首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Field measurements of net assimilation and respiration for seedlings of four hardwood species were made periodically over a growing season with soil moisture tension maintained between 0 and 0.75 bar. Total net assimilation per day was significantly greater for Acer saccharum than either Quercus rubra or Quercus alba and for Quercus macrocarpa as compared with Q. rubra, when measurements were made under natural shade conditions and light intensity varied from 80 to 120 ft-c. Mean light compensation points determined under canopy shade were 50.3, 53.5, 87.2, and 102.5 ft-c., respectively, for Acer saccharum, Quercus macrocarpa, Q. rubra, and Q. alba. In a 0.04-hectare canopy opening, total net assimilation per day was not significantly different between Q. rubra, Q. alba, and A. saccharum but was significantly greater for Q. macrocarpa than Q. alba and A. saccharum. Relationships between photosynthetic efficiency and successional characteristics of these species are inferred from the data.  相似文献   

2.
To elucidate how enriched CO2 atmospheres, soil fertility, and light availability interact to influence the long-term growth of tree seedlings, six co-occurring members of temperate forest communities including ash (Fraxinus americana L.), gray birch (Betula populifolia), red maple (Acer rubrum), yellow birch (Betula alleghaniensis), striped maple (Acer pensylvanicum), and red oak (Quercus rubra L.) were raised in a glasshouse for three years in a complete factorial design. After three years of growth, plants growing in elevated CO2 atmospheres were generally larger than those in ambient CO2 atmospheres, however, magnitudes of CO2-induced growth enhancements were contingent on the availability of nitrogen and light, as well as species identity. For all species, magnitudes of CO2-induced growth enhancements after one year of growth were greater than after three years of growth, though species' growth enhancements over the three years declined at different rates. These results suggest that CO2-induced enhancements in forest productivity may not be sustained for long periods of time. Additionally, species' differential growth responses to elevated CO2 may indirectly influence forest productivity via long-term species compositional changes in forests.  相似文献   

3.
The physiology, morphology and growth of first-year Betula papyrifera Marsh., Betula alleghaniensis Britton, Ostrya virginiana (Mill.) K. Koch, Acer saccharum Marsh., and Quercus rubra L. seedlings, which differ widely in reported successional affinity and shade tolerance, were compared in a controlled high-resource environment. Relative to late-successional, shade-tolerant Acer and Ostrya species, early-successional, shade-intolerant Betula species had high relative growth rates (RGR) and high rates of photosynthesis, nitrogen uptake and respiration when grown in high light. Fire-adapted Quercus rubra had intermediate photosynthetic rates, but had the lowest RGR and leaf area ratio and the highest root weight ratio of any species. Interspecific variation in RGR in high light was positively correlated with allocation to leaves and rates of photosynthesis and respiration, and negatively related to seed mass and leaf mass per unit area. Despite higher respiration rates, early-successional Betula papyrifera lost a lower percentage of daily photosynthetic CO2 gain to respiration than other species in high light. A subset comprised of the three Betulaceae family members was also grown in low light. As in high light, low-light grown Betula species had higher growth rates than tolerant Ostrya virainiana. The rapid growth habit of sarly-successional species in low light was associated with a higher proportion of biomass distributed to leaves, lower leaf mass per unit area, a lower proportion of biomass in roots, and a greater height per unit stem mass. Variation in these traits is discussed in terms of reported species ecologies in a resource availability context.  相似文献   

4.
Evidence suggests that impacts of fungal pathogens on tree recruitment tend to be greater in the forest understory than in openings, and that shade-tolerant trees are less vulnerable than shade-intolerant species. To investigate the role that harmful soil fungi may have in reducing regeneration of temperate trees, we applied fungicide to buried seeds of matched pairs of species differing in their relative shade tolerance and/or successional status (Acer negundo versus Acer saccharum, Prunus virginiana versus Prunus serotina, and Pinus strobus versus Tsuga canadensis), in three habitats that differed in their degree of openness (old field, forest gap, and forest understory). Our results indicated that soil fungi reduced germination of A. negundo, P. virginiana, P. serotina. and T. canadensis, and reduced viability of ungerminated seeds of P. strobus; no significant effects of fungi on seeds of A. saccharum were detected. However, we found seeds were not less likely to survive following burial in forest understory than in gaps. As well, results for only one species pair (A. negundo versus A. saccharum) were consistent with the prediction that shade-intolerant or successional species should be more susceptible to fungal attack than mature forest species. These results contrast with other studies of temperate and especially tropical forest trees.  相似文献   

