共查询到20条相似文献,搜索用时 121 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
用常压反相色谱对从短短芽孢杆菌HOB1发酵液中提取到的脂肽类生物表面活性剂进行了分离纯化, 并用HPLC制备了其中的一个化合物。经电喷雾质谱分析得到该化合物的相对分子量为1035.7 D, GC/MS的分析结果显示其脂肪酸部分为C15 β-羟基脂肪酸, 由PITC柱前衍生法测得该化合物的氨基酸组成比例为: Asp:Glu:Val:Leu = 1:1:1:4。结果显示该脂肽的结构与表面活性素(C15 surfactin)类似。实验表明, 除芽孢杆菌属外, surfactin系列脂肽还能为短芽孢杆菌属所产生。 相似文献
9.
10.
结合脂肽和糖脂的性能优势,致力于产脂肽-鼠李糖脂混合型生物表面活性剂的新菌株选育和培养条件优化。采用血平板溶血圈法初筛菌株、改进排油圈法快速检测产量以及飞行时间质谱鉴定产物结构。对优选菌株的碳源、氮源和磷酸盐缓冲液、重要金属离子浓度等进行了单因子和正交试验,优化了培养基和培养条件。采用高压液相色谱和蒽酮比色法定量分析了产物组成。筛选获得了同时积累糖脂和脂肽的新菌株,鉴定命名为芽胞杆菌Bacillus subtilis THY-7。摇瓶分批培养48 h,细胞OD600为37.0,产物浓度2.4 g/L,分别是优化前的3.4倍和3.1倍。发酵罐补料分批培养,泡沫中产物浓度达到4.5 g/L,且74%为表面活性素,22%为鼠李糖脂。B. subtilis THY-7是具有脂肽-鼠李糖脂高产潜力的优选菌株。 相似文献
11.
12.
13.
Aims: To screen and identify biosurfactant producers from petroleum‐contaminated soil; to use response surface methodology (RSM) for medium optimization to enhance biosurfactant production; and to study the properties of the newly obtained biosurfactant towards pH, temperature and salinity. Methods and Results: We successfully isolated three biosurfactant producers from petroleum‐contaminated soil and identified them through 16S rRNA sequence analysis, which exhibit the highest similarities to Acinetobacter beijerinckii (100%), Kocuria marina (99%) and Kineococcus marinus (99%), respectively. A quadratic response model was constructed through RSM designs, leading to a 57·5% increase of the growth‐associated biosurfactant production by Acinetobacter sp. YC‐X 2 with an optimized medium: beef extract 3·12 g l?1; peptone 20·87 g l?1; NaCl 1·04 g l?1; and n‐hexadecane 1·86 g l?1. Biosurfactant produced by Acinetobacter sp. YC‐X 2 retained its properties during exposure to a wide range of pH values (5–11), high temperatures (up to 121°C) and high salinities [up to 18% (w/v) Na+ and Ca2+], which was more sensitive to Ca2+ than Na+. Conclusions: Two novel biosurfactant producers were isolated from petroleum‐contaminated soil. Biosurfactant from Acinetobacter sp. YC‐X 2 has good properties to a wide range of pH, high temperature and high salinity, and its production was optimized successfully through RSM. Significance and Impact of the Study: The fact, an increasing demand of high‐quality surfactants and the lack of cost‐competitive bioprocesses of biosurfactants for commercial utilization, motivates researchers to develop cost‐effective strategies for biosurfactant production through isolating new biosurfactant producers with special surface‐active properties and optimizing their cultural conditions. Two novel biosurfactant producers in this study will widen our knowledge about this kind of micro‐organism. This work is the first application of RSM designs for cultural optimization of biosurfactant produced by Acinetobacter genus and the first report that biosurfactant may be more sensitive to Ca2+ than Na+. 相似文献
14.
