首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
To investigate the role of the intracellular C-terminal tail of the rat metabotropic glutamate receptor 1a (mGlu1a) in receptor regulation, we constructed three C-terminal tail deletion mutants (Arg847stop, DM-I; Arg868stop, DM-II; Val893stop, DM-III). Quantification of glutamate-induced internalization provided by ELISA indicated that DM-III, like the wild-type mGlu1a, underwent rapid internalization whilst internalization of DM-I and DM-II was impaired. The selective inhibitor of protein kinase C (PKC), GF109203X, which significantly reduced glutamate-induced mGlu1a internalization, had no effect on the internalization of DM-I, DM-II, or DM-III. In addition activation by carbachol of endogenously expressed M1 muscarinic acetylcholine receptors, which induces PKC- and Ca2+-calmodulin-dependent protein kinase II-dependent internalization of mGlu1a, produced negligible internalization of the deletion mutants. Co-expression of a dominant negative mutant form of G protein-coupled receptor kinase 2 (DNM-GRK2; Lys220Arg) significantly attenuated glutamate-induced internalization of mGlu1a and DM-III, whilst internalization of DM-I and DM-II was not significantly affected. The glutamate-induced internalization of mGlu1a and DM-III, but not of DM-I or DM-II, was inhibited by expression of DNM-arrestin [arrestin-2(319-418)]. In addition glutamate-induced rapid translocation of arrestin-2-Green Fluorescent Protein (arr-2-GFP) from cytosol to membrane was only observed in cells expressing mGlu1a or DM-III. Functionally, in cells expressing mGlu1a, glutamate-stimulated inositol phosphate accumulation was increased in the presence of PKC inhibition, but so too was that in cells expressing DM-II and DM-III. Together these results indicate that different PKC mechanisms regulate the desensitization and internalization of mGlu1a. Furthermore, PKC regulation of mGlu1a internalization requires the distal C terminus of the receptor (Ser894-Leu1199), whilst in contrast glutamate-stimulated GRK- and arrestin-dependent regulation of this receptor depends on a region of 25 amino acids (Ser869-Val893) in the proximal C-terminal tail.  相似文献   

2.
Three group I mGluR antagonists CPCCOEt, LY367385 and BAY36-7620, were analyzed for their effect on cell surface expression of metabotropic glutamate receptor 1a and 1b. All three antagonists inhibited glutamate-induced internalization of mGluR1a and mGluR1b. However, when added alone, either LY367385 or BAY36-7620 increased the cell surface expression of mGluR1a but not mGluR1b. Both LY367385 and BAY36-7620 displayed inverse agonist activity as judged by their ability to inhibit basal inositol phosphate accumulation in cells expressing the constitutively active mGluR1a. Interestingly, mGluR1a but not mGluR1b was constitutively internalized in HEK293 cells and both LY367385 and BAY36-7620 inhibited the constitutive internalization of this splice variant. Furthermore, coexpression of dominant negative mutant constructs of arrestin-2 [arrestin-2-(319-418)] or Eps15 [Eps15(E Delta 95-295)] increased cell surface expression of mGluR1a and blocked constitutive receptor internalization. In the presence of these dominant negative mutants, incubation of cells with LY367385 and BAY36-7620 produced no further increase in cell surface expression of mGluR1a. Taken together, these results suggest that the constitutive activity of mGluR1a triggers the internalization of the receptor through an arrestin- and clathrin-dependent pathway, and that inverse agonists increase the cell surface expression of mGluR1a by promoting an inactive form of mGluR1a, which does not undergo constitutive internalization.  相似文献   

