首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Familial defective apolipoprotein B100 (FDB) is a genetic disorder in which low density lipoproteins (LDL) bind defectively to the LDL receptor, resulting in hypercholesterolemia and premature atherosclerosis. FDB is caused by a mutation (R3500Q) that changes the conformation of apolipoprotein (apo) B100 near the receptor-binding site. We previously showed that arginine, not simply a positive charge, at residue 3500 is essential for normal receptor binding and that the carboxyl terminus of apoB100 is necessary for mutations affecting arginine 3500 to disrupt LDL receptor binding. Thus, normal receptor binding involves an interaction between arginine 3500 and tryptophan 4369 in the carboxyl tail of apoB100. W4369Y LDL and R3500Q LDL isolated from transgenic mice had identically defective LDL binding and a higher affinity for the monoclonal antibody MB47, which has an epitope flanking residue 3500. We conclude that arginine 3500 interacts with tryptophan 4369 and facilitates the conformation of apoB100 required for normal receptor binding of LDL. From our findings, we developed a model that explains how the carboxyl terminus of apoB100 interacts with the backbone of apoB100 that enwraps the LDL particle. Our model also explains how all known ligand-defective mutations in apoB100, including a newly discovered R3480W mutation in apoB100, cause defective receptor binding.  相似文献   

2.
Apolipoprotein B (apoB) is the predominant protein in low density lipoprotein (LDL) and is responsible for LDL binding to the LDL receptor. Although the primary amino acid sequence of human apoB has been determined, little is known about the structural domains involved in mediating apoB binding to the LDL receptor. Amino acid sequence comparisons across species lines provide a means of defining structures that are essential for function. We have sequenced a l.l kb fragment of pig apoB genomic DNA, corresponding to a 363 amino acid segment proposed to mediate human apoB binding to the LDL receptor. In human apoB this domain contains two regions enriched in positively charged amino acids flanking two disulfide-linked cysteine residues. The pig amino acid sequence shared 72% identity with the human sequence. However, there were differences that have significant structural and functional implications. Human apoB arginine-3,359 corresponds to a critical arginine (position 142) residue in the apoE LDL receptor binding domain. In the pig, this arginine residue was not conserved. Also, the two disulfide-linked cysteine residues found near the proposed apoB binding domain were not conserved in the pig. Despite these differences, pig LDL had a higher affinity than human LDL for both the pig and human LDL receptor. Thus, these features are not required for high affinity binding of pig LDL to the LDL receptor, and may not be necessary for the binding of human LDL to the LDL receptor.  相似文献   

3.
We previously carried out genetic and metabolic studies in a partially inbred herd of pigs carrying cholesterol-elevating mutations. Quantitative pedigree analysis indicated that apolipoprotein (apo)B and a second major gene were responsible for the hypercholesterolemia in these animals. In this study, we assessed LDL receptor function by three different methods: ligand blots of liver membranes using beta-very low density lipoprotein (VLDL) as a ligand; low density lipoprotein (LDL)-dependent proliferation of T-lymphocytes; and direct binding of 125I-labeled LDL to cultured skin fibroblasts. All three methods demonstrated that LDL receptor ligands bound with decreased affinity to the LDL receptor in these animals. In skin fibroblasts from the hypercholesterolemic pigs, the Kd of binding was about 4-fold higher than in cells from normal pigs. The cDNA of the pig LDL receptor from normal and hypercholesterolemic pigs was isolated and sequenced. We identified a missense mutation that results in an Arg'Cys substitution at the position corresponding to Arg94 of the human LDL receptor. The mutation is in the third repeat of the ligand binding domain of the receptor. By single-stranded conformational polymorphism (SSCP) analysis, we studied the relationship between LDL receptor genotype and plasma cholesterol phenotype. In contrast to humans, the hypercholesterolemia associated with the LDL receptor mutation in pigs was expressed as a recessive trait. The LDL receptor mutation made a far more significant contribution to hypercholesterolemia than did the apoB mutation, consistent with observations made in human subjects with apoB mutations. Within each genotypic group (mutated apoB or mutated receptor), there was a wide range in plasma cholesterol. As the animals were on a well-controlled low-fat diet, this suggests that there are additional genetic factors that influence the penetrance of cholesterol-elevating mutations.  相似文献   

