共查询到20条相似文献,搜索用时 7 毫秒
1.
Regulation of Smad7 promoter by direct association with Smad3 and Smad4 总被引:26,自引:0,他引:26
2.
3.
4.
Lee J Choi JY Lee HJ Kim KC Choi BS Oh YK Kim YB 《Biochemical and biophysical research communications》2011,(1):12482-270
It has been shown that porcine endogenous retrovirus (PERV) can infect human cells, indicating that PERV transmission poses a serious concern in pig-to-human xenotransplantation. A number of recent studies have reported on retrovirus interference by antiviral proteins. The most potent antiviral proteins are members of the APOBEC family of cytidine deaminases, which are involved in defense against retroviral attack. These proteins are present in the cytoplasm of mammalian cells and inhibit retroviral replication. To evaluate the inhibition of PERV transmission by human APOBEC3 proteins, we co-transfected 293T cells with a PERV molecular clone and human APOBEC3F or APOBEC3G expression vectors, and monitored PERV replication competency using a quantitative analysis of PERV pol genes. The replication of PERVs in cells co-expressing human APOBEC3s was reduced by 60–90% compared with PERV-only control. These results suggest that human APOBEC3G and APOBEC3F might serve a potential barrier function against PERV transmission in xenotransplantation. 相似文献
5.
6.
Smurf1 regulates the inhibitory activity of Smad7 by targeting Smad7 to the plasma membrane 总被引:6,自引:0,他引:6
Suzuki C Murakami G Fukuchi M Shimanuki T Shikauchi Y Imamura T Miyazono K 《The Journal of biological chemistry》2002,277(42):39919-39925
Smad ubiquitin regulatory factor 1 (Smurf1), a HECT-type E3 ubiquitin ligase, interacts with inhibitory Smad7 and induces cytoplasmic localization of Smad7. Smurf1 then associates with transforming growth factor-beta type I receptor (TbetaR-I) and enhances the turnover of this receptor. However, the mechanisms of the nuclear export and plasma membrane localization of the Smurf1.Smad7 complex have not been elucidated. We show here that Smurf1 targets Smad7 to the plasma membrane through its N-terminal conserved 2 (C2) domain. Both wild-type Smurf1 (Smurf1(WT)) and Smurf1 lacking the C2 domain (Smurf1(deltaC2)) bound to Smad7 and translocated nuclear Smad7 to the cytoplasm. However, unlike Smurf1(WT), Smurf1(deltaC2) did not move to the plasma membrane and failed to recruit Smad7 to the cell surface TbetaR-II.TbetaR-I complex. Moreover, although Smurf1(deltaC2) induced ubiquitination of Smad7, it failed to induce the ubiquitination and degradation of TbetaR-I and did not enhance the inhibitory activity of Smad7. Thus, these results suggest that the plasma membrane localization of Smad7 by Smurf1 requires the C2 domain of Smurf1 and is essential for the inhibitory effect of Smad7 in the transforming growth factor-beta signaling pathway. 相似文献
7.
8.
9.
10.
c-Jun associates with the oncoprotein Ski and suppresses Smad2 transcriptional activity 总被引:3,自引:0,他引:3
Pessah M Marais J Prunier C Ferrand N Lallemand F Mauviel A Atfi A 《The Journal of biological chemistry》2002,277(32):29094-29100
11.
12.
13.
14.
The Ski complex (composed of Ski3p, Ski8p, and the DEVH ATPase Ski2p) is a central component of the 3'-5' cytoplasmic mRNA degradation pathway in yeast. Although the proteins of the complex interact with each other as well as with Ski7p to mediate degradation by exosome, a 3'-exonuclease complex, the nature of these interactions is not well understood. Here we explore interactions within the Ski complex and between the Ski complex and Ski7p using a directed two-hybrid approach combined with coimmunoprecipitation experiments. We also test the functional significance of these interactions in vivo. Our results suggest that within the Ski complex, Ski3p serves as a scaffold protein with its C terminus interacting with Ski8p, and the sub-C terminus interacting with Ski2p, while no direct interaction between Ski2p and Ski8p was found. Ski7p interacts with the Ski complex via its interaction with Ski8p and Ski3p. In addition, inactivating the Ski complex by mutating conserved residues in the DEVH helicase motif of Ski2 did not abrogate its interaction with Ski7p, indicating that Ski2p function is not necessary for this interaction. 相似文献
15.
Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-beta signaling 总被引:8,自引:0,他引:8
The Ski family of nuclear oncoproteins represses TGF-beta signaling through interactions with the Smad proteins. The crystal structure of the Smad4 binding domain of human c-Ski in complex with the MH2 domain of Smad4 reveals specific recognition of the Smad4 L3 loop region by a highly conserved interaction loop (I loop) from Ski. The Ski binding surface on Smad4 significantly overlaps with that required for binding of the R-Smads. Indeed, Ski disrupts the formation of a functional complex between the Co- and R-Smads, explaining how it could lead to repression of TGF-beta, activin, and BMP responses. Intriguingly, the structure of the Ski fragment, stabilized by a bound zinc atom, resembles the SAND domain, in which the corresponding I loop is responsible for DNA binding. 相似文献
16.
Smad7基因的克隆、表达及对c-myc基因的调控 总被引:1,自引:0,他引:1
Smad7是TGr-β家族信号转导通路的抑制分子,可反馈调节TGF-β/Smads信号转导通路,从功能推测,Smad7表达紊乱,可影响细胞对TGF-β的应答,从而促进细胞的恶性化进展,为了深入探讨Smad7基因功能,通过设计引物,用Touchdown巢式.PCR法从人胎脑文库中扩增Smad7基因编码区全长,回收产物,克隆并构建真核表达载体,同融合有报告基因的c-myc顺式增强子元件共转染BEP2D细胞,结果表明:TGF—p可抑制c.myc报告基因的活性,Smad7基因可正调控c.myc报告基因的表达,并拮抗TGF.B对该基因的抑制作用.由此得出结论:Smad7基因通过桔抗TGF.B来调控c.myc基因、 相似文献
17.
18.
19.
The oncoprotein Ski represses transforming growth factor (TGF)-beta signaling in an N-CoR-independent manner. However, the molecular mechanism(s) underlying this event has not been elucidated. Here, we identify an additional domain in Ski that mediates interaction with Smad3 which is important for this repression. This domain is distinct from the previously reported N-terminal Smad3 binding domain in Ski. Individual alanine substitution of several residues in the domain significantly affected Ski-Smad3 interaction. Furthermore, combined mutations within this domain, together with those in the previously identified Smad3 binding domain, can completely abolish the interaction of Ski with Smad3, while mutation in each domain alone retained partial interaction. By introducing those mutations that abolish direct interaction with Smad3 or Smad4 individually, or in combination, we show that interaction of Ski with either Smad3 or Smad4 is sufficient for Ski-mediated repression of TGF-beta signaling. Furthermore our results clearly demonstrate that Ski does not disrupt Smad3-Smad4 heteromer formation, and recruitment of Ski to the Smad3/4 complex through binding to either Smad3 or Smad4 is both necessary and sufficient for repression. 相似文献
20.
Jing He Xiaolan Sun Ke-Qing Qian Xubao Liu Zhenzhen Wang Yan Chen 《生物化学与生物物理学报:疾病的分子基础》2009,1792(1):56-60
Pancreatic fibrosis is the hallmark of chronic pancreatitis, currently an incurable disease. Pancreatitis fibrosis is caused by deposition of extracellular matrix (ECM) and the underlying pathological mechanism remains unclear. In addition to its broad biological activities, TGF-β is a potent pro-fibrotic factor and many in vitro studies using cell systems have implicated a functional role of TGF-β in the pathogenesis of pancreatic fibrosis. We analyzed the in vivo role of TGF-β pathway in pancreatic fibrosis in this study. Smad7, an intracellular inhibitory protein that antagonizes TGF-β signaling, was specifically expressed in the pancreas using a transgenic mouse model. Chronic pancreatitis was induced in the mouse with repeated administration of cerulein. Smad7 expression in the pancreas was able to significantly inhibit cerulein-induced pancreatic fibrosis. Consistently, the protein levels of collagen I and fibronectin were decreased in the Smad7 transgenic mice. In addition, α-smooth muscle actin, a marker of activated pancreas stellate cells, was reduced in the transgenic mice. Taken together, these data indicate that inhibition of TGF-β signaling by Smad7 is able to protect cerulein-induced pancreatic fibrosis in vivo. 相似文献