首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
选择597 nm作为激发波长,探测范围为600~900 nm的荧光特性,分析了天然反应中心和两种去镁叶绿素置换的紫细菌反应中心的荧光发射光谱.借助细菌叶绿素、细菌去镁叶绿素和植物去镁叶绿素的荧光光谱,对相关组分进行了归类.实验结果表明选择性地置换细菌去镁叶绿素影响了荧光光谱的组成.在天然反应中心、BpheB置换的反应中心和BpheA,B置换的反应中心中可分别解析到4、3和2个荧光发射组分.研究肯定荧光发射组分与去镁叶绿素的结合存在对应关系.实验还分别在686.4、674.1和681.1 nm处测定了不同反应中心内的原初电子供体P的激发态通过荧光衰减的过程,观测到衰减动力学上的差异.说明去镁叶绿素置换影响了细菌反应中心内激发光能传递和原初光化学反应过程.  相似文献   

2.
Soret-excited resonance Raman spectra of two types of pheophytin-exchanged photosystem II RCs are reported. The cofactor composition of the reaction centers was modified by exchanging pheophytin a for 13(1)-deoxo-13(1)-hydroxypheophytin a, yielding one preparation with selective replacement of the photochemically inactive pheophytin (H(B)) and a second one exhibiting total replacement of H(B) and 40% replacement of H(A), the primary electron acceptor. Resonance Raman spectra indicate that the other bound cofactors present are not significantly perturbed by Pheo substitution. The resonance Raman contributions from H(A) and H(B) in the carbonyl stretching region are identified at 1679 and 1675 cm(-)(1), respectively, indicating that both pheophytin molecules in the photosystem II reaction center have hydrogen-bonded keto-carbonyl groups. This conclusion differs from what is observed in the functionally related RCs of purple non-sulfur bacteria, where the keto-carbonyl group of H(B) is not hydrogen bonded, but confirms predictions from models based on protein sequence alignments.  相似文献   

3.
Drosophila melanogaster embryos are a source for homogeneous and stable 26S proteasomes suitable for structural studies. For biochemical characterization, purified 26S proteasomes were resolved by two-dimensional (2D) gel electrophoresis and subunits composing the regulatory complex (RC) were identified by amino acid sequencing and immunoblotting, before corresponding cDNAs were sequenced. 17 subunits from Drosophila RCs were found to have homologues in the yeast and human RCs. An additional subunit, p37A, not yet described in RCs of other organisms, is a member of the ubiquitin COOH-terminal hydrolase family (UCH). Analysis of EM images of 26S proteasomes-UCH-inhibitor complexes allowed for the first time to localize one of the RC's specific functions, deubiquitylating activity.The masses of 26S proteasomes with either one or two attached RCs were determined by scanning transmission EM (STEM), yielding a mass of 894 kD for a single RC. This value is in good agreement with the summed masses of the 18 identified RC subunits (932 kD), indicating that the number of subunits is complete.  相似文献   

4.
Effects of cryosolvents and D2O/H2O substitution on the reaction centres (RCs) isolated from photosynthetic bacteria were studied with respect to the role of intra-protein hydrogen bonds in the primary photosynthetic electron transfer. As a result of such treatment of RCs, the charge separation rate between the photoactive bacteriochlorophyll (P2 dimer) and bacteriopheophytin and the rate of electron transfer to the primary quinone slowed down. The energy migration rate from bacteriopheophytin (BPheM), inactive in electron transport, to P2 decreased as well. Although cryosolvents can shift the redox potential of the photoactive pigment, there is no direct correlation between the P2 potential and the effects of these modifying agents on the photosynthetic process in RCs occurring with participation of P2. The removal of H subunit from the pigment-protein complex results in the pronounced weakening of the dimethyl sulfoxide modifying effects on the RC hydrogen bonds. The role of structural and dynamic state in the functioning of the photosynthetic bacterial RCs is analyzed. Relaxation processes in purple bacteria RCs accompanying the primary picosecond steps of energy transformation proceed with the participation of small proton-containing molecular groups in the immediate surroundings of electron transfer carriers. In this paper, we present results concerning mechanisms of primary photosynthetic steps, which were initiated by A. A. Krasnovsky and have been studied for several years at the Department of Biophysics. This paper is dedicated to the memory of our teacher Prof. A. A. Krasnovsky.  相似文献   