5.
Forest succession may cause changes in nitrogen (N) availability, vegetation and fungal community composition that affect N uptake by trees and their mycorrhizal symbionts. Understanding how these changes affect the functioning of the mycorrhizal symbiosis is of interest to ecosystem ecology because of the fundamental roles mycorrhizae play in providing nutrition to trees and structuring forest ecosystems. We investigated changes in tree and mycorrhizal fungal community composition, the availability and uptake of N by trees and mycorrhizal fungi in a forest undergoing a successional transition (age-related loss of early successional tree taxa). In this system, 82–96% of mycorrhizal hyphae were ectomycorrhizal (EM). As biomass production of arbuscular mycorrhizal (AM) trees increased, AM hyphae comprised a significantly greater proportion of total fungal hyphae, and the EM contribution to the N requirement of EM-associated tree taxa declined from greater than 75% to less than 60%. Increasing N availability was associated with lower EM hyphal foraging and 15N tracer uptake, yet the EM-associated later-successional species Quercus rubra was nonetheless a stronger competitor for 15N than AM-associated Acer rubrum, likely due to the more extensive nature of the persistent EM hyphal network. These results indicate that successional increases in N availability and co-dominance by AM-associated trees have increased the importance of AM fungi in the mycorrhizal community, while down-regulating EM N acquisition and transfer processes. This work advances understanding of linkages between tree and fungal community composition, and indicates that successional changes in N availability may affect competition between tree taxa with divergent resource acquisition strategies.  相似文献   

6.
Exploitation of patchy light is a key determinant of plant performance in the forest understory. While many adaptive traits are known, the role of stem vasculature in understory photosynthesis is not established. Sectoriality—the degree of vascular constraint to long distance transport—has been hypothesized to limit growth in heterogeneous light. We simulated the photosynthetic potential of sectored and integrated plants in patchy light, as a function of soil water potential (patchy or uniform). We used hydraulic parameters typical of temperate woody species in an Ohm’s law model including a tangential resistance parameter, and simulated cavitation by varying axial resistance of leaves, leaves and roots, or the whole plant. Our results suggest that differential sectoriality will not affect photosynthesis when water is plentiful, but can constrain stomatal conductance at more negative soil water potentials, especially when only a small portion of the crown receives light. This effect is strongest just below the turgor loss point, and depends on axial resistance and soil water heterogeneity. Increased resistance in high light leaves decreases photosynthesis regardless of sectoriality. However, when resistance is increased for leaves and roots or the whole plant, photosynthesis decreases more for sectored than for integrated plants. Moreover, the simulations suggest that sectoriality can further depress photosynthesis when water availability is asymmetrical. These results might explain why integrated species, such as Betula lenta, B. alleghaniensis, and Acer saccharum thrive in the forest understory and grow rapidly into canopy gaps, while sectored species, such as Quercus rubra, do not.  相似文献   

7.
A 70-year-old thinned northeastern Fagus-Betula-Acer stand in the Adirondack Mountains of northern New York was fertilized with varying combinations of N, P, K, and lime in the spring of 1976.Betula alleghaniensis Brit.,Acer saccharum Marsh.,Acer rubrum L., andFagus grandifolia Ehrh. foliage was collected in the autumn for 1974 through 1977 and analyzed for foliage areas and weights, and levels of ash, N, P, K, Ca, Mg, Mn, Na, Fe, Zn, Al, Cu, and Co. Comparisons are made within species and among treatments, expressed as concentrations on a dry weight basis. Elemental composition is examined to determine the differential foliar responses to fertilization.Contribution of State University of New York College of Environmental Science and Forestry, Syracuse, New York, 13210.The authors are Graduate Research Assistant, Director of Huntington Forest, Technical Research Assistant, and Professor of Forest Soil Science (now deceased), SUNY, respectively.  相似文献   

