monocytes, macrophages, B cells, and T cells (11). SHIP1 has three known structural features: the N-terminal SH2 domain, the central inositol 5′ phosphatase domain, and two NPXY sequences in the C-terminal region. The currently accepted model for regulation of PtdIns 3,4,5-P3 levels by SHIP1 envisions translocation of SHIP1 from the cytosol to the membrane. Upon stimulation by growth factors, cytokine receptors, or immunoreceptors, SHIP1 is recruited via its N-terminal SH2 domain to phosphorylated tyrosine residues in receptor kinases and degrades the elevated levels of PtdIns 3,4,5-P3 near the activated receptor (12). During this translocation process, SHIP1 is not thought to change its 5′ phosphatase activity (13). Although it is known that SHIP1 can be phosphorylated on tyrosine residues by the lyn cytoplasmic kinase (12) or following the activation of the T cell receptor (14), neither event appears to influence the 5′ phosphatase activity. To date, direct regulation of SHIP1 activity by serine/threonine kinases has not been studied.Activation of G protein-coupled receptors that raise cAMP (i.e. β-adrenergic receptors or adenosine A2a receptors) is known to blunt the pro-inflammatory responses generated by receptors that raise the level of PtdIns 3,4,5-P3 (15). Therefore, we investigated the possibility that phosphorylation of SHIP1 by cyclic AMP-dependent protein kinase (PKA) might regulate the activity of SHIP1. We found that SHIP1 can be phosphorylated by PKA both in vitro and in cells leading to a stimulation of SHIP1 activity. Activation of PKA in DT40 and A20 cells blunted indicators of the PtdIns 3,4,5-P3 response to B cell receptor stimulation. These results indicate that SHIP1 activity can be regulated both in vitro and in cells by activation of the cyclic AMP-dependent protein kinase and highlight a new mode of SHIP regulation by G protein-coupled receptors.  相似文献   

5.
Zou L  Li FQ 《生理科学进展》2010,41(1):62-64
含SH2结构域的肌醇多磷酸5'-磷酸酶-2(Srchomology 2 domain containing insitol polyphos-phate5'-phosphatase2,SHIP2)负向调节磷脂酰肌醇3-激酶/蛋白激酶B依赖的胰岛素信号通路,降低胰岛素敏感性。SHIP2基因的变异能显著改变胰岛素敏感性。抑制内源性SHIP2蛋白或其基因表达,能够提高胰岛素敏感性,从而改善胰岛素抵抗,有可能成为研究胰岛素抵抗相关疾病发病机制和治疗药物开发的新途径。  相似文献   

6.
Phosphoinositide (PI) phosphatases such as the SH2 domain-containing inositol 5-phosphatases 1/2 (SHIP1 and 2) are important signalling enzymes in human physiopathology. SHIP1/2 interact with a large number of immune and growth factor receptors. Tyrosine phosphorylation of SHIP1/2 has been considered to be the determining regulatory modification. However, here we present a hypothesis, based on recent key publications, highlighting the determining role of Ser/Thr phosphorylation in regulating several key properties of SHIP1/2. Since a subunit of the Ser/Thr phosphatase PP2A has been shown to interact with SHIP2, a putative mechanism for reversing SHIP2 Ser/Thr phosphorylation can be anticipated. PI phosphatases are potential target molecules in human diseases, particularly, but not exclusively, in cancer and diabetes. Therefore, this novel regulatory mechanism deserves further attention in the hunt for discovering novel or complementary therapeutic strategies. This mechanism may be more broadly involved in regulating PI signalling in the case of synaptojanin1 or the phosphatase, tensin homolog, deleted on chromosome TEN.  相似文献   

7.
构建真核表达载体pCAG-IRES-SHIP-GFP,并观察其在K562细胞中的表达。将SHIP逆转录聚合酶链反应(RT-PCR)产物克隆入pCAG-IRES-GFP,经酶切、PCR鉴定及测序分析,构建pCAG-IRES-SHIP-GFP重组真核表达载体;采用脂质体转染法将pCAG-IRES-SHIP-GFP及空载体转入K562细胞,实时荧光定量PCR(FQ-PCR)、Western blot方法检测转染前后K562细胞中SHIP mRNA和蛋白的表达及Akt磷酸化水平改变,MTT、流式细胞仪检测等方法观察野生型SHIP基因表达对白血病细胞K562凋亡的影响。结果显示重组后的pCAG-IRES-SHIP-GFP质粒已成功载入SHIP的全长编码基因,序列测定的结果与预期设计完全一致。荧光显微镜下可见在转染pCAG-IRES-SHIP-GFP的K562细胞中存在荧光分布。外源性SHIP基因表达能使K562细胞增殖受抑;Western blot检测提示K562细胞Akt308和Akt473的磷酸化水平为较转染前显著下调,分别为转染前的38.7%和36.8%(P<0.01)。上述结果表明基因全长3.5kb的人野生型SHIP基因真核表达载体质粒pCAG-IRES-SHIP-GFP构建成功,并在K562细胞中表达;外源性SHIP基因表达能使K562细胞凋亡增加;这些改变可能与p-Akt表达下调有关。  相似文献   