4.
The low density lipoproteins (LDL) from patients with Tangier disease are enriched in triglycerides, 27% of LDL mass versus 7% for normal LDL. To study whether this unique LDL core lipid composition affects the surface disposition of apolipoprotein (apo) B-100, we analyzed the LDL by protease digestion and in competitive radioimmunoassays. Limited proteolytic digestion of Tangier LDL by Staphylococcus aureus V8 protease generated a prominent fragment of 120 kDa (cleavage site at residue 1076), which was not visible in similarly digested normal LDL. In competitive radioimmunoassay, Tangier LDL bound weakly to the apoB-specific monoclonal antibody MB20, compared with control LDL. We localized the MB20 epitope between residues 1031 and 1084 of apoB-100, probably very near residue 1076. DNA sequencing of exon 21 of apoB genomic clones (coding for residues 1014-1084) from a Tangier patient revealed no difference from the normal DNA sequence, thus eliminating a protein polymorphism as a basis for the altered protease sensitivity and antibody binding. When the triglyceride contents of Tangier LDL were reduced to 10% of mass by incubation with normal high density lipoproteins, production of the 120-kDa fragment by proteolysis decreased and MB20 binding increased in affinity, implying a change toward normal conformation of apoB-100. Thus, using two independent techniques, proteolytic digestion and binding of monoclonal antibodies, we have demonstrated an alternative conformation of apoB-100 in the vicinity of residue 1076, which reflects the content of triglycerides in the LDL particle.  相似文献   

5.
Apolipoprotein (apo) B-100, the protein constituent of low density lipoproteins (LDL), is the determinant responsible for LDL binding to the apoB,E(LDL) receptor on cells. The current study was designed to identify the region(s) of apoB-100 that interact with the apoB,E(LDL) receptor. Apolipoprotein B-100 was fragmented by thrombin digestion, and the isolated fragments (T2, T3, T4) were recombined with cholesterol-induced canine high density lipoproteins (HDLc). Before the recombination, the receptor binding activity of apoE of the HDLc was abolished by reductive methylation and extensive trypsin treatment. This treatment permitted almost complete replacement of the small residual apoE fragments by the large apoB fragments. Recombinant apoB particles were isolated by ultracentrifugation and tested for binding to receptors on cultured human fibroblasts. The recombinant particles had chemical and physical properties similar to those of native HDLc. Recombinants of both the whole thrombolytic digest and of isolated fragments displayed specific binding to the apoB,E (LDL) receptor. Anti-apoB,E(LDL) receptor antibodies abolished 90% of the binding, and there was almost no specific binding to receptor-negative fibroblasts or to cells in which the receptors had been down-regulated. The binding of apoB-100 recombinants to the receptor also demonstrated calcium dependency; in addition, the surface binding of the recombinants was released by polyanionic compounds. All these recombinants had binding affinities comparable to one another but less than that of native LDL. Although T2, T3 and T4 recombinants can all bind specifically to the apoB,E(LDL) receptor, it remains to be established whether their activity represents physiologically relevant binding. Nevertheless, the present findings illustrate the potential of the recombinant method using HDLc lipids to reconstitute biological activity.  相似文献   

