首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The soluble MMO (sMMO) gene clusters from group I methanotrophs were characterized. An 8.1-kb KpnI fragment from Methylomonas sp. strain KSWIII and a 7.5-kb SalI fragment from Methylomonas sp. strain KSPIII which contained the sMMO gene clusters were cloned and sequenced. The sequences of these two fragments were almost identical. The sMMO gene clusters in the fragment consisted of six open reading frames which were 52 to 79% similar to the corresponding genes of previously described sMMO gene clusters of the group II and group X methanotrophs. The phylogenetic analysis of the predicted amino acid sequences of sMMO demonstrated that the sMMOs from these strains were closer to that from M. capsulatus Bath in the group X methanotrophs than to those from Methylosinus trichosporium OB3b and Methylocystis sp. strain M in the group II methanotrophs. Based on the sequence data of sMMO genes of our strains and other methanotrophs, we designed a new PCR primer to amplify sMMO gene fragments of all the known methanotrophs harboring the mmoX gene. The primer set was successfully used for detecting methanotrophs in the groundwater of trichloroethylene-contaminated sites during in situ-biostimulation treatments.  相似文献   

2.
甲烷氧化细菌中的关键酶系甲烷单加氧酶是一个含双核铁的多组份氧化酶,常温、常压下能够催化甲烷转化为甲醇。对甲烷氧化细菌Methylomonas sp.GYJ3中溶解性甲烷单加氧酶基因和16SrDNA进行了测序与分析。利用已知相关基因数据库信息,设计了PCR引物和测序引物,获得了满意的测序结果。全长的溶解性甲烷单加氧酶基因为5690bp,部分16S rDNA的序列长度为1280bp。与已发表的甲烷氧化细菌中甲烷单加氧酶进行了比较,结果表明MMOX组份中氨基酸序列的同一性为78%到99%,基因序列的同一性为71%到97%,6个组份中orfY片段的同一性相对较低。MMOX氨基酸序列的多序列联配表明,MMOX序列具有高度保守性,特别是在双核铁中心区域。16S rDNA进化分析显示Methylomonas sp.GYJ3与γ蛋白细菌是相关联的,基于MMOX氨基酸序列的进化分析证明,与Methylomonas sp.GYJ3最近似的菌株是Ⅰ型甲烷氧化细菌Methylomonas sp.KSWⅢ。综合分析表明,菌株GYJ3属于Ⅰ型甲烷氧化细菌Methylomonas sp.属。这个结果为Ⅰ型甲烷氧化细菌也能表达溶解性甲烷单加氧酶提供了新的证据。羟基化酶的理论等电点是6.28,理论分子量为248874.41Da。  相似文献   

3.
In methanotrophic bacteria, methane is oxidized to methanol by the enzyme methane monooxygenase (MMO). The soluble MMO enzyme complex from Methylocystis sp. strain M also oxidizes a wide range of aliphatic and aromatic compounds, including trichloroethylene. In this study, heterologous DNA probes from the type II methanotroph Methylosinus trichosporium OB3b were used to isolate souble MMO (sMMO) genes from the type II methanotroph Methylocystis sp. strain M. sMMO genes from strain M are clustered on the chromosome and show a high degree of identity with the corresponding genes from Methylosinus trichosporium OB3b. Sequencing and phylogenetic analysis of the 16S rRNA gene from Methylocystis sp. strain M have confirmed that it is most closely related to the type II methanotroph Methylocystis parvus OBBP, which, unlike Methylocystis sp. strain M, does not possess an sMMO. A similar phylogenetic analysis using the pmoA gene, which encodes the 27-kDa polypeptide of the particulate MMO, also places Methylocystis sp. strain M firmly in the genus Methylocystis. This is the first report of isolation and characterization of methane oxidation genes from methanotrophs of the genus Methylocystis.  相似文献   

4.
We developed a method based on real-time PCR for the specific and rapid enumeration of a trichloroethylene-degrading methanotroph, Methylocystis sp. M, with the aim of monitoring the strain in groundwater. A primer set designed from the nucleotide sequence of the mmoC gene of a soluble methane monooxygenase (sMMO) gene cluster from Methylocystis sp. M was specific to amplify the DNA region from the strain and no PCR products were amplified with the sMMO gene clusters from six other methanotroph strains. The real-time PCR reliably quantified Methylocystis sp. M over at least five orders of magnitude (5x10(6) to 5x10(2 )cells/PCR tube, or 2x10(8) to 2x10(4 )cells/ml). Five cells of Methylocystis sp. M per PCR tube (2x10(2 )cells/ml) were detectable when the cells were suspended in distilled water. The concomitant presence of other methanotrophs in samples did not affect the reliability of enumeration; and recovery of the cells with a membrane filter enabled us to quantify cells of the strain in groundwater. This quantification procedure was completed within 3 h, including preparation time of environmental samples. We conclude that real-time PCR using the mmoC primer set can be used practically to analyze the behavior of Methylocystis sp. M at bioremediation sites.  相似文献   