5.
Teal PE 《Peptides》2002,23(4):663-669
Retrocerebral complexes (RCs) were isolated from adult females of the moths Heliothis virescens and Manduca sexta. Different homologs of juvenile hormone (JH) produced by the isolated RCs were identified and amounts measured by capillary gas chromatography-chemical ionization (isobutane)-mass spectroscopy. Only JH I, II and III were identified. Incubation of RCs from both species in media containing acetate, but no propionate, induced production of approximately equal amounts of JH II and JH III, but the amount of JH I present was very low in all samples. Incubation of RCs with synthetic Manduca sexta allatotropin stimulated significant increases in production of all three homologs but increases in JH I and JH II were greater than those for JH III. The effect of allatotropin was mimicked by addition of propionate to the medium, which indicated that allatotropin increased supply of acetyl- and propionyl-CoA precursors. Incubation of tissue from H. virescens females during the first 24 h after eclosion with synthetic Manduca sexta allatostatin did not reduce production of JH. However, incubation of tissue from 3-day-old females with allatostatin significantly reduced production of JH. Similarly, incubation of tissue from H. virescens females during the first 24 h after eclosion with both allatotropin and allatostatin did not increase JH over the amount present in extracts from tissue incubated without the neuropeptides, indicating that allatostatin negated the action of allatotropin. Incubation of tissue from H. virescens females with allatostatin plus farnesol or JH III acid resulted in significant production of JH III, but neither JH I nor JH II was detected. These findings indicated that allatostatin acts prior to formation of the sesquiterpene alcohol precursors of JH.  相似文献   

6.
The photosynthetic reaction center (RC) is the first membrane protein whose three-dimensional structure was revealed at the atomic level by X-ray crystallograph more than fifteen years ago. Structural information about RC made a great contribution to the understanding of the reaction mechanism of the complicated membrane protein complex. High-resolution structures of RCs from three photosynthetic bacteria are now available, namely, those from two mesophilic purple non-sulfur bacteria, Blastochloris viridis and Rhodobacter sphaeroides, and that from a thermophilic purple sulfur bacterium, Thermochromatium tepidum. In addition, a variety of structural studies, mainly by X-ray crystallography, are still being performed to give more detailed insight into the reaction mechanism of this membrane protein. This review deals with structural studies of bacterial RC complexes, and a discussion about the electron transfer reaction between RCs and electron donors is the main focus out of several topics addressed by these structural studies. The structural data from three RCs and their electron donors provided reliable models for molecular recognition in the primary step of bacterial photosynthesis.  相似文献   

7.
Using site-directed mutagenesis, we obtained the mutant of the purple bacterium Rhodobacter sphaeroides with Ile to His substitution at position 177 in the L-subunit of the photosynthetic reaction center (RC). The mutant strain forms stable and photochemically active RC complexes. Relative to the wild type RCs, the spectral and photochemical properties of the mutant RC differ significantly in the absorption regions corresponding to the primary donor P and the monomer bacteriochlorophyll (BChl) absorption. It is shown that the RC I(L177)H contains only three BChl molecules compared to four BChl molecules in the wild type RC. Considering the fact that the properties of both isolated and membrane-associated mutant RCs are similar, we conclude that the loss of a BChl molecule from the mutant RC is caused by the introduced mutation but not by the protein purification procedure. The new mutant missing one BChl molecule but still able to perform light-induced reactions forming the charge-separated state P+QA- appears to be an interesting object to study the mechanisms of the first steps of the primary electron transfer in photosynthesis.  相似文献   