6.
Identification of the proteoglycan binding site in apolipoprotein B48   总被引:3,自引:0,他引:3  
An initial event in atherosclerosis is the retention of lipoproteins within the intima of the vessel wall. Previously we identified Site B (residues 3359-3369) in apolipoprotein (apo) B100 as the proteoglycan binding sequence in low density lipoproteins (LDLs) and showed that the atherogenicity of apoB-containing lipoproteins is linked to their affinity for artery wall proteoglycans. However, both apoB100- and apoB48-containing lipoproteins are equally atherogenic even though Site B lies in the carboxyl-terminal half of apoB100 and is absent in apoB48. If binding to proteoglycans is a key step in atherogenesis, apoB48-containing lipoproteins must bind to proteoglycans via other proteoglycan binding sites in the amino-terminal 48% of apoB. In vitro studies have identified five clusters of basic amino acids in delipidated apoB48 that bind negatively charged glycosaminoglycans. To determine which of these sites is functional on LDL particles, we analyzed the proteoglycan binding activity of recombinant human LDLs from transgenic mice or rat hepatoma cells. Substitution of neutral amino acids for the basic amino acids in Site B-Ib (residues 84-94) abolished the proteoglycan binding activity of recombinant apoB53. Carboxyl-truncated apoB80 bound biglycan with higher affinity than apoB100 and apoB48. ApoB80 in which Site B was mutated had the same affinity for proteoglycans as apoB48. These data support the hypothesis that the carboxyl terminus of apoB100 "masks" Site B-Ib, the amino-terminal proteoglycan binding site, and that this site is exposed in carboxyl-truncated forms of apoB. The presence of a proteoglycan binding site in the amino-terminal region of apoB may explain why apoB48- and apoB100-containing lipoproteins are equally atherogenic.  相似文献   

7.
The rat hepatoma cell line Fu5AH has the unusual property of accumulating massive amounts of cholesteryl ester upon incubation with hypercholesterolemic serum, and especially when incubated with beta-very low density lipoproteins (beta-VLDL) from cholesterol-fed dogs. The present study was designed to identify and characterize the lipoprotein receptors that mediate the cholesteryl ester accumulation. The beta-VLDL and cholesterol-induced apolipoprotein (apo) E-containing high density lipoproteins (apoE HDLc) bound to Fu5AH cells with very high affinity (Kd approximately equal to 10(-10) M), whereas low density lipoproteins (LDL) bound with unusually low affinity (Kd approximately equal to 10(-8) M). Receptor binding activity of 125I-labeled beta-VLDL, 125I-labeled apoE HDLc, and 125I-labeled LDL was abolished by incubation in the presence of an excess of unlabeled LDL or of a polyclonal antibody to the bovine adrenal apoB,E(LDL) receptor. The receptors were completely down-regulated by preincubating Fu5AH cells with beta-VLDL, but much higher levels of beta-VLDL were required than for down-regulation of fibroblast apoB,E(LDL) receptors. Receptor binding was abolished by reductive methylation of the lysyl residues of the apolipoprotein of the beta-VLDL and by an apoE monoclonal antibody (1D7) that blocks receptor binding. The Fu5AH receptor was further characterized by using the bovine adrenal apoB,E(LDL) receptor antibody. A single protein (Mr approximately equal to 130,000) was identified in Triton extracts of whole cells, and two proteins (Mr approximately equal to 130,000 and 115,000) were found in Fu5AH cell membranes disrupted by homogenization. The Mr approximately equal to 115,000 protein was released from the membranes and did not react with an antibody to the carboxyl-terminal (cytoplasmic) domain of the apoB,E(LDL) receptors. These studies indicate that Fu5AH cells express apoB,E(LDL) receptors that have unusually low affinity for apoB-continuing lipoproteins, require large amounts of cholesterol to induce down-regulation, and are susceptible to specific proteolysis in cell homogenates. These apoB,E(LDL) receptors are responsible for the receptor-mediated uptake of beta-VLDL and chylomicron remnants by Fu5AH cells.  相似文献   