5.
Profiles of dissolved O(2) and methane with increasing depth were generated for Lake Washington sediment, which suggested the zone of methane oxidation is limited to the top 0.8 cm of the sediment. Methane oxidation potentials were measured for 0.5-cm layers down to 1.5 cm and found to be relatively constant at 270 to 350 micromol/liter of sediment/h. Approximately 65% of the methane was oxidized to cell material or metabolites, a signature suggestive of type I methanotrophs. Eleven methanotroph strains were isolated from the lake sediment and analyzed. Five of these strains classed as type I, while six were classed as type II strains by 16S rRNA gene sequence analysis. Southern hybridization analysis with oligonucleotide probes detected, on average, one to two copies of pmoA and one to three copies of 16S rRNA genes. Only one restriction length polymorphism pattern was shown for pmoA genes in each isolate, and in cases where, sequencing was done, the pmoA copies were found to be almost identical. PCR primers were developed for mmoX which amplified 1.2-kb regions from all six strains that tested positive for cytoplasmic soluble methane mono-oxygenase (sMMO) activity. Phylogenetic analysis of the translated PCR products with published mmoX sequences showed that MmoX falls into two distinct clusters, one containing the orthologs from type I strains and another containing the orthologs from type II strains. The presence of sMMO-containing Methylomonas strains in a pristine freshwater lake environment suggests that these methanotrophs are more widespread than has been previously thought.  相似文献   

6.
Methane-oxidizing bacteria (methanotrophs) containing soluble methane monooxygenase (sMMO) are of interest in natural environments due to the high co-metabolic activity of this enzyme with contaminants such as trichloroethylene. We have analysed sMMO-containing methanotrophs in sediment from a freshwater lake. Environmental clone banks for a gene encoding a diagnostic sMMO subunit (mmoX) were generated using DNA extracted from Lake Washington sediment and subjected to RFLP analysis. Representatives from the six RFLP groups were cloned and sequenced, and all were found to group with Type I Methylomonas mmoX, although a majority were divergent from known Methylomonas mmoX sequences. Direct hybridization of Lake Washington sediment DNA was carried out using a series of sMMO- and Methylomonas-specific probes to assess the significance of these sMMO-containing Methylomonas-like strains in the sediment. The total sMMO-containing population and the sMMO-containing Methylomonas-like population were estimated to be similar to previous estimates for total methanotrophs and Type I methanotrophs. These results suggest that the major methanotrophic population in Lake Washington sediment consists of sMMO-containing Methylomonas-like (Type I) methanotrophs. The whole-cell TCE degradation kinetics of such a strain, LW15, isolated from this environment, were determined and found to be similar to values reported for other sMMO-containing methanotrophs. The numerical significance of sMMO-containing Methylomonas-like methanotrophs in a mesotrophic lake environment suggests that these methanotrophs may play an important role in methanotroph-mediated transformations, including co-metabolism of halogenated solvents, in natural environments.  相似文献   

7.
Using a previously developed primer system, nifH gene fragments 450 nucleotides long were amplified, cloned, and sequenced for representatives of nitrogen-fixing methanotrophic bacteria of the genera Methylococcus, Methylocystis and Methylosinus. Fragments of nifH genes were also detected and sequenced in representatives of the genera Methylomonas and Methylobacter, which were not considered diazotrophs until recently. Phylogenetic analysis revealed remoteness of nifH genes sequences of methanotroph types I and II. At the same time, close relationship was found between nifH of type I methanotrophs and representatives of gamma-proteobacteria and between nifH genes of type II methanotrophs and representatives of alpha-proteobacteria. The results obtained in this study are in good accordance with the data of phylogenetic analysis based on 16S rRNA sequence comparison with the only exception of Methylococcus capsulatus strains, whose nifH genes proved to be closely related to nifH genes of Methylocystis and Methylosinus representatives. Our findings extend the database of primary sequences of nifH genes and allow the contribution of methanotrophs to the process of nitrogen fixation to be estimated.  相似文献   