8.
European earthworms are colonizing worm-free hardwood forests across North America. Leading edges of earthworm invasion in forests of northern Minnesota provide a rare opportunity to document changes in soil characteristics as earthworm invasions are occurring. Across leading edges of earthworm invasion in four northern hardwood stands, increasing total earthworm biomass was associated with rapid disappearance of the O horizon. Concurrently, the thickness, bulk density and total soil organic matter content of the A horizon increased, and it’s percent organic matter and fine root density decreased. Different earthworm species assemblages influenced the magnitude and type of change in these soil parameters. Soil N and P availability were lower in plots with high earthworm biomass compared to plots with low worm biomass. Decreases in soil nitrogen availability associated with high earthworm biomass were reflected in decreased foliar nitrogen content for Carex pensylvanica, Acer saccharum and Asarum canadense but increased foliar N for Athyrium felix-femina. Overall, high earthworm biomass resulted in increased foliar carbon to nitrogen ratios. The effects of earthworm species assemblages on forest soil properties are related to their feeding and burrowing habits in addition to effects related to total biomass. The potential for large ecosystem consequences following exotic earthworm invasion has only recently been recognized by forest ecologists. In the face of rapid change and multiple pressures on native forest ecosystems, the impacts of earthworm invasion on forest soil structure and function must be considered.  相似文献   

9.
Acer saccharum, Fraxinus americana, Juglans nigra, Acer rubrum, Cornus amomum, and Ulmus americana seedlings were subjected to a soil drying cycle and then rewatered. At frequent intervals during the drying cycle and following rewatering, determinations were made of equilibrium photosynthesis rates, leaf conductances and leaf water potentials. As the drying cycle progressed, leaf water potentials decreased, stomata closed, and rates of transpiration and photosynthesis were reduced. Stomata of the two Acer species initially were more sensitive to water stress than were those of the other species. At low leaf water potentials, stomata of Juglans and Cornus were more open than those of the other species. Photosynthesis of Acer saccharum, Fraxinus and Juglans was significantly reduced by plant water stress, while photosynthetic water use efficiency of Cornus and Juglans was most unfavourable. Photosynthesis/leaf conductance ratios in water stressed leaves were higher in Fraxinus than in the other species. Immediately after rewatering, only limited stomatal opening occurred in Acer saccharum and Cornus with recovery of stomatal opening most protracted in Fraxinus and Ulmus. There was extended reduction of photosynthesis of all species as a result of the soil drying treatment. This effect was most significant in Acer saccharum and Juglans. Survival of plants on moist and dry sites is discussed in relation to stomatal control of transpiration and metabolic responses to water stress. Research supported by the College of Agricultural and Life Sciences, University of Wisconsin-Madison and the International Shade Tree Conference. The cooperation of the Wisconsin Department of Natural Resources is acknowledged. Research supported by the College of Agricultural and Life Sciences, University of Wisconsin-Madison and the International Shade Tree Conference. The cooperation of the Wisconsin Department of Natural Resources is acknowledged.  相似文献   

10.
Foliar nitrogen isotope (δ15N) composition patterns have been linked to soil N, mycorrhizal fractionation, and within-plant fractionations. However, few studies have examined the potential importance of the direct foliar uptake of gaseous reactive N on foliar δ15N. Using an experimental set-up in which the rate of mycorrhizal infection was reduced using a fungicide, we examined the influence of mycorrhizae on foliar δ15N in potted red maple (Acer rubrum) seedlings along a regional N deposition gradient in New York State. Mycorrhizal associations altered foliar δ15N values in red maple seedlings from 0.06 to 0.74 ‰ across sites. At the same sites, we explored the predictive roles of direct foliar N uptake, soil δ15N, and mycorrhizae on foliar δ15N in adult stands of A. rubrum, American beech (Fagus grandifolia), black birch (Betula lenta), and red oak (Quercus rubra). Multiple regression analysis indicated that ambient atmospheric nitrogen dioxide (NO2) concentration explained 0, 69, 23, and 45 % of the variation in foliar δ15N in American beech, red maple, red oak, and black birch, respectively, after accounting for the influence of soil δ15N. There was no correlation between foliar δ13C and foliar %N with increasing atmospheric NO2 concentration in most species. Our findings suggest that total canopy uptake, and likely direct foliar N uptake, of pollution-derived atmospheric N deposition may significantly impact foliar δ15N in several dominant species occurring in temperate forest ecosystems.  相似文献   