8.
The human liver apoB-100 gene cloned in the lambda gt-11 expression vector expresses fusion proteins reacting with apoB antibodies. A fusion protein induced from a apoB-lambda gt-11 clone reacted with apoB-100 monoclonal antibodies known to block the binding of LDL to the LDL receptor. The fusion protein contains an amino acid sequence domain enriched in positively charged residues which is complementary to the negatively charged amino acids present in the consensus LDL receptor binding domain. This sequence of apoB-100 is proposed as a binding domain for the interaction with the LDL receptor. Comparison of derived amino acid sequences from the entire structure of apoB-100 molecule revealed several similar domains enriched in positively charged amino acids. A consensus sequence of the potential LDL binding domain was identified which contained positively charged amino acids at positions 1, 5 and 8 and a loop of 8-11 amino acids followed by two adjacent positively charged amino acids. These results are interpreted as indicating that there are several potential LDL receptor binding domains in apoB-100.  相似文献   

9.
Five monoclonal antibodies (2A, 9A, 6B, L3, L7) produced in mice against human apolipoprotein B were investigated by competitive and inhibitive electroimmunoassay (EIA) for their reactivity with low density lipoprotein (LDL), lipoprotein[a] (Lp[a]), and reduced Lp[a]. All of the antibodies reacted with apoB of the different lipoproteins indicated by very similar slopes of the binding curves. None of them gave a positive reaction with apolipoprotein[a]. The amount of apoB required for 50% inhibition of antibody binding varied for the different antibodies and lipoproteins. Antibody 9A showed almost the same affinity for LDL, Lp[a], and reduced Lp[a]. Antibodies 2A and 6B bound about twofold better to LDL and reduced Lp[a] than to untreated Lp[a]. Antibodies L3 and L7 needed nearly threefold higher amounts of Lp[a]-apoB for 50% inhibition of antibody binding than of apoB of LDL and reduced Lp[a]. The amount of apoB required for 50% inhibition of antibody binding was somewhat higher in inhibitive assay than in competitive assay. We suggest that apo[a] covers certain epitopes of apoB in native Lp[a] leading to a reduced reaction with the monoclonal antibodies. However, it could also be that the binding of the [a]antigen to apoB via disulfide bridges causes profound conformational changes of the apoB region exposed to the surface.  相似文献   

10.
Human apolipoprotein (apo) B-100 is composed of 4536 amino acids. It is thought that the binding of apoB to the low density lipoprotein (LDL) receptor involves an interaction between basic amino acids of the ligand and acidic residues of the receptor. Three alternative models have been proposed to describe this interaction: 1) a single region of apoB is involved in receptor binding; 2) groups of basic amino acids from throughout the apoB primary structure act in concert in apoB receptor binding; and 3) apoB contains multiple independent binding regions. We have found that monoclonal antibodies (Mabs) specific for a region that spans a thrombin cleavage site at apoB residue 3249 (T2/T3 junction) totally blocked LDL binding to the LDL receptor. Mabs specific for epitopes outside this region had either no or partial ability to block LDL binding. In order to define the region of apoB directly involved in the interaction with the LDL receptor we have tested 22 different Mabs for their ability to bind to LDL already fixed to the receptor. A Mab specific for an epitope situated between residues 2835 and 2922 could bind to its epitope on LDL fixed to its receptor whereas a second epitope between residues 2980 and 3084 is inaccessible on receptor-bound LDL. A series of epitopes near residue 3500 of apoB is totally inaccessible, and another situated between residues 4027 and 4081 is poorly accessible on receptor-bound LDL. In contrast, an epitope that is situated between residues 4154 and 4189 is fully exposed. Mabs specific for epitopes upstream and downstream of the region 3000-4000 can bind to receptor-bound LDL with a stoichiometry close to unity. Our results strongly suggest that the unique region of apoB directly involved in the LDL-receptor interaction is that of the T2/T3 junction.  相似文献   

