首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The average separation of the phenolic groups of tyrosine-99 and tyrosine-138 has been measured by radiationless energy transfer between each tyrosine and the nitro derivative of the second tyrosine. A separation of 16.7 ± 0.7 Å was found in the absence of Ca2+ and 15.5 ± 0.7 Å in the presence of Ca2+.  相似文献   

2.
Zhou Q  Snider NT  Liao J  Li DH  Hong A  Ku NO  Cartwright CA  Omary MB 《PloS one》2010,5(10):e13538

Background

Keratin polypeptide 19 (K19) is a type I intermediate filament protein that is expressed in stratified and simple-type epithelia. Although K19 is known to be phosphorylated on tyrosine residue(s), conclusive site-specific characterization of these residue(s) and identification potential kinases that may be involved has not been reported.

Methodology/Principal Findings

In this study, biochemical, molecular and immunological approaches were undertaken in order to identify and characterize K19 tyrosine phosphorylation. Upon treatment with pervanadate, a tyrosine phosphatase inhibitor, human K19 (hK19) was phosphorylated on tyrosine 391, located in the ‘tail’ domain of the protein. K19 Y391 phosphorylation was confirmed using site-directed mutagenesis and cell transfection coupled with the generation of a K19 phospho (p)-Y391-specific rabbit antibody. The antibody also recognized mouse phospho-K19 (K19 pY394). This tyrosine residue is not phosphorylated under basal conditions, but becomes phosphorylated in the presence of Src kinase in vitro and in cells expressing constitutively-active Src. Pervanadate treatment in vivo resulted in phosphorylation of K19 Y394 and Y391 in colonic epithelial cells of non-transgenic mice and hK19-overexpressing mice, respectively.

Conclusions/Significance

Human K19 tyrosine 391 is phosphorylated, potentially by Src kinase, and is the first well-defined tyrosine phosphorylation site of any keratin protein. The lack of detection of K19 pY391 in the absence of tyrosine phosphatase inhibition suggests that its phosphorylation is highly dynamic.  相似文献   

3.
Adequate supply of nutrients, especially providing a sufficient level of specific amino acids, is essential for cell survival and production. Complex raw materials such as soy hydrolysates or yeast extracts are the source for both free amino acids and peptides. However, typical chemically defined (CD) media provide amino acids only in free form. While most amino acids are highly soluble in media and can be provided at fairly high concentrations, certain amino acids such as tyrosine have poor solubility and thus, only a limited amount can be added as a media component. The limited solubility of amino acids in media can raise the risk of media precipitation and instability, and could contribute to suboptimal culture performance due to insufficient nutrient levels to meet cellular demands. In this study, we examine the use of chemically synthesized dipeptides as an alternative method for delivering amino acids to various monoclonal antibody producing cell lines. In particular, we focus on tyrosine-containing dipeptides. Due to their substantially higher solubility (up to 250-fold as compared with free tyrosine), tyrosine-containing dipeptides can efficiently provide large amounts of tyrosine to cultured cells. When tested in fed-batch processes, these supplemental dipeptides exerted positive effects, including enhanced culture viability and titer. Moreover, dipeptide-supplemented cultures displayed improved metabolic profiles including lower lactate and NH 4(+) production, and better pH maintenance. In bioreactor studies using two-sided pH control, a lactate spike occurring on Day 10 and the concomitant high levels of base addition could be prevented with dipeptide supplementation. These beneficial effects could be obtained by one-time addition of dipeptides during inoculation, and did not require further feeds during the entire 11-15-day process. Non-tyrosine-containing dipeptides, such as His-Gly, also showed improved productivity and viability over control cultures.  相似文献   