11.
Foliar dehydration tolerance of twelve deciduous tree species   总被引:1,自引:0,他引:1  
The potential for foliar dehydration tolerance and maximum capacity for osmotic adjustment were compared among 12 temperate, deciduous tree species, under standardized soil and atmospheric conditions. Dehydration tolerance was operationally defined as lethal leaf water potential (); the of the last remaining leaves surviving a continuous, lethal soil drying episode. Nyssa sylvatica Marsh., and Liriodendron tulipifera L. were most sensitive to dehydration, having lethal leaf of -2.04 and -2.38 MPa, respectively. Chionanthus virginicus L., Quercus prinus L., Acer saccharum Marsh., and Quercus acutissima Carruthers withstood the most dehydration, with leaves not drying until leaf dropped to -5.63 MPa or below. Lethal leaf (in MPa) of other, intermediate species were: Quercus rubra L. (-3.34), Oxydendrum arboreum (L.) D.C. (-3.98), Halesia carolina L. (-4.11), Acer rubrum L. (-4.43), Quercus alba L. (-4.60), and Cornus florida L. (-4.88). Decreasing lethal leaf was significantly correlated with increasing capacity for osmotic adjustment. C. virginicus and Q. acutissima showed the most osmotic adjustment during the lethal soil drying episode, with osmotic potential at full turgor declining by 1.73 and 1.44 MPa, respectively. Other species having reductions in osmotic potential at full turgor exceeding 0.50 MPa were (in MPa) Q. prinus (0.89), A. saccharum (0.71), Q. alba (0.68), H. carolina (0.67), Q. rubra (0.60), and C. florida (0.52).  相似文献   

12.
Rising atmospheric [CO2] has the potential to alter soil carbon (C) cycling by increasing the content of recalcitrant constituents in plant litter, thereby decreasing rates of decomposition. Because fine root turnover constitutes a large fraction of annual NPP, changes in fine root decomposition are especially important. These responses will likely be affected by soil resource availability and the life history characteristics of the dominant tree species. We evaluated the effects of elevated atmospheric [CO2] and soil resource availability on the production and chemistry, mycorrhizal colonization, and decomposition of fine roots in an early- and late-successional tree species that are economically and ecologically important in north temperate forests. Open-top chambers were used to expose young trembling aspen (Populus tremuloides) and sugar maple (Acer saccharum) trees to ambient (36 Pa) and elevated (56 Pa) atmospheric CO2. Soil resource availability was composed of two treatments that bracketed the range found in the Upper Lake States, USA. After 2.5 years of growth, sugar maple had greater fine root standing crop due to relatively greater allocation to fine roots (30% of total root biomass) relative to aspen (7% total root biomass). Relative to the low soil resources treatment, aspen fine root biomass increased 76% with increased soil resource availability, but only under elevated [CO2]. Sugar maple fine root biomass increased 26% with increased soil resource availability (relative to the low soil resources treatment), and showed little response to elevated [CO2]. Concentrations of N and soluble phenolics, and C/N ratio in roots were similar for the two species, but aspen had slightly higher lignin and lower condensed tannins contents compared to sugar maple. As predicted by source-sink models of carbon allocation, pooled constituents (C/N ratio, soluble phenolics) increased in response to increased relative carbon availability (elevated [CO2]/low soil resource availability), however, biosynthetically distinct compounds (lignin, starch, condensed tannins) did not always respond as predicted. We found that mycorrhizal colonization of fine roots was not strongly affected by atmospheric [CO2] or soil resource availability, as indicated by root ergosterol contents. Overall, absolute changes in root chemical composition in response to increases in C and soil resource availability were small and had no effect on soil fungal biomass or specific rates of fine root decomposition. We conclude that root contributions to soil carbon cycling will mainly be influenced by fine root production and turnover responses to rising atmospheric [CO2], rather than changes in substrate chemistry.  相似文献   

