首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The steady-state growth rate of Saccharomyces cerevisiae was varied by growing the cells in different media. The total amount of ribonucleic acid (RNA) per cell was found to decrease as a nonlinear function of decreasing growh rate. The RNA from cells growing in different media was analyzed by polyacrylamide gel electrophoresis. Although the amounts of both ribosomal RNA and transfer RNA decreased with decreasing growth rate, the ratio of ribosomal to transfer RNA was not constant. As the growth rate was reduced the ribosomal RNA fraction decreased slightly, whereas the transfer RNA fraction increased slightly. Thus the levels of ribosomal and transfer RNA were regulated to similar yet different extents. The levels of the different ribosomal RNA species were more closely coordinated. At all growth rates the ribosomal RNAs (including 5S RNA) were present in equimolar amounts. The rate of protein synthesis in yeast cells also decreased with decreasing growth rate. The low rates of protein synthesis did not appear to be due to limiting numbers of ribosomes or transfer RNA molecules.  相似文献   

2.
We investigated the regulation of ribosome synthesis in Saccharomyces cerevisiae growing at different rates and in response to a growth stimulus. The ribosome content and the rates of synthesis of ribosomal ribonucleic acid and of ribosomal proteins were compared in cultures growing in minimal medium with either glucose or ethanol as a carbon source. The results demonstrated that ribosome content is proportional to growth rate. Moreover, these steady-state concentrations are regulated at the level of synthesis of ribosomal precursor ribonucleic acid and of ribosomal proteins. When cultures growing on ethanol were enriched with glucose, the rate of ribosomal ribonucleic acid synthesis, measured by pulsing cells with [methyl-3H]methionine, increased by 40% within 5 min, doubled within 15 min, and reached a steady state characteristic of the new growth medium by 30 min. Labeling with [3H]leucine reveal a coordinate increase in the rate of synthesis of 30 or more ribosomal proteins as compared with that of total cellular proteins. Their synthesis was stimulated approximately 2.5-fold within 15 min and nearly 4-fold within 60 min. The data suggest that S. cerevisiae responds to a growth stimulus by preferential stimulation of the synthesis of ribosomal ribonucleic acid and ribosomal proteins.  相似文献   

3.
During magnesium starvation of Escherichia coli B, most of the ribosomes break down to low-molecular-weight components. When magnesium is restored to the medium, the cells recover. The rate of recovery can be increased greatly by supplementing the growth medium with a mixture of 21 amino acids. This increased rate of recovery is shown to be due to the effect of only two amino acids, histidine and methionine, which initially stimulate accumulation of cellular ribonucleic acid without increasing the rate of protein synthesis. In contrast, histidine and methionine supplementation to logarithmically growing E. coli B is not as effective in stimulating growth as is the complete amino acid mixture. Since cells recovering from magnesium starvation preferentially synthesize ribosomes, it is possible that histidine and methionine play a special role(s) in ribosomal ribonucleic acid synthesis or stability.  相似文献   

4.
Synthesis of ribosomes and ribosomal ribonucleic acid (RNA) continued during differentiation of Dictyostelium discoideum concurrently with extensive turnover of ribosomes synthesized during both growth and developmental stages. We show here that the rate of synthesis of 26S and 17S ribosomal RNA during differentiation was less than 15% of that in growing cells, and by the time of sorocarp formation only about 25% of the cellular ribosomes had been synthesized during differentiation. Ribosomes synthesized during growth and differentiation were utilized in messenger RNA translation to the same extent; about 50% of each class were on polyribosomes. Ribosome degradation is apparently an all-or-nothing process, since virtually all 80S monosomes present in developing cells could be incorporated into polysomes when growth conditions were restored. By several criteria, ribosomes synthesized during growth and differentiation were functionally indistinguishable. Our data, together with previously published information on changes in the messenger RNA population during differentiation, indicate that synthesis of new ribosomes is not necessary for translation of developmentally regulated messenger RNA. We also establish that the overall rate of messenger RNA synthesis during differentiation is less than 15% of that in growing cells.  相似文献   

5.
The metabolism of the ribosomal and soluble protein components of Aerobacter aerogenes was examined during its incubation in a Mg(++)-deficient medium. Bacteria were exposed to leucine-H(3) during the exponential growth period preceding Mg(++) starvation, and extracts were prepared after intervals of starvation and were centrifuged through gradients of sucrose to separate ribosomal from soluble proteins. Ribosomal proteins synthesized during the preceding exponential growth were slowly lost from the ribosomes; after 8 hr of starvation, few, if any, sedimented with ribosomes. Losses of total protein, together with the known rate of ribosome decay during Mg(++) starvation, suggested that these ribosomal proteins are ultimately degraded to acid-soluble products and account for all protein lost by the starving cells. These conclusions were supported by studies of Mg(++) starvation in a uracil-requiring strain of A. aerogenes: during uracil starvation a smaller fraction of the proteins synthesized were ribosomal, and the fraction of protein which subsequently decayed during Mg(++) starvation was correspondingly less. During recovery from Mg(++) starvation, proteins, lost from disintegrated ribosomes, were not detectably reutilized into new particles even before their degradation to acid-soluble products was complete. Synthesis of soluble proteins continued for more than 24 hr of starvation at a rate per milliliter close to 45% of the instantaneous rate per milliliter of the exponentially growing bacteria at the time Mg(++) was removed. This value agreed with that found previously for synthetic rates of deoxyribonucleic acid, transfer ribonucleic acid, and ribosomal ribonucleic acid during starvation relative to rates during exponential growth.  相似文献   