4.
A simple and unambiguous method for the detection of the amino acids tyrosine and methionine in peptide structures has been developed. The procedure, which was applied in studies of opioid peptides, is based on continuous-flow fast atom bombardment mass spectrometry (CF-FAB-MS) following chemical modification of the residue to be analyzed. Thus, for the detection of tyrosine, modification reactions such as acetylation or non-radioactive iodination were performed prior to analysis by CF-FAB-MS. O-Acetylation of the tyrosine residue with N-acetylimidazole was accompanied by a shift of 42 Da in the molecular mass of the peptide under investigation. This modification was reversed by treatment with hydroxylamine hydrochloride. Incorporation of iodine resulted in a molecular weight shift of 126 Da per iodine atom. Methionine residues were detected in methionine-enkephalin-containing peptides following S-oxidation with hydrogen peroxide. The procedures described may have a wide application in peptide chemistry, particularly for the identification of peptide fragments containing the above residues, e.g. in studies of processing or degradation of the enkephalins or other neuropeptides (e.g. endorphins and tachykinins).  相似文献   

5.
6.
1. Acute ethanol administration causes a biphasic change in rat liver tyrosine aminotransferase activity. 2. The initial decrease is significant with a 200 mg/kg dose of ethanol, is prevented by adrenoceptor-blocking agnets and by reserpine, but not by inhibitors of ethanol metabolism, and exhibits many of the characteristics of the inhibition caused by noradrenaline. 3. The subsequent enhancement of the enzyme activity by ethanol is not associated with stabilization of the enzyme, but is sensitive to actinomycin D and cycloheximide. 4. It is suggested that the initial decrease in aminotransferase activity is caused by the release of catecholamines, whereas the subsequent enhancement may be related to the release of glucocorticoids.  相似文献   

7.
MAP kinases (MAPKs) are enzymes directly involved in the control of cellular homeostasis in response to external cues, from differentiation and developmental processes to cell transformation. The activation status of MAPKs, both in magnitude and in duration, reflects the balance of phosphorylation at their Thr and Tyr regulatory residues by specific MAPK kinases and their dephosphorylation by inactivating protein serine/threonine phosphatases (PPs) and protein tyrosine phosphatases (PTPs). The dephosphorylation of MAPKs by PTPs relies on molecular docking between the two enzymes at specific interaction sites. Here we outline a one-step method to identify ERK1/2 and p38α mutations that prevent binding and inactivation by PTPs (tyrosine- or dual-specificity phosphatases) based on the use of anti-pTyr antibodies and cell lysis buffers lacking or containing the broad PTP inhibitor sodium orthovanadate (Na3VO4).  相似文献   

8.
A mutant in src, the oncogene of Rous sarcoma virus, has been constructed in which the major phosphorylated tyrosine (Tyr-416, located in the carboxy-terminal half of the protein) has been replaced by phenylalanine. Mouse cells transformed with this mutant src form foci and grow in soft agar, indicative of a transformed state. Also, the mutant protein retains the wild-type ability to phosphorylate proteins on tyrosine. Partial proteolysis revealed that the carboxy-terminal half of the mutant protein was still phosphorylated, although apparently to a lesser extent. Analysis indicated that this residual phosphorylation was on tyrosine. We conclude that the major tyrosine phosphorylation in pp60v-src is not required for two of the protein's notable properties--protein kinase activity and transformation of cultured cells.  相似文献   

9.
All eukaryotic cellular mRNAs contain a 5' m(7)GpppN cap. In addition to conferring stability to the mRNA, the cap is required for pre-mRNA splicing, nuclear export and translation by providing an anchor point for protein binding. In translation, the interaction between the cap and the eukaryotic initiation factor 4E (eIF4E) is important in the recruitment of the mRNAs to the ribosome. Human 4EHP (h4EHP) is a homologue of eIF4E. Like eIF4E it is able to bind the cap but it appears to play a different cellular role, possibly being involved in the fine-tuning of protein expression levels. Here we use X-ray crystallography and isothermal titration calorimetry (ITC) to investigate further the binding of cap analogues and peptides to h4EHP. m(7)GTP binds to 4EHP 200-fold more weakly than it does to eIF4E with the guanine base sandwiched by a tyrosine and a tryptophan instead of two tryptophan residues as seen in eIF4E. The tyrosine resides on a loop that is longer in h4EHP than in eIF4E. The consequent conformational difference between the proteins allows the tyrosine to mimic the six-membered ring of the tryptophan in eIF4E and adopt an orientation that is similar to that seen for equivalent residues in other non-homologous cap-binding proteins. In the absence of ligand the binding site is incompletely formed with one of the aromatic residues being disordered and the side-chain of the other adopting a novel conformation. A peptide derived from the eIF4E inhibitory protein, 4E-BP1 binds h4EHP 100-fold less strongly than eIF4E but in a similar manner. Overall the data, combined with sequence analyses of 4EHP from evolutionary diverse species, strongly support the hypothesis that 4EHP plays a physiological role utilizing both cap-binding and protein-binding functions but which is distinct from eIF4E.  相似文献   