3.
At present, little is known regarding the mechanism of metabotropic glutamate receptor (mGluR) trafficking. To facilitate this characterization we inserted a haemagglutinin (HA) epitope tag in the extracellular N-terminal domain of the rat mGluR1a. In human embryonic kidney cells (HEK293), transiently transfected with HA-mGluR1a, the epitope-tagged receptor was primarily localized to the cell surface prior to agonist stimulation. Following stimulation with glutamate (10 microM; 30 min) the HA-mGluR1a underwent internalization to endosomes. Further quantification of receptor internalization was provided by ELISA experiments which showed rapid agonist-induced internalization of the HA-mGluR1a. To determine whether agonist-induced mGluR1a internalization is an arrestin- and dynamin-dependent process, cells were cotransfected with HA-mGluR1a and either of these dynamin-K44A or arrestin-2 (319-418). Expression of either dominant negative mutant constructs with receptor strongly inhibited glutamate-induced (10 microM; 30 min) HA-mGluR1a internalization. In addition, wild-type arrestin-2-green fluorescent protein (arrestin-2-GFP) or arrestin-3-GFP underwent agonist-induced translocation from cytosol to membrane in HEK293 cells coexpressing HA-mGluR1a. Taken together our observations demonstrate that agonist-induced internalization of mGluR1a is an arrestin- and dynamin-dependent process.  相似文献   

4.
In this study we characterized the heterologous desensitization and internalization of the metabotropic glutamate receptor 1 (mGluR1) splice variants mGluR1a and mGluR1b following activation of endogenous G(q/11)-coupled receptors in HEK293 cells. Agonist activation of M1 muscarinic acetylcholine or P2Y1 purinergic receptors triggered the PKC- and CaMKII-dependent internalization of mGluR1a. In co-immunoprecipitation studies, both glutamate and carbachol increased the association of GRK2 with mGluR1a. Co-addition of the protein kinase C (PKC) inhibitor GF109203X and the Ca(2+) calmodulin-dependent kinase II (CaMKII) inhibitor KN-93 blocked the ability of glutamate and carbachol to increase the association of GRK2 with mGluR1a. Glutamate also increased the association of GRK2 with mGluR1b, whereas carbachol did not. However, unlike mGluR1a, glutamate-stimulated association of GRK2 with mGluR1b was not reduced by PKC/CaMKII inhibition. Pretreatment of cells expressing mGluR1a or mGluR1b with carbachol rapidly desensitized subsequent glutamate-stimulated inositol phosphate accumulation. The carbachol-induced heterologous desensitization and internalization of mGluR1a was blocked by LY367385, an mGluR1a antagonist with inverse agonist activity. Furthermore, LY367385 blocked the ability of carbachol to increase the association of GRK2 with mGluR1a. On the other hand, LY367385 had no effect on the carbachol-induced desensitization and internalization of the nonconstitutively active mGluR1b splice variant. These results demonstrate that the internalization of mGluR1a, triggered homologously by glutamate or heterologously by carbachol, is PKC/CaMKII-, GRK2-, arrestin-, and clathrin-dependent and that PKC/CaMKII activation appears to be necessary for GRK2 to associate with mGluR1a. Furthermore, the heterologous desensitization of mGluR1a is dependent upon the splice variant being in an active conformation.  相似文献   

5.
Metabotropic glutamate receptors 5 (mGluR5) are members of the growing group C G protein-coupled receptor family. Widely expressed in mammalian brain, they are involved in modulation of the glutamate transmission. By means of transfection of mGluR5 receptors in COS-7 cells and primary hippocampal neurons in culture followed by immunocytochemistry and quantitative image analysis and by a biochemical assay, we have studied the internalization of mGluR5 splice variants. mGluR5a and -5b were endocytosed in COS-7 cells as well as in axons and dendrites of cultured neurons. Endocytosis occurred even in the absence of receptor activity, because receptors mutated in the glutamate binding site were still internalized as well as receptors in which endogenous activity had been inhibited by an inverse agonist. We have measured a constitutive rate of endocytosis of 11.7%/min for mGluR5a. We report for the first time the endocytosis pathway of mGluR5. Internalization of mGluR5 is not mediated by clathrin-coated pits. Indeed, inhibition of this pathway by Eps15 dominant negative mutants did not disturb their endocytosis. However, the large GTPase dynamin 2 is implicated in the endocytosis of mGluR5 in COS-7. mGluR5 is the first shown member of the group C G-protein coupled receptor family internalized by a nonconventional pathway.  相似文献   

