共查询到20条相似文献,搜索用时 15 毫秒
1.
Ternes P Feussner K Werner S Lerche J Iven T Heilmann I Riezman H Feussner I 《The New phytologist》2011,192(4):841-854
The bioactive lipid ceramide is produced by the enzyme ceramide synthase, which exists in several isoforms in most eukaryotic organisms. Here, we investigated functional differences between the three ceramide synthase isoforms in Arabidopsis thaliana. The biochemical properties of the three ceramide synthases were investigated by comparing lipid profiles of yeast strains expressing LOH1, LOH2 or LOH3 with those of wild-type and loh1, loh2 and loh3 knockout plants. Expression profiles of the ceramide synthases and of the pathogenesis-related gene PR-1 were investigated by real-time PCR. Each ceramide synthase isoform showed a characteristic preference regarding acyl-CoA chain length as well as sphingoid base hydroxylation, which matches the pattern of ceramide and glucosylceramide species found in leaves. After extended culture under short-day conditions, loh1 plants showed spontaneous cell death accompanied by enhanced expression of PR-1. The levels of free trihydroxy sphingoid bases as well as ceramide and glucosylceramide species with C(16) fatty acid were significantly elevated while species with C(20) -C(28) fatty acids were reduced. These data suggest that spontaneous cell death in the loh1 line is triggered either by the accumulation of free trihydroxy sphingoid bases or ceramide species with C(16) fatty acid. 相似文献
2.
3.
Plastid isoprenoids are synthesized via the 2-C-methyl-D-erythritol 4-phosphate pathway. A few years after its discovery, most of the Escherichia coli genes involved in the pathway have been identified, including gcpE. In this work, we have identified an Arabidopsis thaliana protein with homology to the product of this gene. The plant polypeptide, GCPE, contains two structural domains that are absent in the E. coli protein: an N-terminal extension and a central domain of 30 kDa. We demonstrate that the N-terminal region targets the Arabidopsis protein to chloroplasts in vivo, consistent with its role in plastid isoprenoid biosynthesis. Although the presence of the internal extra domain may have an effect on activity, the Arabidopsis mature GCPE was able to complement a gcpE-defective E. coli strain, indicating the plant protein is a true functional homologue of the bacterial gcpE gene product. 相似文献
4.
Noutoshi Y Kuromori T Wada T Hirayama T Kamiya A Imura Y Yasuda M Nakashita H Shirasu K Shinozaki K 《Plant molecular biology》2006,62(1-2):29-42
We isolated a lesion mimic mutant, n
ecrotic
s
potted
l
esions 1 (nsl1), from Ds-tagged Arabidopsis thaliana accession No-0. The nsl1 mutant exhibits a growth retardation phenotype and develops spotted necrotic lesions on its rosette and cauline leaves. These phenotypes occur in the absence of pathogens indicating that nsl1 mutants may constitutively express defense responses. Consistent with this idea, nsl1 accumulates high levels of callose and autofluorescent phenolic compounds localized to the necrotic lesions. Furthermore RNA gel blot analysis revealed that genes associated with disease resistance activation are upregulated in the nsl1 mutants and these plants contain elevated levels of salicylic acid (SA). Crossing nsl1 with an SA deficient mutant, eds16-1, revealed that the nsl1 lesions and growth retardation are dependent upon SA. The nsl1 phenotypes are not suppressed under either the rar1-10 or sgt1b-1 genetic background. NSL1 encodes a novel 612aa protein which contains a membrane-attack complex/perforin (MACPF) domain, which is conserved in bacteria, fungi, mammals and plants. The possible modes of action of NSL1 protein in negative regulation of cell death programs and defense responses are discussed. 相似文献
5.
6.
7.
