首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hayward S  Milner-White EJ 《Proteins》2011,79(11):3193-3207
α-sheet has been proposed to be the main constituent of the toxic amyloid intermediate. Molecular dynamics simulations on proteins known to be involved in amyloid diseases have demonstrated that β-sheet can, under certain conditions, spontaneously convert to α-sheet via ββ→α(R)α(L) peptide-plane flipping. Using torsion-angle driving to simulate this flip the transition has been investigated for parallel and antiparallel sheets. Concerted and sequential flipping processes were simulated, the former allowing direct calculation of helical parameters. For antiparallel sheet, the strands tend to splay apart during the transition. This can be understood by consideration of the geometry of repeating dipeptide conformations. At the end of the transition antiparallel α-sheet is slightly twisted, comprising gently curving strands. In parallel sheet, the strands maintain identical conformations and stay hydrogen bonded during the transition as they curl up to suggest a hitherto unseen structure, the multi-helix α-nanotube. Intriguingly, the α-nanotube has some of the characteristics of the parallel β-helix, a single-helix structure also implicated in amyloid. Unlike the β-helix, α-nanotube formation could involve identical strands aligning with each other in register as in most amyloids.  相似文献   

2.
The amyloidogenic prefibrillar partially denatured intermediate of human lysozyme, prepared by heating the native protein to 57 degrees C at pH 2.0, was studied using Raman optical activity (ROA). A positive band in the room temperature ROA spectrum of the native protein at approximately 1345 cm(-1), assigned to a hydrated form of alpha-helix, is not present in that of the prefibrillar intermediate, where a new strong positive band at approximately 1318 cm(-1) appears instead that is assigned to the poly(l-proline) II (PPII)-helical conformation. A sharp negative band at approximately 1241 cm(-1) in the native protein, assigned to beta-strand, shows little change in the ROA spectrum of the prefibrillar intermediate. The disappearance of a positive ROA band at approximately 1551 cm(-1) assigned to vibrations of tryptophan side-chains indicates that major conformational changes have occurred among the five tryptophan residues present in human lysozyme, four of which are located in the alpha-domain. The various ROA data suggest that a substantial loss of tertiary structure has occurred in the prefibrillar intermediate and that this is located more in the alpha-domain than in the beta-domain. There is no evidence for any increase in beta-structure. The ROA spectrum of hen lysozyme, which does not form amyloid fibrils so readily, remains much more native-like on heating to 57 degrees C at pH 2.0. The thermal behaviour of the alanine-rich alpha-helical peptide AK21 in aqueous solution was found to be similar to that of human lysozyme. Hydrated alpha-helix therefore appears to readily undergo a conformational change to PPII structure on heating, which may be a key step in the conversion of alpha-helix into beta-sheet in the formation of amyloid fibrils in human lysozyme. Since it is extended, flexible, lacks intrachain hydrogen bonds and is fully hydrated in aqueous solution, PPII helix has the appropriate characteristics to be implicated as a critical conformational element in many conformational diseases. Disorder of the PPII type may be a sine qua non for the formation of regular fibrils; whereas the more dynamic disorder of the random coil may lead only to amorphous aggregates.  相似文献   

3.
The secondary structure implications of precipitation induced by a chaotropic salt, KSCN, and a structure stabilizing salt, Na2SO4, were studied for twelve different proteins. α-helix and β-sheet content of precipitate and native structures were estimated from the analysis of amide I band Raman spectra. A statistical analysis of the estimated perturbations in the secondary structure contents indicated that the most significant event is the formation of β-sheet structures with a concomitant loss of α-helix on precipitation with KSCN. The conformational changes for each protein were also analyzed with respect to elements of primary, secondary and tertiary structure existing in the native protein; primary structure was quantified by the fractions of hydrophobic and charged amino acids, secondary structure by x-ray estimates of α-helix and β-sheet contents of native proteins and tertiary structure by the dipole moment and solvent-accessible surface area. For the KSCN precipitates, factors affecting β-sheet content included the fraction of charged amino acids in the primary sequence and the surface area. Changes in α-helix content were influenced by the initial helical content and the dipole moment. The enhanced β-sheet contents of precipitates observed in this work parallel protein structural changes occurring in other aggregative phenomena.  相似文献   