6.
Regulation of Ribosomal Protein Synthesis in Escherichia coli   总被引:11,自引:6,他引:5       下载免费PDF全文
  相似文献   

7.
We describe the in situ use of rRNA-targeted fluorescent hybridization probes in combination with digital microscopy to quantify the cellular content of ribosomes in relationship to the growth rate of single cells of a specific population of sulfate-reducing bacteria in multispecies anaerobic biofilms. Using this technique, we inferred that this population was growing with an average generation time of 35 h in a young biofilm, whereas the doubling time in an established biofilm was significantly longer. Conventional chemical determinations of the RNA, DNA, and protein contents of this culture at different growth rates were also carried out, and the resulting data were compared with the rRNA fluorescence in situ hybridization data.  相似文献   

8.
The synthesis of ribosomes by a mutant of Escherichia coli   总被引:3,自引:0,他引:3       下载免费PDF全文
1. When the methionine-requiring mutant 58–161 of Escherichia coli was starved of methionine, ribonucleic acid was made in the absence of protein synthesis. 2. Most of this ribonucleic acid was similar to that found in ribosomes but was contained in particles differing from ribosomes both in sedimentation coefficient and in chromatographic behaviour on diethylaminoethylcellulose. 3. When methionine was added to a starved culture, the ribonucleic acid synthesized during starvation was almost completely undegraded as growth resumed. A transient loss of 5–10% could be largely attributed to breakdown of messenger ribonucleic acid accumulated during starvation. 4. After the addition of methionine, ribosomes were formed from the particles, and during this period preferential synthesis of ribosomal protein took place. 5. It is suggested that under these conditions the direct synthesis of ribosomes from the particles may occur.  相似文献   

9.
Polysome Turnover During Amino Acid Starvation in Escherichia coli   总被引:8,自引:6,他引:2       下载免费PDF全文
The experiments presented in this paper support earlier evidence that ribosomes are released from polysomes when they encounter a codon for which no charged transfer ribonucleic acid is available. However, it is further shown that these ribosomes then reinitiate and resume translation. The size and the level of polysomes during deprival of an amino acid is a function of the frequency with which that particular amino acid appears in cellular proteins. Polysomes from starved cells are more stable than those from growing cells, and, moreover, polysomes from starved relaxed strains are more stable than those from starved stringent strains.  相似文献   

10.
Rate of Ribosome Production in Bacillus licheniformis   总被引:3,自引:2,他引:1       下载免费PDF全文
The ribosome content of exponential-phase cells of Bacillus licheniformis was measured at three different growth rates. The average number of ribosomes per cell was about 92,000, 34,400, or 12,500 70S equivalents in balanced cultures growing at 37 C with generation times of 35, 60, and 120 min, respectively. Since the ribosomal particles were shown to be metabolically stable in exponentially growing cells, these figures implicate large differences in the quantity of ribosomes synthesized per unit of time in an individual cell grown under the various conditions. Nevertheless, the time required for the biosynthesis of a single 50S subunit was constant (about 10 min) and independent of the specific growth rate of the cell (within the limits studied). These results show that ribosome production is not regulated by control of the rate of assemblage of individual ribosomes, but rather by control of the number of the ribosomes in manufacture at a time.  相似文献   

11.
12.
The differential rates of synthesis of the three branched-chain aminoacyl-transfer ribonucleic acid synthetases were measured in Salmonella typhimurium LT-2 and a mutant, ilvA504. The mutant produced an l-threonine deaminase with a decreased affinity for its cofactor, pyridoxal-5'-monophosphate. The addition of pyridoxal-5'-monophosphate to cultures of strain ilvA504 growing in excess isoleucine, valine, and leucine resulted in an increased rate of growth and repression of the synthesis of the isoleucine and valine biosynthetic enzymes. No differences in the rate of synthesis of the branched-chain aminoacyl-transfer ribonucleic acid synthetases were observed in cultures of ilvA504 growing with or without added pyridoxal-5'-monophosphate. The differential rates of synthesis of all three enzymes were similar to the rates measured in strain LT-2. These experiments suggest that different forms of the ilvA gene product are involved in the regulation of the branched-chain amino acid biosynthetic enzymes and the branched-chain aminoacyl-transfer ribonucleic acid synthetases.  相似文献   