8.
The interaction of metal ions with isolated photosynthetic reaction centers (RCs) from the purple bacteria Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas viridis has been investigated with transient optical and magnetic resonance techniques. In RCs from all species, the electrochromic response of the bacteriopheophytin cofactors associated with Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron transfer is slowed in the presence of Cu(2+). This slowing is similar to the metal ion effect observed for RCs from Rb. sphaeroides where Zn(2+) was bound to a specific site on the surface of the RC [Utschig et al. (1998) Biochemistry 37, 8278]. The coordination environments of the Cu(2+) sites were probed with electron paramagnetic resonance (EPR) spectroscopy, providing the first direct spectroscopic evidence for the existence of a second metal site in RCs from Rb. capsulatus and Rps. viridis. In the dark, RCs with Cu(2+) bound to the surface exhibit axially symmetric EPR spectra. Electron spin echo envelope modulation (ESEEM) spectral results indicate multiple weakly hyperfine coupled (14)N nuclei in close proximity to Cu(2+). These ESEEM spectra resemble those observed for Cu(2+) RCs from Rb. sphaeroides [Utschig et al. (2000) Biochemistry 39, 2961] and indicate that two or more histidines ligate the Cu(2+) at the surface site in each RC. Thus, RCs from Rb. sphaeroides, Rb. capsulatus, and Rps. viridis each have a structurally analogous Cu(2+) binding site that is involved in modulating the Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron-transfer process. Inspection of the Rps. viridis crystal structure reveals four potential histidine ligands from three different subunits (M16, H178, H72, and L211) located beneath the Q(B) binding pocket. The location of these histidines is surprisingly similar to the grouping of four histidine residues (H68, H126, H128, and L211) observed in the Rb. sphaeroides RC crystal structure. Further elucidation of these Cu(2+) sites will provide a means to investigate localized proton entry into the RCs of Rb. capsulatus and Rps. viridis as well as locate a site of protein motions coupled with electron transfer.  相似文献   

9.
Xu Q  Baciou L  Sebban P  Gunner MR 《Biochemistry》2002,41(31):10021-10025
The ability to initiate reactions with a flash of light and to monitor reactions over a wide temperature range allows detailed analysis of reaction mechanisms in photosynthetic reaction centers (RCs) of purple bacteria. In this protein, the electron transfer from the reduced primary quinone (Q(A)(-)) to the secondary quinone (Q(B)) is rate-limited by conformational changes rather than electron tunneling. Q(B) movement from a distal to a proximal site has been proposed to be the rate-limiting change. The importance of quinone motion was examined by shortening the Q(B) tail from 50 to 5 carbons. No change in rate was found from 100 to 300 K. The temperature dependence of the rate was also measured in three L209 proline mutants. Under conditions where Q(B) is in the distal site in wild-type RCs, it is trapped in the proximal site in the Tyr L209 mutant [Kuglstatter, A., et al. (2001) Biochemistry 40, 4253-4260]. The electron transfer slows at low temperature for all three mutants as it does in wild-type protein, indicating that conformational changes still limit the reaction rate. Thus, Q(B) movement is unlikely to be the sole, rate-limiting conformational gating step. The temperature dependence of the reaction in the L209 mutants differs somewhat from wild-type RCs. Entropy-enthalpy compensation reduces the difference in rates and free energy changes at room temperature.  相似文献   