4.
Sakurai K  Fujioka S  Konuma T  Yagi M  Goto Y 《Biochemistry》2011,50(29):6498-6507
Folding experiments have suggested that some proteins have kinetic intermediates with a non-native structure. A simple G ?o model does not explain such non-native intermediates. Therefore, the folding energy landscape of proteins with non-native intermediates should have characteristic properties. To identify such properties, we investigated the folding of bovine β-lactoglobulin (βLG). This protein has an intermediate with a non-native α-helical structure, although its native form is predominantly composed of β-structure. In this study, we prepared mutants whose α-helical and β-sheet propensities are modified and observed their folding using a stopped-flow circular dichroism apparatus. One interesting finding was that E44L, whose β-sheet propensity was increased, showed a folding intermediate with an amount of β-structure similar to that of the wild type, though its folding took longer. Thus, the intermediate seems to be a trapped intermediate. The high α-helical propensity of the wild-type sequence likely causes the folding pathway to circumvent such time-consuming intermediates. We propose that the role of the non-native intermediate is to control the pathway at the beginning of the folding reaction.  相似文献   

5.
The formation of amyloid-like fibrils is characteristic of various diseases, but the underlying mechanism and the factors that determine whether, when, and how proteins form amyloid, remain uncertain. Certain mechanisms have been proposed based on the three-dimensional or runaway domain swapping, inspired by the fact that some proteins show an apparent correlation between the ability to form domain-swapped dimers and a tendency to form fibrillar aggregates. Intramolecular β-sheet contacts present in the monomeric state could constitute intermolecular β-sheets in the dimeric and fibrillar states. One example is an amyloid-forming mutant of the immunoglobulin binding domain B1 of streptococcal protein G, which in its native conformation consists of a four-stranded β-sheet and one α-helix. Under native conditions this mutant adopts a domain-swapped dimer, and it also forms amyloid-like fibrils, seemingly in correlation to its domain-swapping ability. We employ magic angle spinning solid-state NMR and other methods to examine key structural features of these fibrils. Our results reveal a highly rigid fibril structure that lacks mobile domains and indicate a parallel in-register β-sheet structure and a general loss of native conformation within the mature fibrils. This observation contrasts with predictions that native structure, and in particular intermolecular β-strand interactions seen in the dimeric state, may be preserved in "domain-swapping" fibrils. We discuss these observations in light of recent work on related amyloid-forming proteins that have been argued to follow similar mechanisms and how this may have implications for the role of domain-swapping propensities for amyloid formation.  相似文献   

6.
Alcohol-induced conformational transitions of erv C, a highly stable cysteine protease, were followed by CD, fluorescence, and activity. At acidic pH, the addition of different alcohols caused two types of conformational transitions. Increasing the concentration of nonfluorinated alkyl alcohols induced a conformational switch from α-helix to β-sheet. Under these conditions, the protein lost its proteolytic activity and tertiary structure. The switch was a sudden one, observed in 50% methanol, 45% ethanol, and 40% propanol. Under similar conditions of pH and concentration, however, glycerol and TFE enhanced the α-helicity of the protein. Methanol-induced denaturation was observed to occur in two stages; the first is the β-sheet state stabilized at low alcohol concentrations, and the other is the β-sheet state with enhanced ellipticity stabilized at high alcohol concentrations. This β-sheet conformation can be attained from the native as well as 6 M GuHCl-denatured state by addition of methanol and exhibits properties different from the native or unfolded state. This state shows loss of tertiary structure and activity, enhanced nonnative secondary structure, noncooperative temperature unfolding, and higher stability toward denaturants as compared to the native state, which are characteristic of the molten globule-like state or O-state, and thus this state may be functioning as an intermediate in the folding pathway of erv C.  相似文献   