13.
Polypeptide chains of 10 aminoacyl-transfer ribonucleic acid synthetases (those for arginine, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, phenylalanine, threonine, and valine) have been identified in lysates of Escherichia coli resolved by the O'Farrell two-dimensional gel system. By labeling cells uniformly with [14C]glucose and by measuring the total amounts of these polypeptides by their radioactivity, estimations of the steady-state, molecular amounts of these enzymes were made and compared to the number of ribosomes and elongation factors in these cells. Portions of a reference culture grown on glucose and labeled with [14C]leucine or [35S]sulfate were mixed with four cultures grown in widely different media containing [3H]leucine or [3H]leucine plus [3H]isoleucine. From the isotope ratios of the total protein and of the spots containing the synthetase chains, the chemical amount of each synthetase relative to that of the reference culture was determined. The results, where comparable, show reasonable agreement with enzyme activity measurements. In general, these synthetases each exhibit a positive correlation with growth rate in unrestricted media, indicating a strong tendency for the levels of transfer ribonucleic acid, synthetases, elongation factors, and ribosomes to remain approximately, though not exactly, in balance at different growth rates.  相似文献   

14.
The cells of a streptomycin-dependent strain of Bacillus megaterium took up only 2 to 5% of the dihydrostreptomycin present in the medium when grown in the minimum concentration of streptomycin required for growth. During growth in the presence of (3)H-dihydrostreptomycin, radioactivity was accumulated intracellularly in three forms, namely, unbound, loosely bound to the ribosomes (removable by dialysis), and tightly bound to the ribosomes (retained after prolonged dialysis). More radioactivity for a given amount of ribonucleic acid was bound by ribosomes attached to the cell membrane than by supernatant ribosomes. Of the nondialyzable radioactivity associated with isolated ribonucleic acid, 40 to 60% was solubilized by treatment with ribonuclease or by dilute alkaline hydrolysis.  相似文献   

15.
1. The technique of DNA-RNA hybridization was used to follow changes in the amount and average lifetime of unstable messenger RNA in Escherichia coli M.R.E. 600 over a wide range of different growth conditions. The method of analysis was based on the kinetics of incorporation of exogenous labelled nucleic acid bases into the RNA of steadily growing cultures, as described by Bolton & McCarthy (1962). 2. The ratio of the average lifetime of messenger RNA to the mean generation time of E. coli cultures was constant over the temperature range 25-45 degrees C in a given medium, but the constant varied with the nature of the growth medium. For cultures growing in sodium lactate-salts or glucose-salts media the ratio was 0.046+/-0.005 and in enriched broth it was 0.087+/-0.009. Measurements of the amounts of transfer RNA, ribosomal RNA and messenger RNA were also made. The results confirmed earlier reports that the ratio of the amount of messenger RNA to the amount of ribosomes in the cells is virtually constant. On the other hand, the ratio of the amount of transfer RNA to the amount of ribosomal RNA decreased with increasing growth rate at a given temperature. 3. In cultures at temperatures higher than necessary for optimum rates of growth the average lifetime of messenger RNA lengthened in harmony with the increased time required for cell division. It seems that suboptimum growth rates at higher temperatures cannot be explained simply as a combination of increased rates of synthesis and breakdown of messenger RNA with a grossly decreased efficiency of translation. The absolute rate of messenger RNA synthesis was lowered, and its amount in the cells was typical of all other cultures grown at lower temperatures in the same medium. 4. The rate of entry of exogenous labelled uracil into unstable messenger RNA and stable ribosomal RNA was constant in all media at all temperatures in the approximate ratio 1:2. In media supporting a lower rate of growth, e.g. lactate-salts or glucose-salts media, the messenger RNA fraction constituted 2.2+/-0.3% of the total cellular RNA. In enriched broth 3.6+/-0.3% of the total RNA was messenger.  相似文献   

16.
Some of the spontaneous streptomycin-resistant mutants of Escherichia coli strain C600 exhibit pleiotropic effects in addition to the antibiotic resistance. These effects include decreased growth rates, reduced levels of certain enzymes, and poor support of bacteriophage growth. One of these mutants, strain SM3, was studied further. We have examined the question of whether the reduced growth rate of the mutant SM3 is related to the reduction in relative amounts of ribosomes or to the reduction in the efficiency of ribosomes in protein synthesis. Measurements of alpha, the differential synthesis rate of ribosomal protein, revealed that the protein synthesis effeciency of ribosomes from the mutant strain SM3 was reduced about twofold relative to that of the parent strain C600. Measurements of the induction lag for beta-galactosidase and of the synthesis time of several different molecular-weight classes of proteins indicated that the mutation resulted in a marked reduction in the peptide chain growth rate. This reduction in the chain growth rate probably accounted for most of the observed reduction in the growth rate of the mutant strain. These experimental results show that the strA gene product, the S12 protein of the 30S subunit, is involved in some aspect of protein chain elongation. Presumably this involvement occurs during the messenger ribonucleic acid-directed binding of transfer ribonucleic acid to the ribosome.  相似文献   