11.
A monoclonal antibody-based direct binding enzyme-linked immunosorbent assay (ELISA) for apoprotein (apo) B-100 has been developed for use as a reference method. The assay uses the two well-characterized monoclonal antibodies, MB24 and MB47. MB47, which recognizes an epitope at the low density lipoprotein (LDL) receptor-binding domain of apoB and is specific for apoB-100, is bound to the microtiter plate as the capture antibody. MB24, which binds an epitope in the amino terminal half of the apoB-100 and identifies both apoB-100 and apoB-48, is conjugated to horseradish peroxidase and is utilized as the indicating antibody. The assay was calibrated with LDL (d 1.030-1.050 g/ml) and the LDL protein was determined by a sodium dodecyl sulfate (SDS) Lowry procedure. The working range of the assay is 0.25-1.25 micrograms/ml. Optimal dilution of whole plasma was found to be 1:2000. In the assay, MB47 bound approximately 97% of the apoB in all low density lipoprotein, and greater than 90% of the apoB in the majority of very low density lipoprotein preparations. Small dense LDL from subjects with familial combined hyperlipidemia (FCHL) and large bouyant LDL from subjects with familial hypercholesterolemia (FH) exhibited binding properties similar to LDL from healthy normolipidemic subjects when tested in the reference ELISA. The intra- and interassay coefficients of variation averaged 2.5% and 6.0%, respectively. Plasma B-100 levels were not influenced by freezing and thawing or storage at 4 degrees C for up to 3 weeks or storage at -70 degrees C for up to 11 months. Excellent agreement was obtained between the reference ELISA and a polyclonal RIA which measures total apoB (r = 0.93, n = 105, mean ELISA B-100 value = 100 mg/dl, mean RIA value = 101 mg/dl, Sy = 9.6). Reference ELISA B-100 values of samples pretreated with bacterial lipase were not significantly increased in most samples with plasma triglyceride levels below 600 mg/dl. To help reduce the large among-laboratories variability of apoB measurements, we recommend that this candidate reference direct binding ELISA be used to assign apoB target values to apoB reference pools.  相似文献   

12.
Apolipoprotein (apo)-B-100 is the ligand that mediates the clearance of low density lipoprotein (LDL) from the circulation by the apoB,E (LDL) receptor pathway. Clearance is mediated by the interaction of a domain enriched in basic amino acid residues on apoB-100 with clusters of acidic residues on the apoB,E (LDL) receptor. A model has been proposed for the LDL receptor binding domain of apoB-100 based on the primary amino acid sequence (Knott, T. J., et al. 1986. Nature. 323: 734-738). Two clusters of basic residues (A: 3147-3157 and B: 3359-3367) are apposed on the surface of the LDL particle by a disulfide bridge between Cys 3167 and 3297. Support for this single domain model has been obtained from the mapping of epitopes for anti-apoB monoclonal antibodies that block the binding of apoB to the LDL receptor. Here we test this model by comparing the nucleotide (from 9623 to 10,442) and amino acid sequence (from 3139 to 3411) of apoB-100 in seven species (human, pig, rabbit, rat, Syrian hamster, mouse, and chicken). Overall, this region is highly conserved. Cluster B maintains a strong net positive charge and is homologous across species in both primary and secondary structure. However, the net positive charge of region A is not conserved across these species, but the region remains strongly hydrophilic. The secondary structure of the region between clusters A and B is preserved, but the disulfide bond is unique to the human sequence. This study suggests that the basic region B is primarily involved in the binding of apoB-100 to the apoB,E (LDL) receptor.  相似文献   

13.
Selective modification of arginine residues of LDL by cyclohexanedione or acetylation of lysine residues of LDL deminishes their high affinity binding and internalisation by human skin fibroblast up to 50% as compared with native LDL. The enhanced negative charge of the modified LDL particles results in an accelerated electrophoretic mobility towards the anode. Neuraminidase treatment of cyclohexanedione-modified LDL and acetyllysine-LDL normalizes not only their electrophoretic mobility, but also restores more than 80% of the original binding and uptake capacity, the specificity of this effect being indicated by using fibroblasts deficient in LDL receptor and by competitive binding and internalization experiments.  相似文献   

