首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The visual worlds of most primates are rich with potential color signals, and many representatives of the order have evolved the biological mechanisms that allow them to exploit these sources of information. Unlike the catarrhines, platyrrhines typically have sex-linked polymorphic color vision that provides individuals with any of several distinct types of color vision, including both trichromatic and dichromatic variants. In recent years, this polymorphism has been the target of an expanding range of research efforts. As a result, researchers now reasonably understand the proximate biology underlying the polymorphisms, and a number of ideas have emerged as to their evolution. Progress has also been made in illuminating how color vision capacities may be related to the particular visual tasks that New World monkeys face.  相似文献   

3.
Biomechanical scaling of mandibular dimensions in New World Monkeys   总被引:4,自引:0,他引:4  
Previous studies show that folivorous Old World monkeys have shorter, deeper mandibles and shorter, wider condyles than frugivorous ones. These morphologies have been related to leaf mastication in colobines and ingestion of large, tough fruits in cercopithecines. This study examines New World monkeys in order to determine whether they exhibit similar adaptations to diet. New World monkeys have relatively long, transversely thin mandibles and somewhat deep mandibles and narrow condyles. Except for their deep mandibles, folivorous New World monkeys (i.e., Alouatta) do not exhibit the mandibular and condylar specializations typical of cercopithecid folivores. Reliance on comparatively nonfibrous foods plus alterations in masticatory muscle ratios among New World monkeys partially accounts for observed differences between folivorous New and Old World monkeys. In addition, adaptations for howling in Alouatta appear to have a significant effect on mandibular morphology. A biomechanical interpretation of craniofacial scaling patterns suggests that the mandibles of New World monkeys are subjected to lower condylar loads and considerably less twisting of the mandibular corpus than those of comparable Old World monkeys.  相似文献   

4.
The major histocompatibility complex (Mhc) is a family of loci characterized by its relatively rapid evolutionary turnover, large genetic distances between genes, and long persistence of allelic lineages effected by balancing selection. These features render the Mhc highly suitable for answering questions concerning speciation and adaptive radiation. The aim of the present study was to use Mhc-DRB genes to make inferences about the founding population of the Platyrrhini. Three segments, each approximately 300 base pairs in length, of the platyrrhine DRB genes were amplified by the polymerase chain reaction and sequenced. The segments were derived from intron 2, exon 3, and exon 6 of DRB genes from different species of New World monkeys. The results of the study have revealed that on a phylogenetic tree, all of the tested platyrrhine genes appear to form a single cluster, while all catarrhine DRB genes form a distinct cluster, although the bootstrap values fail to provide statistically significant support for the separation of these two clades. This observation suggests that the multiple platyrrhine genes originated from a single ancestral gene after the divergence of the Platyrrhini and Catarrhini and thus contradicts the results of an earlier study in which some exon 2 DRB sequences appeared to predate the split of the two primate groups. The inconsistency in the DRB gene phylogeny can be explained by postulating convergent evolution for the peptide-binding region of the DRB exon 2 sequences. The phylogeny of the platyrrhine DRB genes (except for exon 2) is relatively "shallow"; the distances between genes are relatively short (in comparison to the catarrhine DRB genes), and there is a tendency for sequences of individual species to cluster together. The phylogeny of the platyrrhine DRB genes is consistent with the postulate that a small population founded the group and that there is an ongoing adaptive radiation from small, relatively isolated founding populations.  相似文献   

5.
Oxytocin (OXT) is an important neurohypophyseal hormone that influences wide spectrum of reproductive and social processes. Eutherian mammals possess a highly conserved sequence of OXT (Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly). However, in this study, we sequenced the coding region for OXT in 22 species covering all New World monkeys (NWM) genera and clades, and characterize five OXT variants, including consensus mammalian Leu8-OXT, major variant Pro8-OXT, and three previously unreported variants: Ala8-OXT, Thr8-OXT, and Phe2-OXT. Pro8-OXT shows clear structural and physicochemical differences from Leu8-OXT. We report multiple predicted amino acid substitutions in the G protein-coupled OXT receptor (OXTR), especially in the critical N-terminus, which is crucial for OXT recognition and binding. Genera with same Pro8-OXT tend to cluster together on a phylogenetic tree based on OXTR sequence, and we demonstrate significant coevolution between OXT and OXTR. NWM species are characterized by high incidence of social monogamy, and we document an association between OXTR phylogeny and social monogamy. Our results demonstrate remarkable genetic diversity in the NWM OXT/OXTR system, which can provide a foundation for molecular, pharmacological, and behavioral studies of the role of OXT signaling in regulating complex social phenotypes.  相似文献   