6.
As with most G-protein-coupled receptors, repeated agonist stimulation of the platelet-activating factor receptor (PAFR) results in its desensitization, sequestration, and internalization. In this report, we show that agonist-induced PAFR internalization is independent of G-protein activation but is dependent on arrestins and involves the interaction of arrestins with a limited region of the PAFR C terminus. In cotransfected COS-7 cells, both arrestin-2 and arrestin-3 could be coimmunoprecipitated with PAFR, and agonist stimulation of PAFR induced the translocation of both arrestin-2 and arrestin-3. Furthermore, coexpression of arrestin-2 with PAFR potentiated receptor internalization, whereas agonist-induced PAFR internalization was inhibited by a dominant negative mutant of arrestin-2. The coexpression of a minigene encoding the C-terminal segment of the receptor abolished PAF-induced arrestin translocation and inhibited PAFR internalization. Using C terminus deletion mutants, we determined that the association of arrestin-2 with the receptor was dependent on the region between threonine 305 and valine 330 because arrestin-2 could be immunoprecipitated with the mutant PAFRstop330 but not PAFRstop305. Consistently, stop330 could mediate agonist-induced arrestin-2 translocation, whereas stop305 could not. Two other deletion mutants with slightly longer regions of the C terminus, PAFRstop311 and PAFRstop317, also failed to induce arrestin-2 translocation. Finally, the PAFR mutant Y293A, containing a single substitution in the putative internalization motif DPXXY in the seventh transmembrane domain (which we had shown to be able to internalize but not to couple to G-proteins) could efficiently induce arrestin translocation. Taken together, our results indicate that ligand-induced PAFR internalization is dependent on arrestins, that PAFR can associate with both arrestin-2 and -3, and that their translocation involves interaction with the region of residues 318-330 in the PAFR C terminus but is independent of G-protein activation.  相似文献   

7.
The Group C G protein-coupled receptors include the metabotropic glutamate receptors (mGluRs), the GABAB receptor, the calcium sensor and several taste receptors, most of which are obligate dimers, indeed recent work has shown that dimerization is necessary for the activation of these receptors. Consequently factors that regulate their ability to homo- or heterodimerize are important. The Group 1 mGluRs include mGluR1 and mGluR5 both of which have splice variants with altered C-termini. In this study, we show that mGluR1b is a dimer and that it does not efficiently heterodimerize with mGluR1a, unlike the two splice variants of mGluR5 that can heterodimerize. Mutation of a positively charged motif (RRKK) at the C-terminus of the mGluR1b tail permits mGluR1b to heterodimerize with mGluR1a. Co-expression of mGluR1a and mGluR1b in COS-7 cells results in the accumulation of mGluR1b in intracellular inclusions that do not contain mGluR1a. This behaviour is mimicked by a chimera of the lymphocyte antigen CD2 with the C-terminus of mGluR1b (pCD1b) and depends on the presence of the RRKK motif. These accumulations are immunoreactive for endoplasmic reticulum (ER) markers, but not Golgi and ERGIC markers. This segregation of mGluR1b from other ER proteins may contribute to its failure to dimerize with mGluR1a.  相似文献   