7.
Abstract

The effect of pressure on the conformational structure of amyloid β (1–40) peptide (Aβ(1–40)), exacerbated with or without temperature, was determined by Fourier transform infrared (FT-IR) microspectroscopy. The result indicates the shift of the maximum peak of amide I band of intact solid Aβ(1–40) from 1655 cm?1 (α-helix) to 1647–1643 cm?1 (random coil) with the increase of the mechanical pressure. A new peak at 1634 cm?1 assigned to β-antipar- allel sheet structure was also evident. Furthermore, the peak at 1540 cm?1 also shifted to 1527 (1529) cm?1 in amide II band. The former was assigned to the combination of α-helix and random coil structures, and the latter was due to β-sheet structure. Changes in the composition of each component in the deconvoluted and curve-fitted amide I band of the compressed Aβ(1–40) samples were obtained from 33% to 22% for α-helix/random coil structures and from 47% to 57% for β-sheet structure with the increase of pressure, respectively. This demonstrates that pressure might induce the conformational transition from α-helix to random coil and to β-sheet structure. The structural transformation of the compressed Aβ(1–40) samples was synergistically influenced by the combined effects of pressure and temperature. The thermal-induced formation of β-sheet structure was significantly dependent on the pressures applied. The smaller the pressure applied the faster the β-sheet structure transformed. The thermal-dependent transition temperatures of solid Aβ(1–40) prepared by different pressures were near 55–60 °C.  相似文献   

8.
Amyloid fibril formation occurs in restricted environment, such as the interface between intercellular fluids and bio-membranes. Conformational interconversion from α-helix to β-structure does not progress in fluids; however, it can occur after sedimentary aggregation during amyloid fibril formation induced by heat treatment of hen egg white lysozyme (HEWL). Secondary structures of various proteins and denatured proteins titrated with 2,2,2-trifluoroethanol (TFE) were examined using their CD spectra. Gaussian peak/trough and singular value decompositions (SVD) showed that the spectral pattern of the α-helix comprised a sharp trough at wavelength 207 nm and a broad trough at 220 nm. Conversely, we distinguished two patterns for β-sheet—a spread barrel type, corresponding to ConA, and a tightly weaved type, corresponding to the soybean trypsin inhibitor. Herein, we confirmed that the spectral/conformational interconversion of the heat-treated HEWL was not observed in the dissolved fluid.  相似文献   

9.
Characterization of amyloidogenic intermediate states is of central importance in understanding the molecular mechanism of amyloid formation. In this study, we utilized CD and NMR spectroscopy to investigate secondary structure of the monomeric amyloidogenic intermediate of a β-structured SH3 domain, which was induced by trifluoroethanol (TFE). The combined biophysical studies showed that the native state SH3 domain is gradually converted to the amyloidogenic intermediate state at TFE concentrations of 20-26% (v/v) and the aggregation-prone state contains substantial amount of the β-sheet conformation (∼ 30%) with disordered (54%) and some helical characters (16%). Under weaker amyloidogenic conditions of higher TFE concentrations (> 40%), the β-sheet structures were gradually changed to helical conformations and the relative content of the helical and β-sheet conformations was highly correlated with the aggregation propensity of the SH3 domain. This indicates that the β-sheet characters of the amyloidogenic states may be critical to the effective amyloid formation.  相似文献   

10.
2,2,2-Trifuoroethanol (TFE)-induced conformational structure change of a β-sheet legume lectin, soybean agglutinin (SBA) has been investigated employing its exclusive structural forms in quaternary (tetramer) and tertiary (monomer) states, by far- and near-UV CD, FTIR, fluorescence, low temperature phosphorescence and chemical modification. Far-UV CD results show that, for SBA tetramer, native atypical β-conformation transforms to a highly α-helical structure, with the helical content reaching 57% in 95% TFE. For SBA monomer, atypical β-sheet first converts to typical β-sheet at low TFE concentration (10%), which then leads to a nonnative α-helix at higher TFE concentration. From temperature-dependent studies (5–60 °C) of TFE perturbation, typical β-sheet structure appears to be less stable than atypical β-sheet and the induced helix entails reduced thermal stability. The heat induced transitions are reversible except for atypical to typical β-sheet conversion. FTIR results reveal a partial α-helix conversion at high protein concentration but with quantitative yield. However, aggregation is detected with FTIR at lower TFE concentration, which disappears in more TFE. Near-UV CD, fluorescence and phosphorescence studies imply the existence of an intermediate with native-like secondary and tertiary structure, which could be related to the dissociation of tetramer to monomer. This has been further supported by concentration dependent far-UV CD studies. Chemical modification with N-bromosuccinimide (NBS) shows that all six tryptophans per monomer are solvent-exposed in the induced α-helical conformation. These results may provide novel and important insights into the perturbed folding problem of SBA in particular, and β-sheet oligomeric proteins in general.  相似文献   