14.
The relationships of plasma lipid and apolipoprotein (apo) concentrations to hepatic low-density lipoprotein (LDL) receptor activity were examined in 21 subjects (16 females, 5 males), who were undergoing laparotomy for non-neoplastic disease (cholecystectomy in 16). None had familial hypercholesterolemia, or renal, endocrine or hepatic disease. Ages were 37-77 years (mean, 58 years), plasma cholesterol concentrations 4.09-6.72 mmol/l (5.38) and plasma triacylglycerol concentrations 0.75-2.35 mmol/l (1.36). Receptor activity was quantified in vitro as the total saturable binding and EDTA-suppressible binding (representing apoB,E receptors) of 125I-labelled human LDL (15 micrograms protein/ml) by liver homogenate at 37 degrees C. There were no significant differences between men and women in 125I-labeled LDL binding. In the pooled data, EDTA-suppressible binding averaged 50 ng 125I-LDL protein/mg cell protein (S.D., 15). Total saturable binding averaged 2-fold greater (mean, 101 ng/mg; S.D., 32). Plasma cholesterol, LDL cholesterol and apoB concentrations were negative functions of both EDTA-suppressible binding and total saturable binding, but the correlations with EDTA-suppressible binding were stronger (cholesterol: r = -0.59, P less than 0.01; LDL cholesterol: r = -0.48, P less than 0.05; apoB: r = -0.61, P less than 0.01). Plasma triacylglycerol, high-density lipoprotein cholesterol and apoA-I concentrations were not related to either measure of receptor activity. These results provide evidence that the activity of apoB,E receptors in the liver is a major determinant of the plasma LDL concentration in middle-aged and elderly humans.  相似文献   

15.
The microsomal triglyceride transfer protein (MTP) is essential for the synthesis and secretion of apolipoprotein B (apoB)-containing lipoproteins. We investigated the role the MTP -493G/T gene polymorphism in determining the apoB-100 secretion pattern and LDL heterogeneity in healthy human subjects. Groups of carriers of the T and the G variants (n = 6 each) were recruited from a cohort of healthy 50-yr-old men. Kinetic studies were performed by endogenous [(2)H(3)]leucine labeling of apoB and subsequent quantification of the stable isotope incorporation. apoB production rates, metabolic conversions, and eliminations were calculated by multicompartmental modeling (SAAM-II). LDL subfraction distribution was analyzed in the entire cohort (n = 377). Carriers of the MTP -493T allele had lower plasma LDL apoB and lower concentration of large LDL particles [LDL-I: 136 +/- 57 (TT) vs. 175 +/- 55 (GG) mg/l, P < 0.01]. Kinetic modeling suggested that MTP -493T homozygotes had a 60% lower direct production rate of intermediate-density lipoprotein (IDL) plus LDL compared with homozygotes for the G allele (P < 0.05). No differences were seen in production rates of large and small VLDL, nor were there any differences in metabolic conversion or elimination rates of apoB between the genotype groups. This study shows that a polymorphism in the MTP gene affects the spectrum of endogenous apoB-containing lipoprotein particles produced in humans. Reduced direct production of LDL plus IDL appears to be related to lower plasma concentrations of large LDL particles.  相似文献   

16.
The composition, apolipoprotein structure and lipoprotein binding to the LDL receptor were studied for very-low-density (VLDL) and low-density lipoprotein (LDL) particles isolated from subjects with apoE phenotype E3/3 (E3), E2/2 or E2/3 (E2+) and E3/4 or E4/4 (E4+) and a wide range of plasma triglyceride (TG) contents. The data combined for all three phenotype groups can be summarized as follows. (i) A decrease in accessibility of VLDL tryptophan residues to I- anions with a decrease in tryptophan surface density, concomitant with an increase in VLDL dimensions, reflects the increased efficiency of protein-protein interactions. (ii) A gradual increase in the quenching constant for LDL apoB fluorescence with an increase in TG/cholesterol (Chol) ratio reflects the 'freezing' effect of Chol molecules on apoB dynamics. (iii) Different mechanisms specific for a particular lipoprotein from E3/3 or E2/3 subjects are responsible for apoE-mediated VLDL binding and apoB-mediated LDL binding to the LDL receptor in a solid-phase binding assay. (iv) The 'spacing' effect of apoC-III molecules on apoE-mediated VLDL binding results in a decrease in the number of binding sites. (v) The maximum of the dependence of the LDL binding affinity constant on relative tryptophan density corresponds to LDL intermediate size. VLDL particles from hypertriglyceridemic E2/3 heterozygotic individuals had remnant-like properties (increased cholesterol, apoE and decreased apoC-III content) while their binding efficiency was unchanged. Based on the affinity constant value and LDL-Chol content, increased competition between VLDL and LDL for the binding to the LDL receptor upon increase in plasma TG is suggested, and LDL from hypertriglyceridemic E3/3 homozygotic individuals is the most efficient competitor.  相似文献   