8.
《Cellular signalling》2014,26(11):2412-2423
G protein-coupled receptor 40 (GPR40) is believed to be an attractive target to enhance insulin secretion in patients with type 2 diabetes. GPR40 has been found to couple to Gq protein, leading to the activation of phospholipase C and subsequent increases in the intracellular Ca2 + level. However, the underlying mechanisms that regulate the internalization and desensitization of GPR40 remain to be elucidated. In the present study, a construct of GPR40 fused with enhanced green fluorescent protein (EGFP) at its C-terminus was constructed for direct imaging of the localization and internalization of GPR40 by confocal microscopy. In stably transfected HEK-293 cells, GPR40 receptors underwent rapid agonist-induced internalization and constitutive ligand-independent internalization. Our data demonstrated that the agonist-mediated internalization of GPR40 was significantly blocked by hypertonic sucrose treatment and by siRNA mediated depletion of the heavy chain of clathrin. In contrast, constitutive GPR40 internalization was not affected by hypertonic sucrose or by knock-down of clathrin expression, but it was affected by treatment with methyl-β-cyclodextrin (MβCD) and nystatin. Furthermore, our results using an arrestin-3-EGFP redistribution assay and siRNA-mediated knock-down of arrestin-3 and GRK2 expression revealed that arrestin-3 and GRK2 play an essential role in the regulation of agonist-mediated GPR40 internalization, but are not involved in the regulation of constitutive GPR40 internalization. Additionally, our observation showed that upon activation by agonist, the internalized GPR40 receptors were rapidly recycled back to the plasma membrane via Rab4/Rab5 positive endosomes, whereas the constitutively internalized GPR40 receptors were recycled back to the cell surface through Rab5 positive endosomes. Because FFA receptors exhibit a high level of homology, our observations could be applicable to other members of this family.  相似文献   

9.
Regulated trafficking of neurotransmitter receptors is critical to normal neurodevelopment and neuronal signaling. Group I mGluRs (mGluR1/5 and their splice variants) are G protein-coupled receptors enriched at excitatory synapses, where they serve to modulate glutamatergic transmission. The mGluR1 splice variants mGluR1a and mGluR1b are broadly expressed in the central nervous system and differ in their signaling and trafficking properties. Several proteins have been identified that selectively interact with mGluR1a and participate in receptor trafficking but no proteins interacting with mGluR1b have thus far been reported. We have used a proteomic strategy to isolate and identify proteins that co-purify with mGluR1b in Madin-Darby Canine Kidney (MDCK) cells, an established model system for trafficking studies. Here, we report the identification of 10 novel candidate mGluR1b-interacting proteins. Several of the identified proteins are structural components of the cell cytoskeleton, while others serve as cytoskeleton-associated adaptors and motors or endoplasmic reticulum-associated chaperones. Findings from this work will help unravel the complex cellular mechanisms underlying mGluR trafficking under physiological and pathological conditions.  相似文献   

10.
Trafficking of G protein‐coupled receptors plays a crucial role in controlling the precise signalling of the receptor as well as its proper regulation. Metabotropic glutamate receptor 1 (mGluR1), a G protein‐coupled receptor, is a member of the group I mGluR family. mGluR1 plays a critical role in neuronal circuit formation and also in multiple types of synaptic plasticity. This receptor has also been reported to be involved in various neuropsychiatric diseases. Other than the central nervous system, mGluR1 plays crucial roles in various non‐neuronal cells like hepatocytes, skin cells, etc. Although it has been reported that mGluR1 gets endocytosed on ligand application, the events after the internalization of the receptor has not been studied. We show here that mGluR1 internalizes on ligand application. Subsequent to endocytosis, majority of the receptors localize at the recycling compartment and no significant presence of the receptor was noticed in the lysosome. Furthermore, mGluR1 returned to the cell membrane subsequent to ligand‐mediated internalization. We also show here that the recycling of mGluR1 is dependent on the activity of protein phosphatase 2A. Thus, our data suggest that the ligand‐mediated internalized receptors recycle back to the cell surface in protein phosphatase 2A‐dependent manner.