8.
9.
PCR amplification, restriction fragment length polymorphism, and phylogenetic analysis of oxygenase genes were used for the characterization of in situ methane- and ammonia-oxidizing bacteria from free-living and attached communities in the Eastern Snake River Plain aquifer. The following three methane monooxygenase (MMO) PCR primer sets were used: A189-A682, which amplifies an internal region of both the pmoA gene of the MMO particulate form and the amoA gene of ammonia monooxygenase; A189-mb661, which specifically targets the pmoA gene; and mmoXA-mmoXB, which amplifies the mmoX gene of the MMO soluble form (sMMO). Whole-genome amplification (WGA) was used to amplify metagenomic DNA from each community to assess its applicability for generating unbiased metagenomic template DNA. The majority of sequences in each archive were related to oxygenases of type II-like methanotrophs of the genus Methylocystis. A small subset of type I sequences found only in free-living communities possessed oxygenase genes that grouped nearest to Methylobacter and Methylomonas spp. Sequences similar to that of the amoA gene associated with ammonia-oxidizing bacteria (AOB) most closely matched a sequence from the uncultured bacterium BS870 but showed no substantial alignment to known cultured AOB. Based on these functional gene analyses, bacteria related to the type II methanotroph Methylocystis sp. were found to dominate both free-living and attached communities. Metagenomic DNA amplified by WGA showed characteristics similar to those of unamplified samples. Overall, numerous sMMO-like gene sequences that have been previously associated with high rates of trichloroethylene cometabolism were observed in both free-living and attached communities in this basaltic aquifer.  相似文献   

10.
Some methane-oxidizing bacteria (methanotrophs) are known to be capable of expressing nitrogenase and utilizing N2 as a nitrogen source. However, no sequences are available for nif genes in these strains, and the known nitrogen-fixing methanotrophs are confined mainly to a few genera. The purpose of this work was to assess the nitrogen-fixing capabilities of a variety of methanotroph strains. nifH gene fragments from four type I methanotrophs and seven type II methanotrophs were PCR amplified and sequenced. Nitrogenase activity was confirmed in selected type I and type II strains by acetylene reduction. Activities ranged from 0.4 to 3.3 nmol/min/mg of protein. Sequence analysis shows that the nifH sequences from the type I and type II strains cluster with nifH sequences from other gamma proteobacteria and alpha proteobacteria, respectively. The translated nifH sequences from three Methylomonas strains show high identity (95 to 99%) to several published translated environmental nifH sequences PCR amplified from rice roots and a freshwater lake. The translated nifH sequences from the type II strains show high identity (94 to 99%) to published translated nifH sequences from a variety of environments, including rice roots, a freshwater lake, an oligotrophic ocean, and forest soil. These results provide evidence for nitrogen fixation in a broad range of methanotrophs and suggest that nitrogen-fixing methanotrophs may be widespread and important in the nitrogen cycling of many environments.  相似文献   

11.
Soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO) gene clusters in the marine methanotroph Methylomicrobium sp. strain NI were completely sequenced and analysed. Degenerated primers were newly designed and used to amplify the gene fragments containing intergenic mmoX-Y and mmoD-C regions and a partial pmoC region. Phylogenetic analysis of amino acid sequences deduced from mmoX and pmoA, as well as of 16S rRNA gene sequences, indicated that this strain was most closely related to the halotolerant methanotroph Methylomicrobium buryatense. There were putative sigma(54)- and sigma(70)-dependent promoter sequences upstream of the sMMO and pMMO genes, respectively, and mmoG, which is known to be related to the expression and assembly of sMMO, existed downstream of the sMMO genes. These findings suggest that the major components and regulation of MMOs in this marine methanotroph are quite similar to those in freshwater methane oxidizers, despite the difference in their habitats.  相似文献   

12.
The genes encoding the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Methylococcus capsulatus (Bath) were localised to an 8.3-kb EcoRI fragment of the genome. Genes encoding the large subunit ( cbbL), small subunit ( cbbS) and putative regulatory gene ( cbbQ) were shown to be located on one cluster. Surprisingly, cbbO, a second putative regulatory gene, was not located in the remaining 1.2-kb downstream (3') of cbbQ. However, probing of the M. capsulatus (Bath) genome with cbbO from Nitrosomonas europaea demonstrated that a cbbO homologue was contained within a separate 3.0-kb EcoRI fragment. Instead of a cbbR ORF being located upstream (5') of cbbL, there was a moxR-like ORF that was transcribed in the opposite direction to cbbL. There were three additional ORFs within the large 8.3-kb EcoRI fragment: a pyrE-like ORF, an rnr-like ORF and an incomplete ORF with no sequence similarity to any known protein. Phylogenetic analysis of cbbL from M. capsulatus (Bath) placed it within clade A of the green-type Form 1 Rubisco. cbbL was expressed in M. capsulatus (Bath) when grown with methane as a sole carbon and energy source under both copper-replete and copper-limited conditions. M. capsulatus (Bath) was capable of autotrophic growth on solid medium but not in liquid medium. Preliminarily investigations suggested that other methanotrophs may also be capable of autotrophic growth. Rubisco genes were also identified, by PCR, in Methylococcus-like strains and Methylocaldum species; however, no Rubisco genes were found in Methylomicrobium album BG8, Methylomonas methanica S1, Methylomonas rubra, Methylosinus trichosporium OB3b or Methylocystis parvus OBBP.  相似文献   