17.
HTG-VLDL1, like LDL, bind with high affinity to electrophoretically transferred, isolated LDL receptors partially purified from bovine adrenal glands. Ligand blotting techniques show that binding is calcium dependent; little or no binding of LDL or HTG-VLDL1 is observed in the presence of 10 mM EDTA. HTG-VLDL1 does not bind in the presence of 7 mM suramin, an inhibitor of LDL binding to the LDL receptor. Pretreatment of LDL with either thrombin or trypsin does not affect apoB-mediated LDL binding to the LDL receptor. ApoE-mediated binding of HTG-VLDL1 to the blotted LDL receptor is abolished or greatly decreased by thrombin treatment of HTG-VLDL1; trypsin treatment of HTG-VLDL1 abolishes binding. Reincorporation of apoE into trypsinized HTG-VLDL1 restores binding. These studies demonstrate unequivocally that HTG-VLDL1 bind to the LDL receptor, that the binding of HTG-VLDL1 to the isolated LDL receptor is mediated through the thrombin-accessible apoE, and that HTG-VLDL1 which bind via potentially dissociable apoE rather than non-transferable apoB can be used for ligand blotting.  相似文献   

18.
Lipoprotein lipase (LPL) physically associates with lipoproteins and hydrolyzes triglycerides. To characterize the binding of LPL to lipoproteins, we studied the binding of low density lipoproteins (LDL), apolipoprotein (apo) B17, and various apoB-FLAG (DYKDDDDK octapeptide) chimeras to purified LPL. LDL bound to LPL with high affinity (K(d) values of 10(-12) m) similar to that observed for the binding of LDL to its receptors and 1D1, a monoclonal antibody to LDL, and was greater than its affinity for microsomal triglyceride transfer protein. LDL-LPL binding was sensitive to both salt and detergents, indicating the involvement of both hydrophobic and hydrophilic interactions. In contrast, the N-terminal 17% of apoB interacted with LPL mainly via ionic interactions. Binding of various apoB fusion peptides suggested that LPL bound to apoB at multiple sites within apoB17. Tetrahydrolipstatin, a potent enzyme activity inhibitor, had no effect on apoB-LPL binding, indicating that the enzyme activity was not required for apoB binding. LDL-LPL binding was inhibited by monoclonal antibodies that recognize amino acids 380-410 in the C-terminal region of LPL, a region also shown to interact with heparin and LDL receptor-related protein. The LDL-LPL binding was also inhibited by glycosaminoglycans (GAGs); heparin inhibited the interactions by approximately 50% and removal of trace amounts of heparin from LPL preparations increased LDL binding. Thus, we conclude that the high affinity binding between LPL and lipoproteins involves multiple ionic and hydrophobic interactions, does not require enzyme activity and is modulated by GAGs. It is proposed that LPL contains a surface exposed positively charged amino acid cluster that may be important for various physiological interactions of LPL with different biologically important molecules. Moreover, we postulate that by binding to this cluster, GAGs modulate the association between LDL and LPL and the in vivo metabolism of LPL.  相似文献   