10.
Dok adapter proteins have been primarily implicated in negative regulation of tyrosine kinase signaling, but Dok-4 has been reported to exert both inhibitory and stimulatory effects. We have identified a splice variant of Dok-4, Dok-4b, which contains a 39 aa insert within the its C-terminal region. The approximately 45kDa Dok-4b protein was detected in several human epithelial cell lines. Based on genomic sequences, Dok-4b was also predicted to exist in primates and possibly bovines, but not in rodents or other species. Compared to Dok-4, Dok-4b inhibited the tyrosine kinase-induced activation of both Erk and Elk-1 more strongly. Truncation of the C-terminal region of Dok-4 (Dok-4 DeltaCT) also enhanced the inhibitory activity of Dok-4, whereas expression of the isolated C-terminal domain enhanced Elk-1 activation, suggesting that the N-terminus and C-terminus of Dok-4 possess opposing inhibitory and stimulatory properties, respectively, the balance of which is altered by alternative splicing of Dok-4 to Dok-b.  相似文献   

11.
Shiga-like toxin I (SLT-I), the potent cytotoxin produced by certain pathogenic strains of Escherichia coli, is a member of a burgeoning family of ribosome-inactivating proteins (RIPS), which share common structural and mechanistic features. The prototype of the group is the plant toxin ricin. Recently we proposed a structural model for the Slt-IA active site, based in part on the known geometry of the enzymatic subunit of the ricin toxin. The model places three aromatic residues within the putative Slt-IA active site cleft: tyrosine 77, tyrosine 114, and tryptophan 203. Here we present biochemical and biophysical data regarding, the phenotypes of conservative point mutants of Slt-IA in which tyrosine 114 is altered. We used oligonucleotide-directed mutagenesis to replace tyrosine 114 with either phenylalanine (Y114F) or serine (Y114S). Periplasmic extracts of E. coli containing wild-type or mutant Slt-IA were tested for their ability to inhibit protein synthesis in vitro. Relative to wild-type, the activity of mutant Y1 14F was attenuated about 30-fold, while the mutant Y114S was attenuated about 500 to 1000-fold. In order to address the possibility that differential activation of the mutants rather than local effects at the active site might account for their diminished activity, we engineered the same mutations into a truncated slt-IA cassette that directs expression of a product corresponding to the activated A1 form of Slt-IA (wild-type-). The same general relationships held: relative to wild type-, Y114F- was attenuated about 7-fold, and Y114S- about 300-fold. Tryptic digestion profiles of the mutant proteins were similar to those of the corresponding wild-type, indicating that the amino acid substitutions had not caused major alterations in conformation. We conclude that Y114 plays a significant role in the activity of Slt-IA, one which is quantitatively similar to that of Y77, and one which is predicated on the presence of both its weakly acidic phenolic hydroxyl and its aromatic ring.  相似文献   

12.
The active site of angiotensin-converting enzyme (ACE) has been shown by chemical modification to contain a critical tyrosine residue, identified as Tyr-200 in human testis ACE (hTACE). We have expressed a mutant hTACE containing a Tyr-200 to Phe mutation. The mutant exhibits a marked decrease in kcat: 15-fold and 7-fold for the hydrolysis of furanacryloyl-Phe-Gly-Gly and angiotensin I, respectively, whereas its Km increases by only 1.6- and 2.2-fold, respectively. We conclude that Tyr-200 is not required for substrate binding. Instead, the effect on kcat together with a 100-fold decrease in affinity for the ACE inhibitor lisinopril indicates that Tyr-200 may participate in catalysis by stabilizing the transition state complex. Thus, Tyr-200 in hTACE has a role analogous to that of Tyr-198 in carboxypeptidase A.  相似文献   