10.
The tetraheme cytochrome subunits of the photosynthetic reaction centers (RCs) in two species of purple bacteria, Rubrivivax gelatinosus and Blastochloris (Rhodopseudomonas) viridis, were compared in terms of their capabilities to bind different electron-donor proteins. The wild-type RCs from both species and mutated forms of R. gelatinosus RCs (with amino acid substitutions introduced to the binding domain for electron-donor proteins) were tested for their reactivity with soluble cytochromes and high potential iron-sulfur protein. Cytochromes from both species were good electron donors to the B. viridis RC and the R. gelatinosus RC. The reactivity in the R. gelatinosus RC showed a clear dependence on the polarity of the charges introduced to the binding domain, indicating the importance of the electrostatic interactions. In contrast, high potential iron-sulfur protein, presumed to operate according to the hydrophobic mechanism of binding, reacted significantly only with the R. gelatinosus RC. Evolutionary substitution of amino acids in a region of the binding domain on the cytochrome subunit surface probably caused the change in the principal mode of protein-protein interactions in the electron-transfer chains.  相似文献   

11.
Transient absorption difference spectroscopy with ~20 femtosecond (fs) resolution was applied to study the time and spectral evolution of low-temperature (90 K) absorbance changes in isolated reaction centers (RCs) of Chloroflexus (C.) aurantiacus. In RCs, the composition of the B-branch chromophores is different with respect to that of purple bacterial RCs by occupying the B(B) binding site of accessory bacteriochlorophyll by bacteriopheophytin molecule (Phi(B)). It was found that the nuclear wave packet motion induced on the potential energy surface of the excited state of the primary electron donor P* by ~20 fs excitation leads to a coherent formation of the states $P;{+}\Phi_{\rm B};{-}$ and $P;{+}B_{\rm A};{-}$ (B(A) is a bacteriochlorophyll monomer in the A-branch of cofactors). The processes were studied by measuring coherent oscillations in kinetics of the absorbance changes at 900 nm and 940 nm (P* stimulated emission), at 750 nm and 785 nm (Phi(B) absorption bands), and at 1,020-1028 nm ($B_{\rm A};{-}$ absorption band). In RCs, the immediate bleaching of the P band at 880 nm and the appearance of the stimulated wave packet emission at 900 nm were accompanied (with a small delay of 10-20 fs) by electron transfer from P* to the B-branch with bleaching of the Phi(B) absorption band at 785 nm due to $\Phi_{\rm B};{-}$ formation. These data are consistent with recent measurements for the mutant HM182L Rb. sphaeroides RCs (Yakovlev et al., Biochim Biophys Acta 1757:369-379, 2006). Only at a delay of 120 fs was the electron transfer from P* to the A-branch observed with a development of the $B_{\rm A};{-}$ absorption band at 1028 nm. This development was in phase with the appearance of the P* stimulated emission at 940 nm. The data on the A-branch electron transfer in C. aurantiacus RCs are consistent with those observed in native RCs of Rb. sphaeroides. The mechanism of charge separation in RCs with the modified B-branch pigment composition is discussed in terms of coupling between the nuclear wave packet motion and electron transfer from P* to Phi(B) and B(A) primary acceptors in the B-branch and A-branch, respectively.  相似文献   