13.
Coexisting plant species usually differ in resource requirements, which may also vary within species at successive demographic stages. Such differences become extremely important during the early life stages, since these are the most critical phases in woody-species recruitment, they depend heavily on resources, and they may determine future community composition. Under a global-change scenario, where climatic conditions, nutrient availability, and habitat characteristics are expected to be altered, it is difficult to predict the way in which plant recruitment will be affected. To understand the impact of different global-change drivers on community recruitment, we sowed a set of species representative of the different successional groups of a complete Mediterranean woody community under field conditions, and studied their emergence, growth, and survival along the main resource gradients of light, water, and nutrients. The light and nutrient gradients followed the natural range of conditions in the study area, but water availability was manipulated to simulate three contrasting climatic scenarios: wetter, drier, and current conditions. Structural equation modelling was used to provide a comprehensive analysis of the factors and relations governing plant recruitment. Overall, seedling emergence was determined directly by light; growth was determined by light and summer soil moisture; and survival was determined by summer soil moisture. Light was the main factor indirectly affecting the demographic stages of all species. However, the magnitude of the direct and indirect relationships varied among species. Particularly, species differed in their response to the expected drier climatic conditions, some (e.g. Pinus sylvestris, Acer opalus) being much more vulnerable than others (e.g. Cytisus scoparius, Salvia lavandulifolia). These differential responses could translate as major shifts in the structure of the overall plant community. Our results support the idea that the analysis of complex relations among essential resources is critical for accurate forecasts of the impact of climate change on community dynamics.  相似文献   

14.
Direct and interactive effects of CO2 and light on tree phytochemistry and insect fitness parameters were examined through experimental manipulations of plant growth conditions and performance of insect bioassays. Three species of deciduous trees (quaking aspen, Populus tremuloides; paper birch, Betula papyrifera; sugar maple, Acer saccharum) were grown under ambient (387±8 μL/L) and elevated (696±2 μL/L) levels of atmospheric CO2, with low and high light availability (375 and 855 μmol×m?2×s?1 at solar noon). Effects on the population and individual performance of a generalist phytophagous insect, the white‐marked tussock moth (Orgyia leucostigma) were evaluated. Caterpillars were reared on experimental trees for the duration of the larval stage, and complementary short‐term (fourth instar) feeding trials were conducted with insects fed detached leaves.
Phytochemical analyses demonstrated strong effects of both CO2 and light on all foliar nutritional variables (water, starch and nitrogen). For all species, enriched CO2 decreased water content and increased starch content, especially under high light conditions. High CO2 availability reduced levels of foliar nitrogen, but effects were species specific and most pronounced for high light aspen and birch. Analyses of secondary plant compounds revealed that levels of phenolic glycosides (salicortin and tremulacin) in aspen and condensed tannins in birch and maple were positively influenced by levels of both CO2 and light. In contrast, levels of condensed tannins in aspen were primarily affected by light, whereas levels of ellagitannins and gallotannins in maple responded to light and CO2, respectively.
The long‐term bioassays showed strong treatment effects on survival, development time, and pupal mass. In general, CO2 effects were pronounced in high light and decreased along the gradient aspen birch maple. For larvae reared on high light aspen, enriched CO2 resulted in 62% fewer survivors, with increased development time, and reduced pupal mass. For maple‐fed insects, elevated CO2 levels had negative effects on survival and pupal mass in low light. For birch, the only negative CO2 effects were observed in high light, where female larvae showed prolonged development. Fourth instar feeding trials demonstrated that low food conversion efficiency reduced insect performance. Elevated levels of CO2 significantly reduced total consumption, especially by insects on high light aspen and low light maple.
This research demonstrates that effects of CO2 on phytochemistry and insect performance can be strongly light‐dependent, and that plant responses to these two environmental variables differ among species. Overall, increased CO2 availability appeared to increase the defensive capacity of early‐successional species primarily under high light conditions, and of late‐successional species under low light conditions. Due to the interactive effects of tree species, light, CO2, and herbivory, community composition of forests may change in the future.  相似文献   