13.
Dok-like adapter molecules represent an expanding family of pleckstrin homology (PH) and phosphotyrosine-binding (PTB) domain-containing tyrosine kinase substrates with negative regulatory functions in hematopoietic cell signaling. In a search for nonhematopoietic counterparts to Dok molecules, we identified and characterized Dok-4, a recently cloned member of the family. dok-4 mRNA was strongly expressed in nonhematopoietic organs, particularly the intestine, kidney, and lung, whereas both mRNA and protein were expressed at high levels in cells of epithelial origin. In Caco-2 human colon cancer cells, endogenous Dok-4 underwent tyrosine phosphorylation in response to pervanadate stimulation. In transfected COS cells, Dok-4 was a substrate for the cytosolic tyrosine kinases Src and Fyn as well as for Jak2. Dok-4 could also be phosphorylated by the receptor tyrosine kinase Ret but not by platelet-derived growth factor receptor-beta or IGF-IR. In both mammalian cells and yeast, Dok-4 was constitutively localized at the membrane in a manner that required both its PH and PTB domains. The PH and PTB domains of Dok-4 were also required for tyrosine phosphorylation of Dok-4 by Fyn and Ret. Finally, wild type Dok-4 strongly inhibited activation of Elk-1 induced by either Ret or Fyn. The attenuation of this inhibitory effect by deletion of the PH domain and its restoration by the addition of a myristoylation signal suggested an important role for constitutive membrane localization of Dok-4. In summary, Dok-4 is a constitutively membrane-localized adapter molecule that may function as an inhibitor of tyrosine kinase signaling in epithelial cells.  相似文献   

14.
Cytochrome c (Cyt c) is part of the mitochondrial electron transport chain (ETC), accepting electrons from bc(1) complex and transferring them to cytochrome c oxidase (CcO). The ETC generates the mitochondrial membrane potential, which is used by ATP synthase to produce ATP. In addition, the release of Cyt c from the mitochondria often commits a cell to undergo apoptosis. Considering its central role in life (respiration) and death (apoptosis) decisions one would expect tight regulation of Cyt c function. Reversible phosphorylation is a main cellular regulatory mechanism, but the effect of cell signaling targeting the mitochondrial oxidative phosphorylation system is not well understood, and only a small number of proteins that can be phosphorylated have been identified to date. We have recently shown that Cyt c isolated from cow heart tissue is phosphorylated on tyrosine 97 in vivo, which leads to inhibition of respiration in the reaction with CcO. In this study we isolated Cyt c from a different organ, cow liver, under conditions preserving the physiological phosphorylation state. Western analysis with a phosphotyrosine specific antibody suggested that liver Cyt c is phosphorylated. Surprisingly, the phosphorylation site was unambiguously assigned to Tyr-48 by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry (IMAC/nano-LC/ESI-MS), and not to the previously identified phospho-Tyr-97 in cow heart. As is true of Tyr-97, Tyr-48 is conserved in eukaryotes. As one possible consequence of Tyr-48 phosphorylation we analyzed the in vitro reaction kinetics with isolated cow liver CcO revealing striking differences. Maximal turnover of Tyr-48 phosphorylated Cyt c was 3.7 s(-1) whereas dephosphorylation resulted in a 2.2 fold increase in activity to 8.2 s(-1). Effects of Tyr-48 phosphorylation based on the Cyt c crystal structure are discussed.  相似文献   

15.
R M Lynn  J C Wang 《Proteins》1989,6(3):231-239
Tyrosine 319 of E. coli topoisomerase I is shown to be the active site tyrosine that becomes covalently attached to a DNA 5' phosphoryl group during the transient breakage of a DNA internucleotide bond by the enzyme. The tyrosine was mapped by trapping the covalent complex between the DNA and DNA topoisomerase I, digesting the complex exhaustively with trypsin, and sequencing the DNA-linked tryptic peptide. Site-directed mutagenesis converting Tyr-319 to a serine or phenylalanine completely inactivates the enzyme. The structure of the enzyme and its catalysis of DNA strand breakage, passage, and rejoining are discussed in terms of the available information.  相似文献   