11.
Secondary structure of α-chymotrypsin in water/ethanol was investigated by circular dichroic (CD) spectroscopy. The changes in catalytic activity were discussed in terms of structural changes of the enzyme. α-Chymotrypsin formed β-sheet structure in water/ethanol (50/50 by volume), but it was substantially less active as compared to that in water. At water/ethanol 10/90, α-chymotrypsin took on a native-like structure, which gradually changed to β conformation with concomitant loss of activity. Change of solvent composition from water/ethanol 50/50 to 90/10 or 10/90 by dilution with water or ethanol, respectively, led to partial recovery of native or native-like structure and activity. In water/methanol, α-chymotrypsin tended to form stable β-sheet structure at water/methanol ratios lower than 50/50, but the catalytic activity decreased with time. Change to α-helix structure with substantial loss in catalytic activity was observed when α-chymotrypsin was dissolved in water/2,2,2-trifluoroethanol with water contents lower than 50%. In water/2,2,2-trifluoroethanol 90/10, α-chymotrypsin initially had the CD spectrum of native structure, but it changed with time to that characteristic of β-sheet structure.  相似文献   

12.
Conformational transitions of calmodulin as studied by vacuum-uv CD   总被引:1,自引:0,他引:1  
CD measurements were made for calmodulin and its calcium (Ca2+) complexes at different ionic strengths and Ca2+ concentrations. Calmodulin at an ionic strength of 0.00M and in the absence of Ca2+ exists as an α-helical protein with a negligible amount of β-sheet. An increase in ionic strength, whether or not Ca2+ is present, increases α-helix at the expense of “other” (coil) structure. The changes in β-sheet and β-turns are insignificant. Binding of Ca2+ at low ionic strength occurs in stages with at least one folding intermediate before attaining the final stable state. Binding of Ca2+ at an ionic strength of 0.165M causes only a slight increase in α-helix, so that the secondary structure of the protein depends on ionic strength and is insensitive to the nature of the cation (i.e., Ca2+). Thus, the activation of calmodulin by Ca2+ must be due to a structural reorientation rather than to a major secondary structural alteration. The CD estimation of secondary structure with 4 mol Ca2+/calmodulin (61% α-helix, 2% antiparallel β-sheet, 2% parallel β-sheet, 21% β-turns, and 14% other) is in excellent agreement with the x-ray results.  相似文献   

13.
It is important to understand the Amyloid fibril formation in view of numerous medical and biochemical aspects. Structural determination of amyloid fibril has been extensively studied using electron microscopy. Subsequently, solid state NMR spectroscopy has been realized to be the most important means to determine not only microscopic molecular structure but also macroscopic molecular packing. Molecular structure of amyloid fibril was first predicted to be parallel β-sheet structure, and subsequently, was further refined for Aβ(1-40) to be cross β-sheet with double layered in register parallel β-sheet structure by using solid state NMR spectroscopy. On the other hand, anti-parallel β-sheet structure has been reported to short fragments of Aβ-amyloid and other amyloid forming peptides. Kinetic study of amyloid fibril formation has been studied using a variety of methods, and two-step autocatalytic reaction mechanism used to explain fibril formation. Recently, stable intermediates or proto-fibrils have been observed by electron microscope (EM) images. Some of the intermediates have the same microscopic structure as the matured fibril and subsequently change to matured fibrils. Another important study on amyloid fibril formation is determination of the interaction with lipid membranes, since amyloid peptide are cleaved from amyloid precursor proteins in the membrane interface, and it is reported that amyloid lipid interaction is related to the cytotoxicity. Finally it is discussed how amyloid fibril formation can be inhibited. Firstly, properly designed compounds are reported to have inhibition ability of amyloid fibril formation by interacting with amyloid peptide. Secondly, it is revealed that site directed mutation can inhibit amyloid fibril formation. These inhibitors were developed by knowing the fibril structure determined by solid state NMR.  相似文献   