15.
Northern hardwood forests in the eastern US exhibit species-specific influences on nitrogen (N) cycling, suggesting that their phosphorus (P) cycling characteristics may also vary by species. These characteristics are increasingly important to understand in light of evidence suggesting that atmospheric N deposition has increased N availability in the region, potentially leading to phosphorus limitation. We examined how P characteristics differ among tree species and whether these characteristics respond to simulated N deposition (fertilization). We added NH4NO3 fertilizer (50 kg ha?1 year?1) to single-species plots of red oak (Quercus rubra L.), sugar maple (Acer saccharum Marsh.), eastern hemlock (Tsuga canadensis (L.) Carr.), American beech (Fagus grandifolia Ehrh.), and yellow birch (Betula alleghaniensis Britt.), in the Catskill Mountains, New York from 1997 to 2007. Species differences were observed in foliar, litter and root P concentrations, but all were unaffected by a cumulative N fertilization of 550 kg/ha. Similarly, measures of soil P availability and biotic P sufficiency differed by species but were unaffected by N fertilization. Results suggest species exhibit unique relationships to P as well as N cycles. We found little evidence that N fertilization leads to increased P limitation in these northern hardwood forests. However, species such as sugar maple and red oak may be sufficient in P, whereas beech and hemlock may be less sufficient and therefore potentially more sensitive to future N-stimulated P limitation.  相似文献   

16.
Soil weathering can be an important mechanism to neutralize acidity inforest soils. Tree species may differ in their effect on or response to soilweathering. We used soil mineral data and the natural strontium isotope ratio87Sr/86Sr as a tracer to identify the effect of treespecies on the Ca weathering rate. The tree species studied were sugar maple(Acer saccharum), hemlock (TsugaCanadensis), American beech (Fagusgrandifolia),red maple (Acer rubrum), white ash (FraxinusAmericana) and red oak (Quercus rubra) growingin a forest in northwestern Connecticut, USA. Three replicated sites dominatedby one of the six tree species were selected. At sugar maple and hemlock sitesthe dominant mineral concentrations were determined at three soil depths. Ateach site soil, soil water and stem wood of the dominant tree species weresampled and analyzed for the 87Sr/86Sr ratio, total SrandCa content. Atmospheric deposition was collected and analyzed for the sameconstituents. Optical analysis showed that biotite and plagioclaseconcentrations were lower in the soil beneath hemlock than beneath sugar mapleand suggested species effects on mineral weathering in the upper 10cm of the mineral soil. These results could not be confirmed withdata obtained by the Sr isotope study. Within the sensitivity of the Sr isotopemethod, we could not detect tree species effects on Ca weathering andcalculatedCa weathering rates were low at all sites (< 60mgm–2yr–1). Wefound a positive correlation between Ca weathering and the total Caconcentration in the surface soil. These results indicate that the absolutedifferences in Ca weathering rate between tree species in these acidic surfacesoils are small and are more controlled by the soil parent material(plagioclasecontent) than by tree species.  相似文献   

17.
Summary Saplings of three, co-occurring maple species in a mature maple-beech forest differed in a suite of structural and physiological characters that separated the canopy species, Acer, saccharum, from the two subcanopy species, A. pensylvanicum and A. spicatum. Acer saccharum had both more dense wood and tougher and heavier but thinner leaves than the subcanopy species. Acer pensylvanicum had the largest, lightest leaves with high stomatal density and its canopy architecture was the most effective in terms of leaf display for light interception. Acer spicatum had weaker wood similar to that of A. pensylvanicum but also small, soft and relatively poorly displayed leaves. Both subcanopy species maintained marginally higher average rates of photosynthesis over the growing season in the understory environment. We consider juvenile A. saccharum only shade-tolerant, capable of persisting through long periods in the closed canopy until a gap occurs but not specifically adapted to the understory environment. Juvenile A. sacchrum appears to be constrained functionally by the requirements set by the canopy environment that adults will occupy. Characters such as high wood density are already expressed in the understory sapling; this investment in denser wood slows the growth of saplings, but is necessary for structural reasons in the adult. Juvenile A. saccaharum have morphological and photosynthetic characters better suited to gas exchange and extension growth under the increased photon flux densities in large forest gaps, characteristics that will also be advantageous in the sunlit canopy environment of adults.Both subcanopy maples appear to be more truly shade-adapted, although in somewhat different ways. Acer pensylvanicum has characteristics that enhance the potential for capture and utilization of sunflecks and is able to sustain higher growth rates than A. saccharum in the shaded subcanopy environment. Acer spicatum shares some shade-adapted features with A. pensylvanicum, and its habit of lateral spread through stem layering may confer an additional advantage in foraging for small light gaps.  相似文献   