12.
Responses to the ionotropic glutamate receptor agonist kainate were measured in Retzius cells (RCs) of intact segmental ganglia (in situ), acutely isolated RCs, and cultured RCs (in vitro) of the leech Hirudo medicinalis. RCs in intact ganglia responded to kainate (5–20 μM) with depolarizations up to 30 mV or with an inward current under voltage-clamp that reversed near -10 mV. The membrane conductance increased by a factor of 2.5 at a holding potential of -70 mV in the presence of 20 μM kainate. In RCs in situ the membrane responses to 5 μM kainate increased when applied repeatedly 3-5 times. After this potentiation, the amplitude and time course of the membrane responses to 5 μM kainate were similar to the membrane response to 20 μM kainate. In current-clamp experiments kainate evoked an increase in intracellular calcium concentrations ([Ca2+]¡) only when the membrane depolarized beyond -40 mV. In voltage-clamped RCs at a holding potential of -70 mV, kainate caused no significant rise in [Ca2+]¡, indicating that the Ca2+ permeability of these kainate-gated ion channels appears to be negligible. The potentiation of the kainate-induced responses in RCs in situ was also present in voltage-clamped cells, where no or only small changes in [Ca2+]¡ occurred, suggesting that the underlying mechanism seemed to be independent of intracellular Ca2+ changes. In addition, the potentiation of the kainate-induced membrane responses was unaffected by cyclothiazide (100 μM), concanavalin A (0.5 mg/mL), and in the presence of extracellular low-Ca2+ and high-Mg2+ concentrations to suppress synaptic transmission in the ganglion. During whole-cell patch-clamp recordings (up to 50 min) potentiation remained the same indicating that small intracellular messenger molecules, which would be expected to dissipate, were not likely to be involved in mediating this potentiation. In acutely isolated RCs kainate induced no or only very small voltage responses. A potentiation of the kainate response was never observed in acutely isolated RCs. In cultured RCs (2–7 days in vitro) kainate evoked membrane responses with no apparent potentiation. Cultured RCs also responded with Ca2+ transients only when depolarized beyond -40 mV. The results show that RCs respond differently to kainate when kept isolated in culture compared to RCs in intact ganglia. The mechanism underlying the potentiation of the kainate response of RCs in situ, however, could not yet be identified. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
A biologically active semisynthetic hybrid of horse heart cytochrome c has been prepared by combining the heme peptide 1 through 65 (HP 1-65), prepared by CNBr cleavage of natural cytochrome c, with a semisynthetic peptide corresponding to positions 66 through 104. A fully protected synthetic peptide 66--79 was prepared by a modified solid phase peptide synthesis procedure and was converted to its N-hydroxysuccinimide ester. A peptide corresponding to residues 81--104 of cytochrome c was also isolated from the CNBr cleavage mixture and its epsilon-amino groups and tyrosyl hydroxyl group were protected selectively with the t-butyloxycarbonyl group. This partially protected peptide was reacted with t-butyloxycarbonyl methionine N-hydroxysuccinimide ester to give a derivative having methionine at position 80. This product was deprotected, purified and then t-butyloxycarbonyl groups were again introduced specifically on the epsilon-amino groups to give the peptide, Boc(Lys,Tyr)80--104. A semisynthetic peptide corresponding to residues 66 through 104 of cytochrome c was prepared by condensing the synthetic peptide 66--79 N-hydroxysuccinimide ester with t-butyloxycarbonyl (Lys,Tyr)80--104. The semisynthetic product was deprotected, purified and combined under anaerobic conditions with a heme peptide, HP 1-65, that was isolated from the products of CNBr cleavage of native cytochrome c. The reconstituted semisynthetic cytochrome c was purified by ion exchange chromatography and was shown to have the same oxygen uptake as native cytochrome c when assayed in the succinate oxidase system.  相似文献   

14.
The recently discovered thermophilic acidobacterium Candidatus Chloracidobacterium thermophilum is the first aerobic chlorophototroph that has a type-I, homodimeric reaction center (RC). This organism and its type-I RCs were initially detected by the occurrence of pscA gene sequences, which encode the core subunit of the RC complex, in metagenomic sequence data derived from hot spring microbial mats. Here, we report the isolation and initial biochemical characterization of the type-I RC from Ca. C. thermophilum. After removal of chlorosomes, crude membranes were solubilized with 0.1% (w/v) n-dodecyl β-D-maltoside, and the RC complex was purified by ion-exchange chromatography. The RC complex comprised only two polypeptides: the reaction center core protein PscA and a 22-kDa carotenoid-binding protein denoted CbpC. The absorption spectrum showed a large, broad absorbance band centered at ~483 nm from carotenoids as well as smaller Q(y) absorption bands at 672 and 812 nm from chlorophyll a and bacteriochlorophyll a, respectively. The light-induced difference spectra of whole cells, membranes, and the isolated RC showed maximal bleaching at 840 nm, which is attributed to the special pair and which we denote as P840. Making it unique among homodimeric type-I RCs, the isolated RC was photoactive in the presence of oxygen. Analyses by optical spectroscopy, chromatography, and mass spectrometry revealed that the RC complex contained 10.3 bacteriochlorophyll a(P), 6.4 chlorophyll a(PD), and 1.6 Zn-bacteriochlorophyll a(P)' molecules per P840 (12.8:8.0:2.0). The possible functions of the Zn-bacteriochlorophyll a(P)' molecules and the carotenoid-binding protein are discussed.  相似文献   