14.
Given their high alanine and glycine levels, plaque formation, α-helix to β-sheet interconversion and fusogenicity, FP (i.e., the N-terminal fusion peptide of HIV-1 gp41; 23 residues) and amyloids were proposed as belonging to the same protein superfamily. Here, we further test whether FP may exhibit ‘amyloid-like’ characteristics, by contrasting its structural and functional properties with those of Aβ(26-42), a 17-residue peptide from the C-terminus of the amyloid-beta protein responsible for Alzheimer's. FTIR spectroscopy, electron microscopy, light scattering and predicted amyloid structure aggregation (PASTA) indicated that aqueous FP and Aβ(26-42) formed similar networked β-sheet fibrils, although the FP fibril interactions were weaker. FP and Aβ(26-42) both lysed and aggregated human erythrocytes, with the hemolysis-onsets correlated with the conversion of α-helix to β-sheet for each peptide in liposomes. Congo red (CR), a marker of amyloid plaques in situ, similarly inhibited either FP- or Aβ(26-42)-induced hemolysis, and surface plasmon resonance indicated that this may be due to direct CR-peptide binding. These findings suggest that membrane-bound β-sheets of FP may contribute to the cytopathicity of HIV in vivo through an amyloid-type mechanism, and support the classification of HIV-1 FP as an ‘amyloid homolog’ (or ‘amylog’).  相似文献   

15.
用远紫外CD谱研究了湖南产尖吻蝮蛇毒的两个出血毒素(DaHT-1、DaHT-2)的溶液构象,计算得DaHT-1的α螺旋、β折叠、无规卷曲的含量分别为36.9%、35.5%、27.6%;DaHT-2的α螺旋、β折叠、无规卷曲分别为23.4%、31.3%、45.3%。随pH的增大或减小,峰位蓝移,酸性条件下的变化比碱性条件下的变化大。构象单元含量计算表明:α螺旋减少,无规卷曲增多,β折叠基本未变。温度和pH对CD谱的影响相似,50℃时峰位蓝移,α螺旋减少,无规卷曲增多.EDTA对CD谱影响显著,0.02mol/LEDTA便导致两个出血毒素呈极度的无序状态。EDTA完全抑制,半胱氨酸部分抑制,胰蛋白酶不影响它们的出血活性。  相似文献   

16.
Dynorphins, endogeneous opioid neuropeptides, function as ligands to the opioid kappa receptors and also induce non-opioid effects in neurons, probably related to direct membrane interactions. We have characterized the structure transitions of dynorphins (big dynorphin, dynorphin A and dynorphin B) induced by the detergent sodium dodecyl sulfate (SDS). In SDS titrations monitored by circular dichroism, we observed secondary structure conversions of the peptides from random coil to α-helix with a highly aggregated intermediate. As determined by Fourier transform infrared spectroscopy, this intermediate exhibited β-sheet structure for dynorphin B and big dynorphin. In contrast, aggregated dynorphin A was α-helical without considerable β-sheet content. Hydrophobicity analysis indicates that the YGGFLRR motif present in all dynorphins is prone to be inserted in the membrane. Comparing big dynorphin with dynorphin A and dynorphin B, we suggest that the potent neurotoxicity of big dynorphin could be related to the combination of amino acid sequences and secondary structure propensities of dynorphin A and dynorphin B, which may generate a synergistic effect for big dynorphin membrane perturbing properties. The induced aggregated α-helix of dynorphin A is also correlated with membrane perturbations, whereas the β-sheet of dynorphin B does not correlate with membrane perturbations.  相似文献   

17.
BackgroundPolybasic helical peptides, such as peptide p5, bind human amyloid extracts and synthetic amyloid fibrils. When radiolabeled, peptide p5 has been shown to specifically bind amyloid in vivo thereby allowing imaging of the disease. Structural requirements for heparin and amyloid binding have been studied using analogues of p5 that modify helicity and chirality.MethodsPeptide-ligand interactions were studied using CD spectroscopy and solution-phase binding assays with radiolabeled p5 analogues. The interaction of a subset of peptides was further studied by using molecular dynamics simulations.ResultsDisruption of the peptide helical structure reduced peptide binding to heparin and human amyloid extracts. The all-D enantiomer and the β-sheet-structured peptide bound all substrates as well as, or better than, p5. The interaction of helical and β-sheet structured peptides with Aβ fibrils was modeled and shown to involve both ionic and non-ionic interactions.ConclusionsThe α-helical secondary structure of peptide p5 is important for heparin and amyloid binding; however, helicity is not an absolute requirement as evidenced by the superior reactivity of a β-sheet peptide. The differential binding of the peptides with heparin and amyloid fibrils suggests that these molecular interactions are different. The all-D enantiomer of p5 and the β-sheet peptide are candidates for amyloid targeting reagents in vivo.General SignificanceEfficient binding of polybasic peptides with amyloid is dependent on the linearity of charge spacing in the context of an α-helical secondary structure. Peptides with an α-helix or β-sheet propensity and with similar alignment of basic residues is optimal.  相似文献   