  相似文献   


11.
To date, five human metabotropic glutamate (mGlu) 1 receptor splice variants (1a, 1b, 1d, 1f, and 1g) have been described, all of which involve alternative C-terminal splicing. mGlu1a receptor contains a long C-terminal domain (341 amino acids), which has been shown to scaffold with several proteins and contribute to the structure of the post-synaptic density. However, several shorter mGlu1 receptor splice variants lack the sequence required for these interactions, and no major functional differences between these short splice variants have been described. By using RT-PCR we have shown that two human melanoma cell lines express both mGlu1a and mGlu1b receptors. In addition, using 3′RACE, we identified three previously unknown mGlu1 receptor mRNAs. Two differ in the length of their 3′ untranslated region (UTR), and encode the same predicted protein as mGlu1g receptor—the shortest of all mGlu1 receptor splice variants. The third mRNA, named mGlu1h, encodes a predicted C-terminal splice variant of 10 additional amino acids. mGlu1h mRNA was observed in two different melanoma cell lines and is overexpressed, compared with melanoma precursor cells, melanocytes. Most importantly, this new splice variant, mGlu1h receptor, is encoded by two previously unidentified exons located within the human GRM1 gene. Additionally, these new exons are found exclusively within the GRM1 genes of higher primates and are highly conserved. Therefore, we hypothesize that mGlu1h receptors play a distinct role in primate glutamatergic signaling.  相似文献   

12.
G protein-coupled receptors have a common structural motif of seven transmembrane alpha-helices and are classified into different families showing no sequence similarity. Extensive studies have been conducted on the structure-function relationship in family 1 receptors, but those in other families have not been well studied. In this study, to investigate the molecular basis leading to the G protein activation by metabotropic glutamate receptor (mGluR), the member of family 3, we searched for the amino acid residues responsible for the G protein activation in the second cytoplasmic loop, which was thought to be the main G protein binding region. Analyses of the systematical mutations of Gi/Go-coupled mGluR8 revealed the presence of a constitutively active mutation in the C-terminal region of the second loop. The corresponding mutation in the second loop of Gq-coupled mGluR1 also exhibited high agonist-independent activity. These results indicate that there is a common constitutive active mutation site regardless of mGluR subtypes, suggesting that the structural change of the junction between the second cytoplasmic loop and helix IV is strongly linked to the formation of the active state.  相似文献   

13.
The human NPY Y1 receptor undergoes fast agonist-induced internalization via clathrin-coated pits then recycles back to the cell membrane. In an attempt to identify the molecular determinants involved in this process, we studied several C-terminal truncation mutants tagged with EFGP. In the absence of agonist, Y1 receptors lacking the last 32 C-terminal amino acids (Y1Δ32) are constitutively internalized, unlike full-length Y1 receptors. At steady state, internalized Y1Δ32 receptors co-localize with transferrin, a marker of early and recycling endosomes. Inhibition of constitutive internalization of Y1Δ32 receptors by hypertonic sucrose or by co-expression of Rab5aS34N, a dominant negative form of the small GTPase Rab5a or depletion of all three isoforms of Rab5 indicates the involvement of clathrin-coated pits. In contrast, a truncated receptor lacking the last 42 C-terminal amino acids (Y1Δ42) does not constitutively internalize, consistent with the possibility that there is a molecular determinant responsible for constitutive internalization located in the last 10 amino acids of Y1Δ32 receptors. We show that the agonist-independent internalization of Y1Δ32 receptors involves a tyrosine-based motif YXXΦ. The potential role of this motif in the behaviour of full-length Y1 receptors has also been explored. Our results indicate that a C-terminal tyrosine-based motif is critical for the constitutive internalization of truncated Y1Δ32 receptors. We suggest that this motif is masked in full-length Y1 receptors which do not constitutively internalize in the absence of agonist.  相似文献   

14.
Using chimeras and more discrete exchange mutations of the rat (r) and human (h) gonadotropin receptors, we had previously identified multiple noncontiguous residues of the lutropin (LHR) and follitropin (FSHR) receptors that dictate their rates of internalization. Since the internalization of the LHR and the FSHR is driven by their abilities to associate with the nonvisual arrestins, we hypothesized that one or more of the residues previously identified by the internalization assays are involved in the formation of the receptor/nonvisual arrestin complex. In the studies reported herein, we tested this hypothesis by measuring the association of arrestin-3 with a large number of rLHR/hLHR and rFSHR/hFSHR exchange mutants that affect internalization. The results presented show that the same residues that dictate the rate of internalization of these two receptor pairs affect their ability to associate with arrestin-3. Although these residues are located in distinct topological domains, our analyses show that threonine residues in the third intracellular loop of both receptor pairs are particularly important for the formation of the receptor/arrestin-3 complexes and internalization. We conclude that the different rates of internalization of the gonadotropin receptors are dictated by their different abilities to associate with the nonvisual arrestins and that this association is, in turn, largely dictated by the presence of threonine residues in their third intracellular loops.  相似文献   