16.
The chemokine receptor CXCR4 and its ligand stromal-derived factor-1 (SDF-1/CXCL12) are essential for many biological processes and various pathological conditions. However, the relationship between CXCR4 antigenic structure and SDF-1-mediated biological responses is poorly understood. In this report, a panel of human anti-CXCR4 Abs were isolated and used to explore CXCR4 antigenic heterogeneity and function. Multiple fixed CXCR4 antigenic isoforms were detected on the surface of hemopoietic cells. Epitope mapping studies demonstrated the complex nature of the surface-exposed CXCR4 epitopes. Ab-mediated inhibition of chemotaxis correlated strongly with binding affinity, epitope recognition, as well as the level of CXCR4 isoform expression. In addition, detailed genetic analyses of these Abs showed evidence of V(H) replacement. Importantly, structural and biochemical studies demonstrated tyrosine sulfation in novel regions of the V genes that contributed bidirectionally to the binding activity of the Abs. These data provide the first evidence that functional tyrosine sulfation occurs in self-reactive Abs and suggest a potential new mechanism that may contribute to the pathogenesis of Ab-mediated autoimmune disease. These Abs also provide valuable tools to explore the selective in vivo targeting of CXCR4 isoforms that may be preferentially expressed in certain disease states and involved in steady-state CXCR4-SDF-1 homeostasis.  相似文献   

17.
Nuclear accumulation of heat shock protein (HSP) 72 occurs after cardiac ischemia. This nuclear accumulation of HSP72 with stress occurs in other tissues and species. We postulated that nuclear accumulation of HSP72 was important for the protective effect of HSP72 and that phosphorylation of a single tyrosine (Y(524)) regulated nuclear accumulation of HSP72. Western blots of immunoprecipitated HSP72 from Cos-1 cells demonstrated that tyrosine becomes phosphorylated after heat shock. Treatment with the tyrosine kinase inhibitor geldanamycin blocked nuclear accumulation of HSP72 with heat shock. Two epitope-tagged constructs were made: M17 converting Y(524) to aspartic acid (pseudophosphorylation) and M18 converting Y(524) to phenylalanine. When transfected into Cos-1 cells, M17 accumulates more rapidly and M18 less rapidly than wild-type (WT) HSP72 in the nucleus following heat shock. Cells expressing M18 had less viability after heat shock at 43.5 degrees C than other constructs. After heat shock at 45 degrees C, cells expressing M17 had superior survival compared with WT and M18. These data suggest that phosphorylation at Y(524) facilitates nuclear accumulation of HSP72 following heat stress, and substitution of aspartic acid at Y(524) enhances resistance to heat-shock injury.  相似文献   

18.
Chemical modification and cross-linking of neurophysin tyrosine-49   总被引:1,自引:0,他引:1  
Photoaffinity labeling of the single neurophysin tyrosine, Tyr-49, with Met-Tyr-azido-Phe amide has been reported to inhibit both neurophysin self-association and peptide binding. Accordingly, we investigated the functional consequences of modification, principally by tetranitromethane, of Tyr-49. Tetranitromethane-mediated tyrosine-tyrosine cross-linking permitted synthesis of covalent neurophysin "dimers" and of peptide-protein conjugates, the latter potentially analogous to the photoaffinity-labeled product. The self-association and binding properties of the covalent dimers were found to be similar or enhanced relative to those of the native protein. In contrast to the photoaffinity-labeled product, covalent conjugates of Tyr-49 with the ligand peptides Met-Phe-Tyr amide, Phe-Tyr amide, and Tyr-Phe amide also generally exhibited normal or increased binding affinity for exogenous peptide; a subfraction of the Phe-Tyr amide adducts showed evidence of reduced affinity. Diiodination of Tyr-49 had no significant effect on binding. However, among the products of tetranitromethane treatment in the absence of peptide was a novel inactive non-cross-linked product, representing modification only of Tyr-49 but containing no demonstrable nitrophenol. As evidenced by circular dichroism and nuclear magnetic resonance (NMR), this product was not significantly unfolded and retained the ability to self-associate. These latter results provide the strongest evidence thus far of a role for Tyr-49 in peptide-hormone binding. The disparate effects of different Tyr-49 modifications are collectively interpreted and reconciled with NMR data and the properties of the photoaffinity-labeled protein to suggest potential mechanisms of Tyr-49 participation in binding and the probable orientation of Tyr-49 relative to peptide residue 3 in neurophysin complexes.  相似文献   