18.
Poly-L -lysine exists as an α-helix at high pH and a random coil at neutral pH. When the α-helix is heated above 27°C, the macromolecule undergoes a conformational transition to a β-sheet. In this study, the stability of the secondary structure of poly-L -lysine in solutions subjected to shear flow, at temperatures below the α-helix to β-sheet transition temperature, were examined using Raman spectroscopy and CD. Solutions initially in the α-helical state showed time-dependent increases in viscosity with shearing, rising as much as an order of magnitude. Visual observation and turbidity measurements showed the formation of a gel-like phase under flow. Laser Raman measurements demonstrated the presence of small amounts of β-sheet structure evidenced by the amide I band at 1666 cm−1. CD measurements indicated that solutions of predominantly α-helical conformation at 20°C transformed into 85% α-helix and 15% β-sheet after being sheared for 20 min. However, on continued shearing the content of β-sheet conformation decreased. The observed phenomena were explained in terms of a “zipping-up” molecular model based on flow enhanced hydrophobic interactions similar to that observed in gel-forming flexible polymers. © 1998 John Wiley & Sons, Inc. Biopoly 45: 239–246, 1998  相似文献   

19.
It is widely accepted that the formation of amyloid fibrils is one of the natural properties of proteins. The amyloid formation process is associated with a variety of factors, among which the hydrophobic residues play a critical role. In this study, insulin was used as a model to investigate the effect of exposing a critical hydrophobic patch on amyloidogenicity and fibril structure of insulin. Porcine insulin was digested with trypsin to obtain desoctapeptide-(B23–B30) insulin (DOI), whose hydrophilic C-terminal of B-chain was removed and hydrophobic core was exposed. The results showed that DOI, of which the ordered structure (predominantly α-helix) was markedly decreased, was more prone to aggregate than intact insulin. As to the secondary structure of amyloid fibrils, DOI fibrils were similar to insulin fibrils formed under acidic condition, whereas under neutral condition, insulin formed less polymerized aggregates by showing decreased β-sheet contents in fibrils. Further investigation on membrane damage and hemolysis showed that DOI fibrils induced significantly less membrane damage and less hemolysis of erythrocytes compared with those of insulin fibrils. In conclusion, exposing the hydrophobic core of insulin can induce the increase of amyloidogenicity and formation of higher-order polymerized fibrils, which is less toxic to membranes.  相似文献   

20.
The self-assembly of human islet amyloid polypeptide (hIAPP) into β-sheet rich amyloid aggregates is associated with pancreatic β-cell death in type 2 diabetes (T2D). Prior experimental studies of hIAPP aggregation reported the early accumulation of α-helical intermediates before the rapid conversion into β-sheet rich amyloid fibrils, as also corroborated by our experimental characterizations with transmission electron microscopy and Fourier transform infrared spectroscopy. Although increasing evidence suggests that small oligomers populating early hIAPP aggregation play crucial roles in cytotoxicity, structures of these oligomer intermediates and their conformational conversions remain unknown, hindering our understanding of T2D disease mechanism and therapeutic design targeting these early aggregation species. We further applied large-scale discrete molecule dynamics simulations to investigate the oligomerization of full-length hIAPP, employing multiple molecular systems of increasing number of peptides. We found that the oligomerization process was dynamic, involving frequent inter-oligomeric exchanges. On average, oligomers had more α-helices than β-sheets, consistent with ensemble-based experimental measurements. However, in ~4–6% independent simulations, β-rich oligomers expected as the fibrillization intermediates were observed, especially in the pentamer and hexamer simulations. These β-rich oligomers could adopt β-barrel conformations, recently postulated to be the toxic oligomer species but only observed computationally in the aggregates of short amyloid protein fragments. Free-energy analysis revealed high energies of these β-rich oligomers, supporting the nucleated conformational changes of oligomers in amyloid aggregation. β-barrel oligomers of full-length hIAPP with well-defined three-dimensional structures may play an important pathological role in T2D etiology and may be a therapeutic target for the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号