6.
Despite considerable interest in recent years on species distribution modeling and phylogenetic niche conservatism, little is known about the way in which climatic niches change over evolutionary time. This knowledge is of major importance to understand the mechanisms underlying limits of species distributions, as well as to infer how different lineages might be affected by anthropogenic climate change. In this study we investigate the tempo and mode climatic niche evolution in New World monkeys (Platyrrhini). Climatic conditions found throughout the distribution of 140 primate species were investigated using a principal component analysis, which indicated that mean temperature (particularly during the winter) is the most important climatic correlate of platyrrhine geographical distributions, accounting for nearly half of the interspecific variation in climatic niches. The effects of precipitation were associated with the second principal component, particularly with respect to the dry season. When models of trait evolution were fit to scores on each of the principal component axes, significant phylogenetic signal was detected for PC1 scores, but not for PC2 scores. Interestingly, although all platyrrhine families occupied comparable regions of climatic space, some aotid species such as Aotus lemurinus, A. jorgehernandezi, and A. miconax show highly distinctive climatic niches associated with drier conditions (high PC2 scores). This shift might have been made possible by their nocturnal habits, which could serve as an exaptation that allow them to be less constrained by humidity during the night. These results underscore the usefulness of investigating explicitly the tempo and mode of climatic niche evolution and its role in determining species distributions.  相似文献   

7.
8.
Genetic variation in the human serotonin system has long been studied because of its functional consequences and links to various neuropsychiatric and behavior‐related disorders. Among non‐human primates, the common marmosets (Callithrix jacchus) and tufted capuchins monkeys (Cebus apella) are becoming increasingly used as models to study the effects of genes, environments, and their interaction on physiology and complex behavior. In order to investigate the independent functions of and potential interactions between serotonin‐related genes, anxiety and neuropsychiatric disorders, we analyzed the presence and variability of the serotonin transporter gene‐linked polymorphic region (5‐HTTLPR) in marmoset and capuchin monkeys. By PCR and using heterologous primers from the human sequence, we amplified and then sequenced the corresponding 5‐HTT region in marmosets and capuchins. The resulting data revealed the presence of a tandem repeat sequence similar to that described in humans, but unlike humans and other Old World primates, no variable length alleles were detected in these New World monkeys, suggesting that if serotonin transporter is involved in modulating behavior in these animals it does so through different molecular mechanisms. Am. J. Primatol. 74:1028‐1034, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
10.
While most mammals including the prosimians have a single copy of the growth hormone (GH) gene, anthropoids possess a cluster of GH-related genes. Throughout the evolution of the main anthropoid groups [New World Monkeys (NWM), Old World Monkeys (OWM), and apes], two features stand out of the GH loci. The first is the appearance of chorionic somatommamotropin hormone (CSH) genes within the OWM lineage and the second is the expansion of the loci intergenic regions in the OWM and apes. In relation with this loci expansion, the NWM possess intergenic regions of homogeneous lengths (3.5 kb). In contrast, heterogeneous lengths (6 and 13 kb) have been reported for species of the OWM. At the present, none of the OWM genomic GH loci organizations have been described. Here, we report the genomic organization of the GH locus in the rhesus monkey, this locus has six GH-related genes separated by five intergenic regions. The 5' end gene (GH-1) encodes for the pituitary GH and is followed by CSH-1, GH-2, CSH-2, CSH-3 and CSH-4 genes. The five intergenic regions have heterogeneous lengths and also present more or less the same Alu distribution as the human GH locus. To analyze the events that contributed to the extension of the intergenic regions of the GH locus and the emergence of the regulatory elements, the five GH locus intergenic regions of the spider monkey (NWM) were sequenced. The results of comparing the loci from both species suggest that the long intergenic regions (13 kb) of the rhesus GH locus share a common ancestor with the 3.5 kb intergenic regions of the spider monkey. However, the observed increased length of the former is due to an insertion (approximately 8.7 kb) at their 3' end. Interestingly in this insert, we discovered a DNA element resembling the enhancer of the CSH genes of the human GH locus. On the other hand, we observed that the short intergenic regions (6 kb) increased by a different recombination event.  相似文献   