15.
The efficiency of interaction (efficiency of energy transfer) between various quantum dots (QDs) and photosynthetic reaction centers (RCs) from the purple bacterium Rhodobacter sphaeroides and conditions of long-term stability of functioning of such hybrid complexes in film preparations were investigated. It was found that dry films containing RCs and QDs and maintained at atmospheric humidity are capable to keep their functional activity for at least some months as judging by results of measurement of their spectral characteristics, efficiency of energy transfer from QDs to RCs, and RC electron-transport activity. Addition of trehalose to the films giving them still greater stability is especially expressed for films maintained at low humidity. These stable hybrid film structures are promising for further biotechnological studies for developing new phototransformation devices.  相似文献   

16.
A poly(butylene succinate) (PBS)-degrading Aspergillus sp. XH0501-a was obtained by ultraviolet light compound LiCl mutagenesis from the Aspergillus sp. XH0501 which was isolated from soil. The enzymatic activity of strain XH0501-a was 38.89% higher than that of the wild-type strain. A novel extracellular PBS-degrading enzyme with a molecular weight of 44.7 kDa was purified to homogeneity from the culture supernatant of XH0501-a strain. The optimum temperature and pH for the enzyme activity was 40°C and pH 8.6, respectively. It was found that Fe2+ and Ca2+ enhanced the enzyme activity, whereas Cu2+ and Hg2+ inhibited it. The primary products after enzymatic degradation were identified by mass spectrometric analysis and the results indicated that the enzyme was of the exo-type and cut the chain from the carboxyl end; the affinity for the substrate was relative to the chain length of the carboxylic ester.  相似文献   

17.
Mid-infrared spectral changes associated with the photoreduction of the bacteriopheophytin electron acceptor H(A) in reaction centers (RCs) of the filamentous anoxygenic phototrophic bacterium Chloroflexus (Cfl.) aurantiacus are examined by light-induced Fourier transform infrared (FTIR) spectroscopy. The light-induced H(A)(-)/H(A) FTIR (1800-1200cm(-1)) difference spectrum of Cfl. aurantiacus RCs is compared to that of the previously well characterized purple bacterium Rhodobacter (Rba.) sphaeroides RCs. The most notable feature is that the large negative IR band at 1674cm(-1) in Rba. sphaeroides R-26, attributable to the loss of the absorption of the 13(1)-keto carbonyl of H(A) upon the radical anion H(A)(-) formation, exhibits only a very minor upshift to 1675cm(-1) in Cfl. aurantiacus. In contrast, the absorption band of the 131-keto C=O of H(A)(-) is strongly upshifted in the spectrum of Cfl. aurantiacus compared to that of Rba. sphaeroides (from 1588 to 1623cm(-1)). The data are discussed in terms of: (i) replacing the glutamic acid at L104 in Rba. sphaeroides R-26 RCs by a weaker hydrogen bond donor, a glutamine, at the equivalent position L143 in Cfl. aurantiacus RCs; (ii) a strengthening of the hydrogen-bonding interaction of the 131-keto C=O of H(A) with Glu L104 and Gln L143 upon H(A)(-) formation and (iii) a possible influence of the protein dielectric environment on the 131-keto C=O stretching frequency of neutral H(A). A conformational heterogeneity of the 133-ester C=O group of H(A) is detected for Cfl. aurantiacus RCs similar to what has been previously described for purple bacterial RCs.  相似文献   