Characterization of a novel eukaryotic ATP/ADP translocator located in the plastid envelope of Arabidopsis thaliana L. 总被引:1,自引:0,他引:1
H.E. Neuhaus E. Thom T. Möhlmann M. Steup K. Kampfenkel 《The Plant journal : for cell and molecular biology》1997,11(1):73-82
Recently, we have sequenced a cDNA clone from Arabidopsis thaliana L. encoding a novel putative ATP/ADP translocator (AATP1). Here, we demonstrate that the radioactively labeled AATP1 precursor protein, synthesized in vitro , is targeted to envelope membranes of isolated spinach chloroplasts. Antibodies raised against a synthetic peptide of AATP1 recognized a single polypeptide of about 62 kDa in chloroplast inner envelope preparations. The cDNA coding for the AATP1 protein was functionally expressed in Saccharomyces cerevisiae and Escherichia coli . In both expression systems, increased rates of ATP transport were observed after reconstitution of the extracted protein into proteoliposomes. To our knowledge, this is the first report on the functional expression of an intrinsic plant membrane protein in E. coli . To yield high rates of ATP transport, proteoliposomes had to be preloaded with ADP, indicating a counter-exchange mode of transport. Carboxyatractyloside did not substantially interfere with ATP transport into proteoliposomes containing the plastidic ATP/ADP translocator. An apparent KM for ATP of 28 µM was determined which is similar to values reported for isolated plastids. The data presented here strongly support the conclusion that AATP1 represents a novel eukaryotic adenylate carrier and that it is identical with the so far unknown plastidic ATP/ADP translocator. 相似文献
8.
Hoeberichts FA Vaeck E Kiddle G Coppens E van de Cotte B Adamantidis A Ormenese S Foyer CH Zabeau M Inzé D Périlleux C Van Breusegem F Vuylsteke M 《The Journal of biological chemistry》2008,283(9):5708-5718
Eukaryotic phosphomannomutases (PMMs) catalyze the interconversion of mannose 6-phosphate to mannose 1-phosphate and are essential to the biosynthesis of GDP-mannose. As such, plant PMMs are involved in ascorbic acid (AsA) biosynthesis and N-glycosylation. We report on the conditional phenotype of the temperature-sensitive Arabidopsis thaliana pmm-12 mutant. Mutant seedlings were phenotypically similar to wild type seedlings when grown at 16-18 degrees C but died within several days after transfer to 28 degrees C. This phenotype was observed throughout both vegetative and reproductive development. Protein extracts derived from pmm-12 plants had lower PMM protein and enzyme activity levels. In vitro biochemical analysis of recombinant proteins showed that the mutant PMM protein was compromised in its catalytic efficiency (K cat/K m). Despite significantly decreased AsA levels in pmm-12 plants, AsA deficiency could not account for the observed phenotype. Since, at restrictive temperature, total glycoprotein patterns were altered and glycosylation of protein-disulfide isomerase was perturbed, we propose that a deficiency in protein glycosylation is responsible for the observed cell death phenotype. 相似文献
9.
Makoto T. Fujiwara Yasushi Yoshioka Tomonari Hirano Yusuke Kazama Tomoko Abe Kensuke Hayashi Ryuuichi D. Itoh 《Plant signaling & behavior》2012,7(1):34-37
Organelle dynamics in the plant male gametophyte has received attention for its importance in pollen tube growth and cytoplasmic inheritance. We recently revealed the dynamic behaviors of plastids in living Arabidopsis pollen grains and tubes, using an inherent promoter-driven FtsZ1–green fluorescent protein (GFP) fusion. Here, we further monitored the movement of pollen tube plastids with an actin1 promoter-driven, stroma-targeted yellow fluorescent protein (YFP). In elongating pollen tubes, most plastids localized to the tube shank, where they displayed either retarded and unsteady motion, or fast, directional, and long-distance movement along the tube polarity. Efficient plastid tracking further revealed a population of tip-forwarding plastids that undergo a fluctuating motion(s) before traveling backward. The behavior of YFP-labeled plastids in pollen basically resembled that of FtsZ1–GFP-labeled plastids, thus validating the use of FtsZ1–GFP for simultaneous visualization of the stroma and the plastid-dividing FtsZ ring. 相似文献
10.
El-Kafafi el-S Karamoko M Pignot-Paintrand I Grunwald D Mandaron P Lerbs-Mache S Falconet D 《The Biochemical journal》2008,409(1):87-94
FtsZ is a key protein involved in bacterial and organellar division. Bacteria have only one ftsZ gene, while chlorophytes (higher plants and green alga) have two distinct FtsZ gene families, named FtsZ1 and FtsZ2. This raises the question of why chloroplasts in these organisms need distinct FtsZ proteins to divide. In order to unravel new functions associated with FtsZ proteins, we have identified and characterized an Arabidopsis thaliana FtsZ1 loss-of-function mutant. ftsZ1-knockout mutants are impeded in chloroplast division, and division is restored when FtsZ1 is expressed at a low level. FtsZ1-overexpressing plants show a drastic inhibition of chloroplast division. Chloroplast morphology is altered in ftsZ1, with chloroplasts having abnormalities in the thylakoid membrane network. Overexpression of FtsZ1 also induced defects in thylakoid organization with an increased network of twisting thylakoids and larger grana. We show that FtsZ1, in addition to being present in the stroma, is tightly associated with the thylakoid fraction. This association is developmentally regulated since FtsZ1 is found in the thylakoid fraction of young developing plant leaves but not in mature and old plant leaves. Our results suggest that plastid division protein FtsZ1 may have a function during leaf development in thylakoid organization, thus highlighting new functions for green plastid FtsZ. 相似文献
11.