8.
The lymphatic vasculature plays a critical role in a number of disease conditions of increasing prevalence, such as autoimmune disorders, obesity, blood vascular diseases, and cancer metastases. Yet, unlike the blood vasculature, the tools available to interrogate the molecular basis of lymphatic dysfunction/disease have been lacking. More recently, investigators have reported that dysregulation of the PI3K pathway is involved in syndromic human diseases that involve abnormal lymphatic vasculatures, but there have been few compelling results that show the direct association of this molecular pathway with lymphatic dysfunction in humans. Using near-infrared fluorescence lymphatic imaging (NIRFLI) to phenotype and next generation sequencing (NGS) for unbiased genetic discovery in a family with non-syndromic lymphatic disease, we discovered a rare, novel mutation in INPPL1 that encodes the protein SHIP2, which is a negative regulator of the PI3K pathway, to be associated with lymphatic dysfunction in the family. In vitro interrogation shows that SHIP2 is directly associated with impairment of normal lymphatic endothelial cell (LEC) behavior and that SHIP2 associates with receptors that are associated in lymphedema, implicating its direct involvement in the lymphatic vasculature.  相似文献   

9.
10.

Aims

Elevated plasma free fatty acids impair the insulin signaling by induction of the expression of protein phosphatases. However, the effect of palmitate on SH2-containing inositol 5′-phosphatase 2 (SHIP2) expression has not been investigated. Here we investigated the effects of palmitate on SHIP2 expression and elucidated the underlying mechanisms in skeletal muscle cells.

Main methods

SHIP2 mRNA and protein levels were measured in C2C12 myotubes exposed to palmitate. Specific inhibitors were used to identify the signaling pathways involved in SHIP2 expression.

Key findings

The results showed that 0.5 mM palmitate significantly upregulates the mRNA and protein levels of SHIP2 in C2C12 cells. To address the role of palmitate intracellular metabolites in SHIP2 expression, the myotubes were treated with palmitate in the presence of ceramide and diacylglycerol synthesis inhibitors. The results demonstrated that only ceramide synthesis inhibition could prevent palmitate-induced SHIP2 expression in these cells. In addition, the incubation of muscle cells with different concentrations of C2-ceramide dose-dependently enhanced SHIP2 expression. Furthermore, the inhibition of both JNK and NF-κB pathways could prevent ceramide-induced SHIP2 expression in myotubes.

Significance

These findings suggest that palmitate contributes to SHIP2 overexpression in skeletal muscle via the mechanisms involving the activation of ceramide-JNK and NF-κB pathways.  相似文献   

11.
The Src homology 2 domain-containing inositol 5′-phosphatase 1 (SHIP1) dephosphorylates phosphatidylinositol 3,4,5-trisphosphate to phophatidylinositol 3,4-bisphosphate in hematopoietic cells to regulate multiple cell signaling pathways. SHIP1 can be phosphorylated by the cyclic AMP-dependent protein kinase (PKA), resulting in an increase in SHIP1 activity (Zhang, J., Walk, S. F., Ravichandran, K. S., and Garrison, J. C. (2009) J. Biol. Chem. 284, 20070–20078). Using a combination of approaches, we identified the serine residue regulating SHIP1 activity. After mass spectrometric identification of 17 serine and threonine residues on SHIP1 as being phosphorylated by PKA in vitro, studies with truncation mutants of SHIP1 narrowed the phosphorylation site to the catalytic region between residues 400 and 866. Of the two candidate phosphorylation sites located in this region (Ser440 and Ser774), only mutation of Ser440 to Ala abolished the ability of PKA to phosphorylate the purified, catalytic domain of SHIP1 (residues 401–866). Mutation of Ser440 to Ala in full-length SHIP1 abrogated the ability of PKA to increase the activity of SHIP1 in mammalian cells. Using flow cytometry, we found that the PKA activator, Sp-adenosine 3′,5′-cyclic monophosphorothioate triethylammonium salt hydrate (Sp-cAMPS) blunted the phosphorylation of Akt downstream of B cell antigen receptor engagement in SHIP1-null DT40 B lymphocytes expressing native mouse SHIP1. The inhibitory effect of Sp-cAMPS was absent in cells expressing the S440A mutant of SHIP1. These results suggest that activation of SHIP1 by PKA via phosphorylation on Ser440 is an important regulatory event in hematopoietic cells.  相似文献   