18.
The kinetics and thermodynamics of the photochemical reactions of the purified reaction center (RC)-cytochrome (Cyt) complex from the chlorosome-lacking, filamentous anoxygenic phototroph, Roseiflexus castenholzii are presented. The RC consists of L- and M-polypeptides containing three bacteriochlorophyll (BChl), three bacteriopheophytin (BPh) and two quinones (Q(A) and Q(B)), and the Cyt is a tetraheme subunit. Two of the BChls form a dimer P that is the primary electron donor. At 285K, the lifetimes of the excited singlet state, P*, and the charge-separated state P(+)H(A)(-) (where H(A) is the photoactive BPh) were found to be 3.2±0.3 ps and 200±20 ps, respectively. Overall charge separation P*→→ P(+)Q(A)(-) occurred with ≥90% yield at 285K. At 77K, the P* lifetime was somewhat shorter and the P(+)H(A)(-) lifetime was essentially unchanged. Poteniometric titrations gave a P(865)/P(865)(+) midpoint potential of +390mV vs. SHE. For the tetraheme Cyt two distinct midpoint potentials of +85 and +265mV were measured, likely reflecting a pair of low-potential hemes and a pair of high-potential hemes, respectively. The time course of electron transfer from reduced Cyt to P(+) suggests an arrangement where the highest potential heme is not located immediately adjacent to P. Comparisons of these and other properties of isolated Roseiflexus castenholzii RCs to those from its close relative Chloroflexus aurantiacus and to RCs from the purple bacteria are made.  相似文献   

19.
Indian toad (Bufo melanostictus, Schneider) skin extract (TSE) is pharmacologically potent and probably contains several bioactive compounds [Das et. al., Indian J Pharmacol, 28 (1996) 72]. A lethal factor was isolated and purified by neutral alumina column chromatography followed by HPLC. Spectroscopic (UV, IR, FAB-MASS) study indicated that the lethal factor (TSE-LF) was a 254 Da long chain compound with carbonyl, hydroxyl and ester as functional groups. LD50 of TSE-LF was found to be 3.5 mg/kg (iv). Biological study showed that TSE-LF possesses hypotensive, cardiotoxic, neurotoxic activity and produced death by apnoea in experimental animal. Cyproheptadine antagonised TSE-LF induced contraction of isolated smooth muscle indicating involvement of histamine/serotonin receptors. TSE-LF induced neurotoxic action on chick biventer cervices was mediated through Ca2+ ion.  相似文献   

20.

The effects of ultraviolet (UV) irradiation (up to 0.6 J/cm2) and heating (65 °C, 20 min) on the absorption spectra and electron transfer in dehydrated film samples of photosynthetic reaction centers (RCs) from purple bacterium Rhodobacter (Rb.) sphaeroides, as well as in hybrid structures consisting of RCs and quantum dots (QDs), have been studied. The samples were placed in organic matrices containing the stabilizers of protein structure—polyvinyl alcohol (PVA) and trehalose. UV irradiation led to partially irreversible oxidation of some RCs, as well as to transformation of some fraction of the bacteriochlorophyll (BChl) molecules into bacteriopheophytin (BPheo) molecules. In addition, UV irradiation causes degradation of some BChl molecules that is accompanied by formation of 3-acetyl-chlorophyll a molecules. Finally, UV irradiation destroys the RCs carotenoid molecules. The incorporation of RCs into organic matrices reduced pheophytinization. Trehalose was especially efficient in reducing the damage to the carotenoid and BChl molecules caused by UV irradiation. Hybrid films containing RC?+?QD were more stable to pheophytinization upon UV irradiation. However, the presence of QDs in films did not affect the processes of carotenoid destruction. The efficiency of the electronic excitation energy transfer from QD to P865 also did not change under UV irradiation. Heating led to dramatic destruction of the RCs structure and bacteriochlorins acquired the properties of unbound molecules. Trehalose provided strong protection against destruction of the RCs and hybrid (RC?+?QD) complexes.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号