BACKGROUND: Mechanosensitive (MS) ion channels provide a mechanism for the perception of mechanical stimuli such as sound, touch, and osmotic pressure. The bacterial MS ion channel MscS opens in response to increased membrane tension and serves to protect against cellular lysis during osmotic downshock. MscS-like proteins are found widely in bacterial and archaeal species and have also been identified in fission yeast and plants. None of the eukaryotic members of the family have yet been characterized. RESULTS: Here, we characterize two MscS-like (MSL) proteins from Arabidopsis thaliana, MSL2 and MSL3. MSL3 can rescue the osmotic-shock sensitivity of a bacterial mutant lacking MS-ion-channel activity, suggesting that it functions as a mechanosensitive ion channel. Arabidopsis plants harboring insertional mutations in both MSL3 and MSL2 show abnormalities in the size and shape of plastids, which are plant-specific endosymbiotic organelles responsible for photosynthesis, gravity perception, and numerous metabolic reactions. MSL2-GFP and MSL3-GFP are localized to discrete foci on the plastid envelope and colocalize with the plastid division protein AtMinE. CONCLUSIONS: Our data support a model wherein MSL2 and MSL3 control plastid size, shape, and perhaps division during normal plant development by altering ion flux in response to changes in membrane tension. We propose that MscS family members have evolved new roles in plants since the endosymbiotic event that gave rise to plastids. 相似文献
12.
Ferro M Salvi D Brugière S Miras S Kowalski S Louwagie M Garin J Joyard J Rolland N 《Molecular & cellular proteomics : MCP》2003,2(5):325-345
The development of chloroplasts and the integration of their function within a plant cell rely on the presence of a complex biochemical machinery located within their limiting envelope membranes. To provide the most exhaustive view of the protein repertoire of chloroplast envelope membranes, we analyzed this membrane system using proteomics. To this purpose, we first developed a procedure to prepare highly purified envelope membranes from Arabidopsis chloroplasts. We then extracted envelope proteins using different methods, i.e. chloroform/methanol extraction and alkaline or saline treatments, in order to retrieve as many proteins as possible, from the most to least hydrophobic ones. Liquid chromatography tandem mass spectrometry analyses were then performed on each envelope membrane subfraction, leading to the identification of more than 100 proteins. About 80% of the identified proteins are known to be, or are very likely, located in the chloroplast envelope. The validation of localization in the envelope of two phosphate transporters exemplifies the need for a combination of strategies to perform the most exhaustive identification of genuine chloroplast envelope proteins. Interestingly, some of the identified proteins are found to be Nalpha-acetylated, which indicates the accurate location of the N terminus of the corresponding mature protein. With regard to function, more than 50% of the identified proteins have functions known or very likely to be associated with the chloroplast envelope. These proteins are a) involved in ion and metabolite transport, b) components of the protein import machinery, and c) involved in chloroplast lipid metabolism. Some soluble proteins, like proteases, proteins involved in carbon metabolism, or proteins involved in responses to oxidative stress, were associated with envelope membranes. Almost one-third of the proteins we identified have no known function. The present work helps understanding chloroplast envelope metabolism at the molecular level and provides a new overview of the biochemical machinery of the chloroplast envelope membranes. 相似文献
13.
Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana 总被引:1,自引:0,他引:1
Kuroyanagi M Yamada K Hatsugai N Kondo M Nishimura M Hara-Nishimura I 《The Journal of biological chemistry》2005,280(38):32914-32920
Some compatible pathogens secrete toxins to induce host cell death and promote their growth. The toxin-induced cell death is a pathogen strategy for infection. To clarify the executioner of the toxin-induced cell death, we examined a fungal toxin (fumonisin B1 (FB1))-induced cell death of Arabidopsis plants. FB1-induced cell death was accompanied with disruption of vacuolar membrane followed by lesion formation. The features of FB1-induced cell death were completely abolished in the Arabidopsis vacuolar processing enzyme (VPE)-null mutant, which lacks all four VPE genes of the genome. Interestingly, an inhibitor of caspase-1 abolished FB1-induced lesion formation, as did a VPE inhibitor. The VPE-null mutant had no detectable activities of caspase-1 or VPE in the FB1-treated leaves, although wild-type leaves had the caspase-1 and VPE activities, both of which were inhibited by a caspase-1 inhibitor. gammaVPE is the most essential among the four VPE homologues for FB1-induced cell death in Arabidopsis leaves. Recombinant gammaVPE recognized a VPE substrate with Km = 30.3 microm and a caspase-1 substrate with Km = 44.2 microm, which is comparable with the values for mammalian caspase-1. The gammaVPE precursor was self-catalytically converted into the mature form exhibiting caspase-1 activity. These in vivo and in vitro analyses demonstrate that gammaVPE is the proteinase that exhibits a caspase-1 activity. We show that VPE exhibiting a caspase-1 activity is a key molecule in toxin-induced cell death. Our findings suggest that a susceptible response of toxin-induced cell death is caused by the VPE-mediated vacuolar mechanism similar to a resistance response of hypersensitive cell death (Hatsugai, N., Kuroyanagi, M., Yamada, K., Meshi, T., Tsuda, S., Kondo, M., Nishimura, M., and Hara-Nishimura, I. (2004) Science 305, 855-858). 相似文献
14.
As a vital cell-signaling molecule, nitric oxide (NO) has been reported to regulate toxic metal responses in plants. Our recent report has suggested that caspase-3-like protease activation was detected in Arabidopsis (Arabidopsis thaliana) after Cd2+ treatment. NO contributed caspase-3-like protease activation in Cd2+ induced Arabidopsis thaliana programmed cell death (PCD), which was mediated by MPK6. It was first shown that NO promotes Cd2+-induced Arabidopsis PCD by promoting MPK6-mediated caspase-3-like activation. Our study contributed to the understanding of NO signaling pathway in Cd2+-induced Arabidopsis thaliana PCD. Although several studies have revealed that NO regulates plant PCD, compared with the study of signaling pathways involved in animal cell apoptosis, the mechanism of NO function still remains elusive and the molecular mechanisms of MAPK are far from clear in Cd2+-induced PCD. By using the fluorescence techniques and the Arabidopsis seedlings as the reference model, the subsequent researches have been performed to obtain comprehensive understanding of Cd2+-induced plant PCD. 相似文献
15.
16.
Xiao-Li Peng Wen-Tao Xu Yan Wang Kun-Lun Huang Zhi-hong Liang Wei-wei Zhao Yun-Bo Luo 《Plant cell reports》2010,29(2):153-161
We evaluated the phytotoxicity of mycotoxin ochratoxin A (OTA) from Aspergillus and Penicillium strains on Arabidopsis thaliana. The results demonstrate that the growth of Arabidopsis thaliana on media containing OTA was inhibited significantly. Moreover, OTA induced necrotic lesions in detached leaves, which are
reminiscent of hypersensitive response lesions that are activated during plant–pathogen interactions and other abiotic stress
factors. From our study, we can see that OTA exposure stimulated a biphasic oxidative burst in the leaves, resulting in the
generation of hydrogen peroxide (H2O2) and superoxide anion radicals (O2·−) and in the concomitant down-regulation of antioxidant enzyme defense responses and up-regulation of lipid peroxidation.
These results suggested that OTA damage might result from reactive oxygen species pathways. Our experiments provide a useful
model plant system for research on OTA-induced plant cell death. 相似文献
17.
Chen YM Ferrar TS Lohmeier-Vogel EM Lohmeir-Vogel E Morrice N Mizuno Y Berenger B Ng KK Muench DG Moorhead GB 《The Journal of biological chemistry》2006,281(9):5726-5733
The PII proteins are key mediators of the cellular response to carbon and nitrogen status and are found in all domains of life. In eukaryotes, PII has only been identified in red algae and plants, and in these organisms, PII localizes to the plastid. PII proteins perform their role by assessing cellular carbon, nitrogen, and energy status and conferring this information to other proteins through protein-protein interaction. We have used affinity chromatography and mass spectrometry to identify the PII-binding proteins of Arabidopsis thaliana. The major PII-interacting protein is the chloroplast-localized enzyme N-acetyl glutamate kinase, which catalyzes the key regulatory step in the pathway to arginine biosynthesis. The interaction of PII with N-acetyl glutamate kinase was confirmed through pull-down, gel filtration, and isothermal titration calorimetry experiments, and binding was shown to be enhanced in the presence of the downstream product, arginine. Enzyme kinetic analysis showed that PII increases N-acetyl glutamate kinase activity slightly, but the primary function of binding is to relieve inhibition of enzyme activity by the pathway product, arginine. Knowing the identity of PII-binding proteins across a spectrum of photosynthetic and non-photosynthetic organisms provides a framework for a more complete understanding of the function of this highly conserved signaling protein. 相似文献
18.