11.
ABSTRACT

Genetic capacitors moderate expression of heritable variation and provide a novel mechanism for rapid evolution. The prototypic genetic capacitor, Hsp90, interfaces stress responses, developmental networks, trait thresholds and expression of wide-ranging morphological changes in Drosophila and other organisms. The Hsp90 capacitor hypothesis, that stress-sensitive storage and release of genetic variation through Hsp90 facilitates adaptive evolution in unpredictable environments, has been challenged by the belief that Hsp90-buffered variation is unconditionally deleterious. Here we review recent results supporting the Hsp90 capacitor hypothesis, highlighting the heritability, selectability, and potential evolvability of Hsp90-buffered traits. Despite a surprising bias toward morphological novelty and typically invariable quantitative traits, Hsp90-buffered changes are remarkably modular, and can be selected to high frequency independent of the expected negative side-effects or obvious correlated changes in other, unselected traits. Recent dissection of cryptic signal transduction variation involved in one Hsp90-buffered trait reveals potentially dozens of normally silent polymorphisms embedded in cell cycle, differentiation and growth control networks. Reduced function of Hsp90 substrates during environmental stress would destabilize robust developmental processes, relieve developmental constraints and plausibly enables genetic network remodeling by abundant cryptic alleles. We speculate that morphological transitions controlled by Hsp90 may fuel the incredible evolutionary lability of metazoan life-cycles.  相似文献   

12.
LINE-1 (L1) elements constitute the major family of retrotransposons in mammalian genomes. Here we report the first investigation of L1 evolution in New World monkeys (NWM). Two regions of the second open-reading frame were analyzed by two methods in three NWM species, the squirrel monkey (Saimiri sciureus), the tamarin (Saguinus oedipus), and the spider monkey (Ateles paniscus). Since these three species diverged, L1 has amplified in the Saimiri and Saguinus lineages but L1 activity seems to have been strongly reduced in the Ateles lineage. In addition, the active L1 lineage has evolved rapidly in Saimiri and Saguinus, generating species-specific subfamilies. In contrast, we found no evidence for a species-specific subfamily in Ateles, a result consistent with the low L1 activity in this species for the last ~25 My.  相似文献   

13.
目的阐明性成熟前食蟹猴生精细胞的发育进程。方法分别采集性成熟前不同年龄(0岁、0.5岁、1岁、1.5岁、2岁、2.5岁、3岁、3.5岁、4岁)食蟹猴睾丸,制作石蜡切片,进行HE染色和PAS/H染色。根据生精细胞的染色特性,分析性成熟前食蟹猴生精细胞的发育进程,并对食蟹猴精原干细胞进行初步鉴定。结果 HE染色结果显示,1岁及以下食蟹猴生精上皮上生精细胞仅有精原干细胞(包括Ad、At及Ap型精原细胞),1.5岁食蟹猴生精上皮上开始出现B型精原细胞,3岁食蟹猴生精上皮上出现精母细胞,4岁食蟹猴生精上皮上出现从精原干细胞到精子的所有生殖细胞。PAS/H染色结果显示,1~2.5岁食蟹猴Ad型精原细胞胞质呈PAS阳性,At型精原细胞胞质呈PAS弱阳性,Ap型精原细胞胞质呈PAS阴性;其他生精细胞及支持细胞胞质呈阴性;0.5岁及以下,3岁及以上食蟹猴生精细胞的胞质PAS/H染色特性与前者存在差异。结论本文详细阐述了性成熟前食蟹猴生精细胞随年龄增长的渐次性发育模式,并建立了性成熟前食蟹猴精原干细胞原位鉴定的一种新方法,这些研究结果为食蟹猴精原干细胞的其他相关研究奠定了基础。  相似文献   