12.
从热带假丝酵母(Candiada tropicalis)T25—14经过紫外线和亚硝酸的多次诱变,获得4株产十一烷l,11二羧酸(DC13)较多的突变株,其中最优的NP-159株以20%(V/V)正十三烷(nC13)为碳源摇瓶发酵4天,DC13达80g/L左右。在16L罐上,以30%(V/V)nC13发酵6天,DC13高达139g/L,回收残烃后,对nC13的转化率为80%以上。后处理收率为78.9%,DC13的纯度为95.3%。  相似文献   

13.
14.
Kidney anion exchanger 1 (kAE1) mediates chloride (Cl) and bicarbonate (HCO3) exchange at the basolateral membrane of kidney α-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl/HCO3 exchange at the basolateral membrane and failure of proton (H+) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 μ1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXØ motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1 trafficking of kidney α-intercalated cells.  相似文献   

15.
Niemann–Pick C1 Like 1 (NPC1L1) has been identified and characterized as an essential protein in the intestinal cholesterol absorption process. NPC1L1 localizes to the brush border membrane of absorptive enterocytes in the small intestine. Intestinal expression of NPC1L1 is down regulated by diets containing high levels of cholesterol. While otherwise phenotypically normal, Npc1l1 null mice exhibit a significant reduction in the intestinal uptake and absorption of cholesterol and phytosterols. Characterization of the NPC1L1 pathway revealed that cholesterol absorption inhibitor ezetimibe specifically binds to an extracellular loop of NPC1L1 and inhibits its sterol transport function. Npc1l1 null mice are resistant to diet-induced hypercholesterolemia, and when crossed with apo E null mice, are completely resistant to the development of atherosclerosis. Intestinal gene expression studies in Npc1l1 null mice indicated that no exogenous cholesterol was entering enterocytes lacking NPC1L1, which resulted in an upregulation of intestinal and hepatic LDL receptor and cholesterol biosynthetic gene expression. Polymorphisms in the human NPC1L1 gene have been found to influence cholesterol absorption and plasma low density lipoprotein levels. Therefore, NPC1L1 is a critical intestinal sterol uptake transporter which influences whole body cholesterol homeostasis.  相似文献   

16.
其他1     
  相似文献   

17.
细胞色素P450(CYP)能催化各种内源性及外源性化合物的代谢,与多种肿瘤发生有关。其中CYP1A1参与多种前致癌物和致突变物的代谢活化,CYP1B1被认为在许多人癌细胞中特异性表达,参与药物的氧化代谢和前药的活化。CYP1A1和181已成为靶向抗肿瘤前药研究的新靶点。相继有大量相关研究报道,本文就近年来文献报道的CYP1A1和1B1靶向抗肿瘤前药研究进展。  相似文献   

18.
In this issue of Molecular Cell, Hogues et al. (2008) demonstrate a wholesale shift in the key regulatory protein involved in ribosomal protein (RP) synthesis during the evolution of S. cerevisiae and, en passant, raise interesting questions about the relationship between RP genes and telomeres.  相似文献   

19.
遗传性青光眼包括两种主要的类型,原发性开角型青光眼(primary open angle glaucoma,POAG)和原发性先天型青光眼(primary congenital glaucoma,PCG).眼前节发育不良(anterior segment dysgenesis,ASD)是眼发育异常的遗传异质性病,与增长的眼内压和青光眼有关,包括Peter's异常、Rieger's异常、无虹膜和虹膜发育不全.CYPIB1基因是PCG的致病基因,也有少数报道是POAG的修饰基因,或是POAG和ASD的致病基因.本文就CYP1B1基因突变与遗传性青光眼和ASD发育不全的关系及其遗传特点作一综述.  相似文献   

20.
其它1     
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号