18.
We examined interspecific and intraspecific variation in tree seedling survival as a function of allocation to carbohydrate reserves and structural root biomass. We predicted that allocation to carbohydrate reserves would vary as a function of the phenology of shoot growth, because of a hypothesized tradeoff between aboveground growth and carbohydrate storage. Intraspecific variation in levels of carbohydrate reserves was induced through experimental defoliation of naturally occurring, 2-year-old seedlings of four northeastern tree species –Acer rubrum, A. saccharum, Quercus rubra, and Prunus serotina– with shoot growth strategies that ranged from highly determinate to indeterminate. Allocation to root structural biomass varied among species and as a function of light, but did not respond to the defoliation treatments. Allocation to carbohydrate reserves varied among species, and the two species with the most determinate shoot growth patterns had the highest total mass of carbohydrate reserves, but not the highest concentrations. Both the total mass and concentrations of carbohydrate reserves were significantly reduced by defoliation. Seedling survival during the year following the defoliation treatments did not vary among species, but did vary dramatically in response to defoliation. In general, there was an approximately linear relationship between carbohydrate reserves and subsequent survival, but no clear relationship between allocation to root structural biomass and subsequent survival. Because of the disproportionate amounts of reserves stored in roots, we would have erroneously concluded that allocation to roots was significantly and positively related to seedling survival if we had failed to distinguish between reserves and structural biomass in roots. Received: 14 December 1999 / Accepted: 2 June 1999  相似文献   

19.
General circulation models project more intense and frequent droughts over the next century, but many questions remain about how terrestrial ecosystems will respond. Of particular importance, is to understand how drought will alter the species composition of regenerating temperate forests wherein symbiotic dinitrogen (N2)-fixing plants play a critical role. In experimental mesocosms we manipulated soil moisture to study the effect of drought on the physiology, growth and competitive interactions of four co-occurring North American tree species, one of which (Robinia pseudoacacia) is a symbiotic N2-fixer. We hypothesized that drought would reduce growth by decreasing stomatal conductance, hydraulic conductance and increasing the water use efficiency of species with larger diameter xylem vessel elements (Quercus rubra, R. pseudoacacia) relative to those with smaller elements (Acer rubrum and Liriodendron tulipifera). We further hypothesized that N2 fixation by R. pseudoacacia would decline with drought, reducing its competitive ability. Under drought, growth declined across all species; but, growth and physiological responses did not correspond to species’ hydraulic architecture. Drought triggered an 80 % increase in nodule biomass and N accrual for R. pseudoacacia, improving its growth relative to other species. These results suggest that drought intensified soil N deficiency and that R. pseudoacacia’s ability to fix N2 facilitated competition with non-fixing species when both water and N were limiting. Under scenarios of moderate drought, N2 fixation may alleviate the N constraints resulting from low soil moisture and improve competitive ability of N2-fixing species, and as a result, supply more new N to the ecosystem.  相似文献   

20.
Abstract. Across eastern North America, there is a temporal trend from open Quercus forests to closed forests with increased Acer rubrum in the understory. We used a series of Ripley's K(d) analyses to examine changes in the spatial pattern of Quercus and Acer rubrum stems greater than 2.5 cm DBH over 45 yr in a 2‐ha mapped stand. Specifically, we asked whether changes over time were consistent with the hypothesis that Quercus is being competitively replaced by Acer rubrum. Both Acer rubrum and Quercus stems are spatially clumped, but have become less clumped over time. Stem mortality from Hurricane Fran (1996) was more clumped in all strata of the forest, at all spatial scales, than expected if damage had occurred to stems at random. Acer rubrum ingrowth occurred more often near established trees (all species) in the midstory, whereas Quercus ingrowth occurred less often near established trees in the midstory. The specific hypothesis that stems of Acer rubrum in the midstory of the forest are associated with a lack of Quercus regeneration was strongly supported. This effect occurred at all spatial scales tested, including scales larger than that at which direct competition for light can occur. Edaphic gradients in the plot are correlated with many of the observed trends at large spatial scales, and our results suggest that the presence of such gradients can generate complex spatial patterns over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号