14.
The tempo and mode of morphological evolution are influencedby several factors, among which evolutionary transformationsin developmental processes are likely to be important. Comparingthe embryos of extant species in an explicit phylogenetic framwork allows the estimation of minimum average rates of evolutionin quantitative developmental parameters. It also allows delineationof the maximum time that complex qualitative transformationsin developmental mechanism take to evolve. This paper analyzesrates of quantitative and qualitative developmental evolutionusing examples drawn primarily from echinoderms. The resultsdemonstrate that rates of developmental evolution can be comparableto rates of morphological evolution. There is no indicationthat rates of evolution in development are lower for earlierstages, contrary to the prediction of "tree" models of epigeneticinteractions. In particular, rates of evolution in oogenesiscan exceed rates of evolution in adult body size. Rates of developmentalevolution can vary by up to two orders of magnitude within aclade. Whether such large scale variation in evolutionary ratesof developmental processes is a general phenomenon can onlybe answered by further study.  相似文献   

15.
Variability contrasts with variation in that variability describes the potential for variation, not simply the expressed variation. The power of studying variability lies in creating a conceptual framework around which the relationship between the genotype and phenotype can be understood. Here, we attempt to demonstrate the importance of phenotypic variability, how it structures variation, and how fundamental developmental processes structure variability. Given the broad scope of this topic, we focus on three widely studied properties of variability: canalization, developmental stability and morphological integration. We have organized the paper to emphasize the importance of differentiating between the theory surrounding these components of phenotypic variability, their measurement and the biological factors surrounding their expression. First, we define these properties of variability, how they relate to each other and to variability as a whole. Second, we summarize the common methods of measurement for canalization, developmental stability and morphological integration and the reasoning behind these methods. Finally, we focus on jaw development as an example of how the basic processes of development affect variability and the resultant variation, with emphasis on how processes at all levels of the organismal hierarchy interact with one another and contribute to phenotypic variability.  相似文献   

16.
Although consistently absent in extant catarrhine monkeys, the presence and absence of the entepicondylar foramen of the humerus (EEF) vary greatly among living and fossil platyrrhines. Aiming to test the mode of evolution of this character in platyrrhine phylogeny, we performed stochastic character mapping of the presence and absence of the EEF based on museum material and literature research. We also tested for phylogenetic signal of the EEF and its correlation with semi-brachation, vertical clinging, and manipulative foraging in New World monkeys. We found more losses than gains of the EEF in the Haplorhini and Platyrrhini phylogenies. The EEF showed a strong phylogenetic signal congruent with a Brownian model of evolution. All models that assumed a dependence between foraging and locomotion behaviors showed a better fit to the data, but the differences from an independent model were not statistically significant. Thus, we assume that the observed pattern could have originated from genetic drift, except in Leontopithecus where the EEF appears to have been lost due to the narrowing of the distal humerus. Although not functionally relevant, the presence and absence of EEF is taxonomically useful for discriminating between the Aotus and Callicebus species groups, and diagnoses large platyrrhine clades such as marmosets and Atelidae. Thus, it should be considered when inferring systematic relationships among living and extinct platyrrhines.  相似文献   