An organophosphorus pesticide malathion biodegradation was investigated by using the bacteria Ochrobactrum sp. M1D isolated from a soil sample of peach orchards in Palampur, District Kangra, Himachal Pradesh (India). The bacterium was able to utilize malathion as the sole source of carbon and energy. The isolated bacterium was found psychrotolerant and could degrade 100% of 100 mg l−1 malathion in minimal salt medium at 20°C, pH 7·0 within 12 days with no major significant metabolites left at the end of the study. Through GCMS analysis, methyl phosphate, diethyl maleate, and diethyl 2-mercaptosuccinate were detected and identified as the major pathway metabolites. Based on the GCMS profile, three probable degradation pathways were interpreted. The present study is the first report of malathion biodegradation at both the psychrophilic and mesophilic conditions by any psychrotolerant strain and also through multiple degradation pathways. In the future, the strain can be explored to bio-remediate the malathion contaminated soil in the cold climatic region and to utilize the enzymatic systems for advanced biotechnology applications. 相似文献
15.
Da Jung Lim Si Young Yang Mi Young Noh Chul Won Lee Jin Cheol Kim In Seon Kim 《Entomological Research》2017,47(6):337-343
Myzus persicae is an important insect pest that reduces crop production worldwide. The use of pesticides for aphid control has generated much concern related to insect resistance and undesirable environmental effects. In an effort to discover new alternatives to counter M. persicae, we found that Pseudomonas isolate DJ15 produced insecticidal metabolites. To isolate the insecticidal metabolites, a cell‐free supernatant of DJ15 was extracted and subjected to bioassay‐guided chromatography. Based on the structures elucidated in instrumental analyses, the metabolites were identified as xantholysins A and B. The metabolites showed strong insecticidal activity against M. persicae with 50% mortality at levels of 13.4 and 24.6 μg/mL for xantholysins A and B, respectively. This is the first study to identify xantholysins as insecticidal metabolites against M. persicae. 相似文献
16.
《Bioscience, biotechnology, and biochemistry》2013,77(5):1264-1271
A bacterium that utilizes 2,4,6-tribromophenol (2,4,6-TBP) as sole carbon and energy source was isolated from soil contaminated with brominated pollutants. This bacterium, designated strain TB01, was identified as an Ochrobactrum species. The organism degraded 100 μM of 2,4,6-TBP within 36 h in a growing culture. In addition, it released 3 mol of bromine ions from 1 mol of 2,4,6-TBP during the complete degradation of 2,4,6-TBP in a resting cell assay. Moreover, cells grown on 2,4,6-TBP degraded 2,6-dibromophenol (2,6-DBP), 4-bromophenol (4-BP), 2,4,6-trichlorophenol (2,4,6-TCP) and phenol. Metabolic intermediates were detected in the reaction mixture of an in vitro assay for 2,4,6-TBP, and they were identified as 2,4-DBP and 2-BP. NADH was required for the debromination of 2,4,6-TBP. These results suggest that 2,4,6-TBP is converted to phenol through sequential reductive debromination reactions via 2,4-DBP and 2-BP by this strain. 相似文献
17.
Anuradha Hora 《Preparative biochemistry & biotechnology》2013,43(8):769-784
Hexavalent chromium contamination is a serious problem due to its high toxicity and carcinogenic effects on the biological systems. The enzymatic reduction of toxic Cr(VI) to the less toxic Cr(III) is an efficient technology for detoxification of Cr(VI)-contaminated industrial effluents. In this regard, a chromate reductase enzyme from a novel Ochrobactrum sp. strain Cr-B4, having the ability to detoxify Cr(VI) contaminated sites, has been partially purified and characterized. The molecular mass of this chromate reductase was found to be 31.53 kD, with a specific activity 14.26 U/mg without any addition of electron donors. The temperature and pH optima for chromate reductase activity were 40°C and 8.0, respectively. The activation energy (Ea) for the chromate reductase was found to be 34.7 kJ/mol up to 40°C and the activation energy for its deactivation (Ed) was found to be 79.6 kJ/mol over a temperature range of 50–80°C. The frequency factor for activation of chromate reductase was found to be 566.79 s?1, and for deactivation of chromate reductase it was found to be 265.66 × 103 s?1. The reductase activity of this enzyme was affected by the presence of various heavy metals and complexing agents, some of which (ethylenediamine tetraacetic acid [EDTA], mercaptoethanol, NaN3, Pb2+, Ni2+, Zn2+, and Cd2+) inhibited the enzyme activity, while metals like Cu2+ and Fe3+ significantly enhanced the reductase activity. The enzyme followed Michaelis–Menten kinetics with Km of 104.29 µM and a Vmax of 4.64 µM/min/mg. 相似文献
18.