17.
The levels of macromolecules in Escherichia coli 15T(-) growing in broth, glucose, succinate, and acetate media were determined to compare relationships among deoxyribonucleic acid (DNA), ribosomal ribonucleic acid (rRNA), transfer RNA (tRNA), and protein in cells at different growth rates. DNA and protein increased in relative amounts with decreasing growth rate; relative amounts of rRNA and tRNA decreased, tRNA making up a slightly larger proportion of RNA. For several amino acid-specific tRNAs studied, acceptor capacities per unit of DNA increased with increasing growth rate. The syntheses of tRNA and rRNA are regulated by similar, yet different, mechanisms. Chromatographic examination on columns of benzoylated diethylaminoethyl-cellulose of isoaccepting tRNAs for arginine, leucine, lysine, methionine, phenylalanine, serine, and valine did not reveal differences in the isoaccepting profiles for rapidly (broth culture) and slowly growing (acetate culture) cells. Therefore, isoacceptors for individual amino acids appear to be regulated as a group. Lower efficiencies of ribosomal function in protein synthesis can be explained, in part, by a low ratio of tRNA to the number of ribosomes available and by a decreasing concentration of tRNA with decreasing growth rate. Data on the tRNAs specific for seven amino acids indicate that the decreasing concentration of tRNA is a general event rather than a severe limitation of any one tRNA or isoaccepting tRNA.  相似文献   

18.
Peripheral hyphae were separated from the remaining thallus of Rhizoctonia solani in exponential and stationary phases of growth. The QO(2) in whole cells of peripheral hyphae from young fungal colonies was on the average 2.6 times and the protein content 1.6 times greater than in peripheral hyphae from old fungal colonies. The overall rate of amino acid uptake was less in old than in young fungal colonies. In a polyuridylic acid-polyphenylalanine incorporating system, the two kinds of peripheral hyphae required ribosomes, supernatant fraction, polyuridylic acid, soluble ribonucleic acid, adenosine triphosphate, and pyruvate kinase. The rate of polyphenylalanine synthesis in old fungal colonies was slower than in the young fungal colonies. The ribosomes and supernatant fraction of the young and old fungal colonies were interchangeable and active. The factor responsible for deficient protein synthesis in old fungal colonies appears to be in the soluble fraction of the mycelium.  相似文献   

19.
The assumption that prompted the studies reported in this paper was that the unsatisfactory state of our knowledge on the regulation of cellular growth might derive from the reductionistic approach used to investigate it. Thus an analysis of cellular growth which applied concepts derived from systems dynamics was undertaken. First of all a dynamic model of cellular growth has been constructed. It has the following features: the levels of DNA, ribosomes and proteins are the defining levels; cellular growth is expressed by a close loop in which the level of ribosomes per genome and, indirectly, the level of proteins per genome are stabilized around goal values by the action of negative feed backs. The validity of the model has been tested by its ability to predict the growth kinetics of a real system (exponentially growing Neurospora cells). The simulated growth has been found to reproduce with great accuracy that of Neurospora cells. A slightly modified model, which takes into consideration also the degradation of ribosomes and of proteins, is shown to predict with accuracy the dynamics of growth of both growing and resting fibroblasts. These latter results suggest that the rates of macromolecular turnovers play a central role in the control of proliferation of mammalian cells: the condition of zero growth seems to be achieved when the rate of synthesis and the rate of degradation of proteins are the same. The possibility is discussed that the model indicates a unifying hypothesis of the mode of action of growth controlling conditions (hormones, growth factors, contact inhibition).  相似文献   

20.
Ribosome Patterns in Escherichia coli Growing at Various Rates   总被引:2,自引:1,他引:1       下载免费PDF全文
The distribution of ribosomes, 30 and 50S subunits and polysomes, at three different growth rates of Escherichia coli strains B and K-12 has been studied. The usual percentage of subunits is about 20%. However, at the lowest growth rate (mu = generations/hour), mu = 0.45 at 30C, the proportion of subunits is about 30%. An exceptional situation exists in K-12 strains growing at maximum growth rate, mu = 1.35, where the percentage of subunits is 45%. Several points of control over ribosome production are thus indicated. It is suggested that "subunit pool" is essentially a reserve. Furthermore, the polysome content when related to deoxyribonucleic acid content varies directly with the growth rate, which indicates the average efficiency of polysomes in protein synthesis does not vary over the range of growth rates tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号