19.
Slow refolding of human apolipoprotein E (apoE) in solution after guanidine- or cholate-induced denaturation followed by dialysis under controlled conditions was investigated using various spectroscopic properties of fluorescein- and dansyl-labeled apolipoprotein molecules. The results suggest that the last phase(s) of apoE refolding in solution include a slow (several hours at 24 degrees C) interconversion of a self-associated 'open' conformer into a more dense 'closed' conformer. The hydrophobic interactions are primarily responsible for the formation of this more compact apoE structure. To visualize the contribution of apolipoprotein conformation and/or the number of 'active' lipid-bound apoE molecules in the reaction of binding to the low density lipoprotein receptor (LDLr) by solid-phase binding assay, the complexes of human plasma apolipoprotein or recombinant (rec) apoE3 with dipalmitoylphosphatidylcholine (DPPC) or palmitoyloleoylphosphatidylcholine (POPC) varying in size were used. For seven complexes with plasma protein (four DPPC and three POPC complexes), the final phosphatidylcholine (PC)/protein mole ratio ranged from 117 to 279; affinity constant K(a) averaged for both PCs and plotted against this ratio abruptly increased from 3.8 x 10(7) to 3.8 x 10(8) M(-1) with a transition midpoint of 150-180 PC/apoE, mole ratio. Two DPPC complexes with rec protein bind much more efficiently. Complexes with both plasma and rec apoE were able to compete with very low density lipoproteins (VLDL) or low density lipoproteins (LDL) isolated from patients with E3/3 phenotype, for binding to the LDLr. Again, the competition efficiency abruptly increased at the increase in PC content with a transition midpoint of 130 PC/apoE, mole ratio. The transitions observed both in direct and competitive binding assay probably correspond to the abrupt increase in the number of 'active' apoE molecules on the complex surface accompanying the change in the size and/or in the shape of the complexes. The efficiency of apoE and apoB as the corresponding major ligands in the binding reaction of VLDL and LDL to the LDL receptor was compared. VLDL bind to LDLr following a simple encounter complex model, while LDL binding was characterized by a more complex two-step model with an additional isomerization step. The analysis of the binding data led us to suggest the existence of the continuum from several (2-3) apoE molecules on the surface of TG-rich particles that resulted in the increased binding affinity, on average 3.5-fold higher, compared to LDL. The existence of a complex equilibrium between aqueous and different lipid-bound forms of apoE is proposed, in particular, the formation of a transient disc-lipoprotein particle structure during the interaction with LDLr in vivo as well as in LPL-stimulated lipolysis of the lipid phase of the particle.  相似文献   

20.
Apolipoprotein B (apoB) of plasma low density lipoproteins (LDL) binds to high affinity receptors on many cell types. A minor subclass of high density lipoproteins (HDL), termed HDL1, which contains apoE but lacks apoB, binds to the same receptor. Bound lipoproteins are engulfed, degraded, and regulate intracellular cholesterol metabolism and receptor activity. The HDL of many patients with liver disease is rich in apoE. We tested the hypothesis that such patient HDL would reduce LDL binding and would themselves regulate cellular cholesterol metabolism. Normal HDL had little effect on binding, uptake, and degradation of 125I-labeled LDL by cultured human skin fibroblasts. Patient HDL (d 1.063-1.21 g/ml) inhibited these processes, and in 15 of the 25 samples studied there was more than 50% inhibition at 125I-labeled LDL and HDL protein concentrations of 10 micrograms/ml and 25 micrograms/ml, respectively. There was a significant negative correlation between the percentage of 125I-labeled LDL bound and the apoE content of the competing HDL (r = -0.54, P less than 0.01). Patient 125I-labeled HDL was also taken up and degraded by the fibroblasts, apparently through the LDL-receptor pathway, stimulated cellular cholesterol esterification, increased cell cholesteryl ester content, and suppressed cholesterol synthesis and receptor activity. We conclude that LDL catabolism by the receptor-mediated pathway may be impaired in liver disease and that patient HDL may deliver cholesterol to cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号