15.
Arrestins regulate the signaling and trafficking of G protein-coupled receptors (GPCRs). GPCR complexes with both nonvisual arrestins channel signaling to G protein-independent pathways, one of which is the activation of extracellular signal regulated kinase 1/2 (ERK1/2). Here we used alanine-scanning mutagenesis of residues on the nonreceptor-binding surface conserved between arrestin-2 and arrestin-3. We show that an Arg307Ala mutation significantly reduced arrestin-2 binding to c-Raf1, whereas the binding of the mutant to active phosphorylated receptor and downstream kinases MEK1 and ERK2 was not affected. In contrast to wild-type arrestin-2, the Arg307Ala mutant failed to rescue arrestin-dependent ERK1/2 activation via β2-adrenergic receptor in arrestin-2/3 double knockout mouse embryonic fibroblasts. Thus, Arg307 plays a specific role in arrestin-2 binding to c-Raf1 and is indispensable in the productive scaffolding of c-Raf1-MEK1-ERK1/2 signaling cascade. Arg307Ala mutation specifically eliminates arrestin-2 signaling through ERK, which makes arrestin-2-Arg307Ala the first signaling-biased arrestin mutant constructed. In the crystal structure the side chain of homologous arrestin-3 residue Lys308 points in a different direction. Alanine substitution of Lys308 does not significantly affect c-Raf1 binding to arrestin-3 and its ability to promote ERK1/2 activation, suggesting that the two nonvisual arrestins perform the same function via distinct molecular mechanisms.  相似文献   

16.
Previous studies with overexpressing wild-type or dominant negative nonvisual arrestins have established a role for these proteins in beta2-adrenergic receptor (beta2AR) internalization, desensitization, and resensitization. To validate and extend such findings, we employed an antisense strategy to target the nonvisual arrestins, arrestin-2 and arrestin-3, and determined the associated effects on the regulation of G protein-coupled receptor (GPCR) signaling. HEK293 cells stably expressing antisense constructs targeting arrestin-2 exhibited a selective reduction (approximately 50%) in arrestin-2 levels, while arrestin-3 antisense constructs resulted in reductions (>/=50%) in both arrestin-2 and arrestin-3 levels. Initial analysis of these cells demonstrated that a reduced level of arrestin expression resulted in a significant decrease in the extent of agonist-induced internalization of exogenously expressed beta2ARs, but had no effect on internalization of either m2 or m3 muscarinic acetylcholine receptors. Additional characterization involved assessing the role of arrestins in the regulation of endogenous GPCRs in these cells. Reduced arrestin levels significantly decreased the rate of endogenous beta2AR internalization, desensitization, and resensitization. Further analysis demonstrated that the desensitization of endogenous A2b adenosine and prostaglandin E2-stimulated receptors was also attenuated in cells with reduced arrestin levels. The effects on the beta2-adrenergic, A2b adenosine, and PGE2-stimulated receptors were similar among cell lines that exhibited either a selective reduction in arrestin-2 levels or a reduction in both arrestin-2 and -3 levels. These findings establish the utility of antisense approaches in the examination of arrestin-mediated GPCR regulation.  相似文献   