SA and ROS are involved in methyl salicylate-induced programmed cell death in Arabidopsis thaliana 总被引:1,自引:0,他引:1
Programmed cell death (PCD) is a genetically encoded, active process that results in the death of individual cells, tissues,
or whole organs, which plays an important role in the life cycles of plants and animals. Previous studies show that methyl
salicylate (MeSA) is a defense signal molecular associated with systemic acquired resistance and hypersensitive reaction;
however, whether MeSA can induce PCD in plant is still unknown. The morphological changes of Arabidopsis thaliana protoplasts exposed to MeSA were observed under fluorescence microscopy and transmission electron microscopy, and the induction
of PCD was clearly distinguished by intense perinuclear chromatin margination, condensation of nuclear chromatin and DNA laddering
after 3-h exposure of 100 μM MeSA. Our results also showed that salicylic acid (SA) was involved in MeSA-induced PCD by using
a transgenic nahG
Arabidopsis thaliana line, and the process was mediated by reactive oxygen species, which functioned with SA by making an amplification loop.
Our study showed that MeSA could induce PCD in plant cell for the first time. 相似文献
19.
Yoshinaga K Arimura S Niwa Y Tsutsumi N Uchimiya H Kawai-Yamada M 《Annals of botany》2005,96(2):337-342
BACKGROUND AND AIMS: Reactive oxygen species (ROS) are involved in triggering cell death. To visualize mitochondrial behaviour under ROS stress, transgenic arabidopsis plants possessing mitochondrial-targeted GFP (S65T) were studied. METHODS: Arabidopsis leaves were treated with ROS and ROS-inducing chemicals such as hydrogen peroxide, paraquat and menadione. Microscopic observations were carried out using a confocal laser scanning microscope system, and electrolyte leakage was also monitored. KEY RESULTS: After treatment, mitochondria showed morphological changes from a bacillus-like to a round shape. The size of mitochondria treated with H(2)O(2) decreased by half compared with controls. Concurrently, cytoplasmic streaming was blocked and mitochondria eventually swelled. Treatment of leaves with butanedione monoxime, an inhibitor of myosin ATPase, resulted in similar behaviour of mitochondria to that under ROS stress. CONCLUSIONS: The results indicate that morphological changes of mitochondria and cessation of cytoplasmic streaming may interact, and this phenomenon is one of the features of ROS stress-induced cell death. 相似文献
20.
Degrave A Fagard M Perino C Brisset MN Gaubert S Laroche S Patrit O Barny MA 《Molecular plant-microbe interactions : MPMI》2008,21(8):1076-1086
Erwinia amylovora is the bacterium responsible for fire blight, a necrotic disease affecting plants of the rosaceous family. E. amylovora pathogenicity requires a functional type three secretion system (T3SS). We show here that E. amylovora triggers a T3SS-dependent cell death on Arabidopsis thaliana. The plants respond by inducing T3SS-dependent defense responses, including salicylic acid (SA)-independent callose deposition, activation of the SA defense pathway, reactive oxygen species (ROS) accumulation, and part of the jasmonic acid/ethylene defense pathway. Several of these reactions are similar to what is observed in host plants. We show that the cell death triggered by E. amylovora on A. thaliana could not be simply explained by the recognition of AvrRpt2 ea by the resistance gene product RPS2. We then analyzed the role of type three-secreted proteins (T3SPs) DspA/E, HrpN, and HrpW in the induction of cell death and defense reactions in A. thaliana following infection with the corresponding E. amylovora mutant strains. HrpN and DspA/E were found to play an important role in the induction of cell death, activation of defense pathways, and ROS accumulation. None of the T3SPs tested played a major role in the induction of SA-independent callose deposition. The relative importance of T3SPs in A. thaliana is correlated with their relative importance in the disease process on host plants, indicating that A. thaliana can be used as a model to study their role. 相似文献