17.
New World monkeys exhibit a more pronounced variability in encephalization than other primate taxa. In this comparative study, we tested two current hypotheses on brain size evolution, the Expensive Brain hypothesis and the Cognitive Buffer hypothesis, in a sample of 21 platyrrhine species. A high degree of habitat seasonality may impose an energetic constraint on brain size evolution if it leads to a high variation in caloric intake over time, as predicted by the Expensive Brain Hypothesis. However, simultaneously it may also provide the opportunity to reap the fitness benefits of increased cognitive abilities, which enable the exploitation of high‐quality food resources even during periods of scarcity, as predicted by the Cognitive Buffer hypothesis. By examining the effects of both habitat seasonality and the variation in monthly diet composition across species, we found support for both hypotheses, confirming previous results for catarrhine primates and lemurs. These findings are in accordance with an energetic and ecological view of brain size evolution. Am J Phys Anthropol 154:628–632, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Regulatory interactions buffer development against genetic and environmental perturbations, but adaptation requires phenotypes to change. We investigated the relationship between robustness and evolvability within the gene regulatory network underlying development of the larval skeleton in the sea urchin Strongylocentrotus purpuratus. We find extensive variation in gene expression in this network throughout development in a natural population, some of which has a heritable genetic basis. Switch-like regulatory interactions predominate during early development, buffer expression variation, and may promote the accumulation of cryptic genetic variation affecting early stages. Regulatory interactions during later development are typically more sensitive (linear), allowing variation in expression to affect downstream target genes. Variation in skeletal morphology is associated primarily with expression variation of a few, primarily structural, genes at terminal positions within the network. These results indicate that the position and properties of gene interactions within a network can have important evolutionary consequences independent of their immediate regulatory role.  相似文献   

19.
The ASPM (abnormal spindle-like microcephaly associated) gene has been proposed as a major determinant of cerebral cortical size among primates, including humans. Yet the specific functions of ASPM and its connection to human intelligence remain controversial. This debate is limited in part by a taxonomic focus on Old World monkeys and apes. Here we expand the comparative context of ASPM sequence analyses with a study of New World monkeys, a radiation of primates in which enlarged brain size has evolved in parallel in spider monkeys (genus Ateles) and capuchins (genus Cebus). The primate community of Costa Rica is perhaps a model system because it allows for independent pairwise comparisons of smaller- and larger-brained species within two taxonomic families. Accordingly, we analyzed the complete sequence of exon 18 of ASPM in Ateles geoffroyi, Alouatta palliata, Cebus capucinus, and Saimiri oerstedii. As the analysis of multiple species in a genus improves phylogenetic reconstruction, we also analyzed eleven published sequences from other New World monkeys. Our exon-wide, lineage-specific analysis of eleven genera and the ratio of rates of nonsynonymous to synonymous substitutions (dN/dS) on ASPM revealed no detectable evidence for positive selection in the lineages leading to Ateles or Cebus, as indicated by dN/dS ratios of <1.0 (0.6502 and 0.4268, respectively). Our results suggest that a multitude of interacting genes have driven the evolution of larger brains among primates, with different genes involved in this process in different encephalized lineages, or at least with evidence for positive selection not readily apparent for the same genes in all lineages. The primate community of Costa Rica may serve as a model system for future studies that aim to elucidate the molecular mechanisms underlying cognitive capacity and cortical size.  相似文献   

20.
The estimation of phylogenetic relationships and divergence times among a group of organisms is a fundamental first step toward understanding its biological diversification. The time of the most recent or last common ancestor (LCA) of extant platyrrhines is one of the most controversial among scholars of primate evolution. Here we use two molecular based approaches to date the initial divergence of the platyrrhine clade, Bayesian estimations under a relaxed-clock model and substitution rate plus generation time and body size, employing the fossil record and genome datasets. We also explore the robustness of our estimations with respect to changes in topology, fossil constraints and substitution rate, and discuss the implications of our findings for understanding the platyrrhine radiation. Our results suggest that fossil constraints, topology and substitution rate have an important influence on our divergence time estimates. Bayesian estimates using conservative but realistic fossil constraints suggest that the LCA of extant platyrrhines existed at ca. 29 Ma, with the 95% confidence limit for the node ranging from 27–31 Ma. The LCA of extant platyrrhine monkeys based on substitution rate corrected by generation time and body size was established between 21–29 Ma. The estimates based on the two approaches used in this study recalibrate the ages of the major platyrrhine clades and corroborate the hypothesis that they constitute very old lineages. These results can help reconcile several controversial points concerning the affinities of key early Miocene fossils that have arisen among paleontologists and molecular systematists. However, they cannot resolve the controversy of whether these fossil species truly belong to the extant lineages or to a stem platyrrhine clade. That question can only be resolved by morphology. Finally, we show that the use of different approaches and well supported fossil information gives a more robust divergence time estimate of a clade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号