Isabelle Grangemard Franoise Peypoux Jean Wallach Bhupesh C. Das Henri Labb Anita Caille Monique Genest Rgine Maget-Dana Marius Ptak Jean-Marc Bonmatin 《Journal of peptide science》1997,3(2):145-154
The biosynthesis of bacterial isoleucyl-rich surfactins was controlled by supplementation of L -isoleucine to the culture medium. Two new variants, the [Ile4,7]- and [Ile2,4,7]surfactins, were thus produced by Bacillus subtilis and their separation was achieved by reverse-phase HPLC. Amino acids of the heptapeptide moiety were analysed by chemical methods, and the lipid moiety was identified to β-hydroxy anteiso pentadecanoic acid by combined GC/MS. Sequences were established on the basis of two-dimensional NMR data. Because conformational parameters issuing from NMR spectra suggested that the cyclic backbone fold was globally conserved in the new variants, structure–activity relationships were discussed in details on the basis of the three-dimensional model of surfactin in solution. Indeed, both variants have increased surface properties compared with that of surfactin, and this improvement is assigned to an increase of the hydrophobicity of the apolar domain favouring micellization. Furthermore, the additional Leu-to-Ile substitution at position 2 in the [Ile2,4,7]surfactin leads to a substantial increase of its affinity for calcium, when compared with that of [Ile4,7]surfactin or surfactin. This effect is assigned, from the model, to an increase in the accessibility of the acidic side chains constituting the calcium binding site. Thus, the propensities of such active lipopeptides for both hydrophobic and electrostatic interactions were improved, further substantiating that they can be rationally designed. © 1997 European Peptide Society and John Wiley & Sons, Ltd 相似文献
19.
A novel lipopeptide produced by a Pacific Ocean deep-sea bacterium, Rhodococcus sp. TW53 总被引:1,自引:0,他引:1
Aims: Our goal was to find a novel, biosurfactant‐producing bacterium from Pacific Ocean deep‐sea sediments. Methods and Results: An oil‐degrading biosurfactant‐producing bacterium TW53 was obtained from deep‐sea sediment, and was identified through 16S rDNA analysis as belonging to the genus Rhodococcus. It lowered the surface tension of its culture to 34·4 mN m?1. Thin layer chromatography (TLC) showed that the crude biosurfactants of TW53 were composed of lipopeptides and free fatty acids (FA). The lipopeptides were purified with column chromatography and then hydrolysed with 6 mol l?1 HCl. Gas chromatography‐mass spectrometry analysis showed that the hydrolyte in the hydrophobic fraction contained five kinds of FA with chain lengths of C14–C19, and C16H32O2 was a major component making up 59·18% of the total. However, 3‐hydroxyl FA was not found, although it is usually found in lipopeptides. Silica gel TLC revealed that the hydrolyte in the hydrophilic fraction was composed of five kinds of amino acids; consistently, ESI‐Q‐TOF‐MS analysis confirmed the composition results and provided their sequence tentatively as Ala‐Ile‐Asp‐Met‐Pro. Furthermore, the yield and CMC (critical micelle concentrations) of purified lipopeptides were examined. The purified product reduced the surface tension of water to 30·7 mN m?1 with a CMC value of 23·7 mg l?1. These results suggest that Rhodococcus sp. TW53 produces a novel lipopeptide that we have named rhodofactin. Conclusion: The deep‐sea isolate Rhodococcus sp. TW53 was the first reported lipopeptide‐producing bacterium of this genus. The lipopeptides had novel chemical compositions. Significance and Impact of the Study: Rhodococcus sp. TW53 has potential in the exploration of new biosurfactants and could be used in bioremediation of marine oil pollution. 相似文献
20.
串珠镰刀菌素降解菌的筛选及特性分析 总被引:3,自引:0,他引:3
从黑龙江省镜泊湖附近的草甸土中筛选到一株能以串珠镰刀菌素(MON)为唯一碳源和能源生长的Y21-2菌株。该菌在含500μg/mL MON的基础培养液中菌数从107增长至1010。根据常规形态特征分析、生理生化性状、G+C mol%含量测定及16S rDNA基因序列分析将其鉴定为根瘤菌科的苍白杆菌属(Ochrobactrum)。静息细胞试验证实Y21-2菌株细胞内确实存在能够降解MON的酶系。 相似文献