19.
In Streptococcus pneumoniae, CpsB, CpsC, and CpsD are essential for encapsulation, and mutants containing deletions of cpsB, cpsC, or cpsD exhibit rough colony morphologies. CpsD is an autophosphorylating protein-tyrosine kinase, CpsC is required for CpsD tyrosine phosphorylation, and CpsB is a phosphotyrosine-protein phosphatase. We have previously shown that autophosphorylation of CpsD at tyrosine attenuates its activity and consequently reduces the level of encapsulation and negatively regulates CPS production. In this study, we further investigated the role of the carboxy-terminal (YGX)(4) repeat domain of CpsD in encapsulation. A CpsD truncation mutant in which the entire (YGX)(4) repeat domain was removed was indistinguishable from a strain in which the entire cpsD gene had been deleted, indicating that the carboxy-terminal (YGX)(4) tail is required for CpsD activity in capsular polysaccharide production. Double mutants having a single tyrosine residue at position 2, 3, or 4 in the (YGX)(4) repeat domain and lacking CpsB exhibited a rough colony morphology, indicating that in the absence of an active protein-tyrosine phosphatase, phosphorylation of just one of the tyrosine residues in the (YGX)(4) repeat was sufficient to inactivate CpsD. When various mutants in which CpsD had either one or combinations of two or three tyrosine residues in the (YGX)(4) repeat domain were examined, only those with three tyrosine residues in the (YGX)(4) repeat domain were indistinguishable from the wild-type strain. The mutants with either one or two tyrosine residues exhibited mucoid colony morphologies. Further analysis of the mucoid strains indicated that the mucoid phenotype was not due to overproduction of capsular polysaccharide, as these strains actually produced less capsular polysaccharide than the wild-type strain. Thus, the tyrosine residues in the (YGX)(4) repeat domain are essential for normal functioning of CpsD.  相似文献   

20.
In this study, we examined whether tyrosine phosphorylation of the Toll-IL-1 resistance (TIR) domain of Toll-like receptor (TLR) 4 is required for signaling and blocked in endotoxin tolerance. Introduction of the P712H mutation, responsible for lipopolysaccharide (LPS) unresponsiveness of C3H/HeJ mice, into the TIR domain of constitutively active mouse DeltaTLR4 and mutation of the homologous P714 in human CD4-TLR4 rendered them signaling-incompetent and blocked TLR4 tyrosine phosphorylation. Mutations of tyrosine residues Y674A and Y680A within the TIR domains of CD4-TLR4 impaired its ability to elicit phosphorylation of p38 and JNK mitogen-activated protein kinases, IkappaB-alpha degradation, and activation of NF-kappaB and RANTES reporters. Likewise, full-length human TLR4 expressing Y674A or Y680A mutations showed suppressed capacities to mediate LPS-inducible cell activation. Signaling deficiencies of the Y674A and Y680A TLR4s correlated with altered MyD88-TLR4 interactions, increased associations with a short IRAK-1 isoform, and decreased amounts of activated IRAK-1 in complex with TLR4. Pretreatment of human embryonic kidney (HEK) 293/TLR4/MD-2 cells with protein tyrosine kinase or Src kinase inhibitors suppressed LPS-driven TLR4 tyrosine phosphorylation, p38 and NF-kappaB activation. TLR2 and TLR4 agonists induced TLR tyrosine phosphorylation in HEK293 cells overexpressing CD14, MD-2, and TLR4 or TLR2. Induction of endotoxin tolerance in HEK293/TLR4/MD-2 transfectants and in human monocytes markedly suppressed LPS-mediated TLR4 tyrosine phosphorylation and recruitment of Lyn kinase to TLR4, but did not affect TLR4-MD-2 interactions. Thus, our data demonstrate that TLR4 tyrosine phosphorylation is important for signaling and is impaired in endotoxin-tolerant cells, and suggest involvement of Lyn kinase in these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号