17.
Agonist-induced internalization of metabotropic glutamate receptors (mGluRs) plays an important role in neuronal signaling. Although internalization of mGluRs has been reported to be mediated by clathrin-dependent pathway, studies describing clathrin-independent pathways are emerging. Here, we report that agonist-induced internalization of mGluR1α is mediated by caveolin. We show that two caveolin-binding motifs of mGluR1α interact with caveolin1/2. Using cell surface-immunoprecipitation and total internal reflection fluorescence imaging, we found that agonist-induced internalization of mGluR1α is regulated by caveolin-binding motifs of the receptor in heterologous cells. Moreover, in the cerebellum, group I mGluR agonist dihydroxyphenylglycol increased the interaction of phosphorylated caveolin with mGluR1α. This interaction was blocked by methyl-β-cyclodextrin, known to disrupt caveolin/caveolae-dependent signaling by cholesterol depletion. Methyl-β-cyclodextrin also blocked the agonist-induced internalization of mGluR1α. Thus, these findings represent the evidence for agonist-induced internalization of mGluR1α via caveolin and suggest that caveolin might play a role in synaptic metaplasticity by regulating internalization of mGluR1α in the cerebellum.  相似文献   

18.
Recent studies have highlighted the emergence of a class of G protein-coupled receptors that are internalized in an arrestin-independent manner. In addition to demonstrating that the N-formyl peptide receptor belongs in this family, we have recently shown that recycling of the receptor requires the presence of arrestins. To further elucidate mechanisms of arrestin-dependent regulation of G protein-coupled receptor processing, we examined the effects of altering the receptor-arrestin complex on ternary complex formation and cellular trafficking of the N-formyl peptide receptor by studying two active arrestin-2 mutants (truncated arrestin-2 [1-382], and arrestin-2 I386A, V387A, F388A). Complexes between the N-formyl peptide receptor and active arrestins exhibited higher affinity in vitro than the complex between the N-formyl peptide receptor and wild-type arrestin and furthermore were observed in vivo by colocalization studies using confocal microscopy. To assess the effects of these altered interactions on receptor trafficking, we demonstrated that active, but not wild-type, arrestin expression retards N-formyl peptide receptor internalization. Furthermore, expression of arrestin-2 I386A/V387A/F388A but not arrestin-2 [1-382] inhibited recycling of the N-formyl peptide receptor, reflecting an expanded role for arrestins in G protein-coupled receptor processing and trafficking. Whereas the extent of N-formyl peptide receptor phosphorylation had no effect on the inhibition of internalization, N-formyl peptide receptor recycling was restored when the receptor was only partially phosphorylated. These results indicate not only that a functional interaction between receptor and arrestin is required for recycling of certain G protein-coupled receptors, such as the N-formyl peptide receptor, but that the pattern of receptor phosphorylation further regulates this process.  相似文献   

19.
20.
The accepted paradigm for G protein-coupled receptor kinase (GRK)-mediated desensitization of G protein-coupled receptors involves GRK-mediated receptor phosphorylation followed by the binding of arrestin proteins. Although GRKs contribute to metabotropic glutamate receptor 1 (mGluR1) inactivation, beta-arrestins do not appear to be required for mGluR1 G protein uncoupling. Therefore, we investigated whether the phosphorylation of serine and threonine residues localized within the C terminus of mGluR1a is sufficient to allow GRK2-mediated attenuation of mGluR1a signaling. We find that the truncation of the mGluR1a C-terminal tail prevents mGluR1a phosphorylation and that GRK2 does not contribute to the phosphorylation of an mGluR1 splice variant (mGluR1b). However, mGluR1a-866Delta- and mGluR1b-stimulated inositol phosphate formation is attenuated following GRK2 expression. The expression of the GRK2 C-terminal domain to block membrane translocation of endogenous GRK2 increases mGluR1a-866Delta- and mGluR1b-stimulated inositol phosphate formation, presumably by blocking membrane translocation of GRK2. In contrast, expression of the kinase-deficient GRK2-K220R mutant inhibits inositol phosphate formation by these unphosphorylated receptors. Expression of the GRK2 N-terminal domain (residues 45-185) also attenuates both constitutive and agonist-stimulated mGluR1a, mGluR1a-866Delta, and mGluR1b signaling, and the GRK2 N terminus co-precipitates with mGluR1a. Taken together, our observations indicate that attenuation of mGluR1 signaling by GRK2 is phosphorylation-independent and that the interaction of the N-terminal domain of GRK2 with mGluR1 contributes to the regulation of mGluR1 G protein coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号