13.
Methanotrophs were enriched and isolated from polluted environments in Canada and Germany. Enrichments in low copper media were designed to specifically encourage growth of soluble methane monooxygenase (sMMO) containing organisms. The 10 isolates were characterized physiologically and genetically with one type I and nine type II methanotrophs being identified. Three key genes: 16S rRNA; pmoA and mmoX, encoding for the particulate and soluble methane monooxygenases respectively, were cloned from the isolates and sequenced. Phylogenetic analysis of these sequences identified strains, which were closely related to Methylococcus capsulatus, Methylocystis sp., Methylosinus sporium and Methylosinus trichosporium. Diversity of sMMO-containing methanotrophs detected in this and previous studies was rather narrow, both genetically and physiologically, suggesting possible constraints on genetic diversity of sMMO due to essential conservation of enzyme function.  相似文献   

14.
S Sau  C Y Lee 《Journal of bacteriology》1996,178(7):2118-2126
Eleven serotypes of capsular polysaccharide from Staphylococcus aureus have been reported. We have previously cloned a cluster of type 1 capsule (cap1) genes responsible for type 1 capsular polysaccharide biosynthesis in S. aureus M. To clone the type 8 capsule (cap8) genes, a plasmid library of type 8 strain Becker was screened with a labelled DNA fragment containing the cap1 genes under low-stringency conditions. One recombinant plasmid containing a 14-kb insert was chosen for further study and found to complement 14 of the 18 type 8 capsule-negative (Cap8-) mutants used in the study. Additional library screening, subcloning, and complementation experiments showed that all of the 18 Cap8- mutants were complemented by DNA fragments derived from a 20.5-kb contiguous region of the Becker chromosome. The mutants were mapped into six complementation groups, indicating that the cap8 genes are clustered. By Southern hybridization analyses under high-stringency conditions, we found that DNA fragments containing the cap8 gene cluster show extensive homology with all 17 strains tested, including type 1 strains. By further Southern analyses and cloning of the cap8-related homolog from strain M, we show that strain M carries an additional capsule gene cluster different from the cap1 gene cluster. In addition, by using DNA fragments containing different regions of the cap8 gene cluster as probes to hybridize DNA from different strains, we found that the central region of the cap8 gene cluster hybridizes only to DNAs from certain strains tested whereas the flanking regions hybridize to DNAs of all strains tested. Thus, the cap8 gene clusters and its closely related homologs are likely to have organizations similar to those of the encapsulation genes of other bacterial systems.  相似文献   

15.
Unfed adult Ixodes persulcatus ticks were collected from four locations of Nagano and Hokkaido in Japan. Infected Borrelia garinii were investigated by PCR-RFLP of the ospA and ospB gene sequences. The primer set amplified an approximately 1.6-kb DNA fragment (0.7-kb in some strains), and BsrI, BstYI, or NlaIII digestion of the product resulted in six distinctively different PCR-RFLP groups and two independent borrelial strains. The representatives in each PCR-RFLP group and individuals from the borrelial strains were sequenced, and their deduced amino acid sequences were aligned. A neighbor-joining phylogenetic analysis showed that the B. garinii OspA or OspB sequences were each divided into three major clusters including isolates from both the Nagano and Hokkaido locations. There was no local difference in OspA/B sequences between Nagano and Hokkaido. The osp gene of Borrelia burgdorferi sensu lato is highly heterogeneous, and this was also confirmed by our sequence analysis. Some strains of the different PCR-RFLP groups had closely related OspA sequences, while the OspB sequences of these strains were quite different. These findings suggested intraspecies gene exchange and recombination events between the two genes in B. garinii.  相似文献   

16.
Restriction fragment length polymorphisms, Western blot (immunoblot) analysis, and fluorescence-labelled signature probes were used for the characterization of methanotrophic bacteria as well as for the identification of methanotrophs which contained the soluble methane monooxygenase (MMO) gene and were able to degrade trichloroethylene (TCE). The gene encoding a soluble MMO component B protein from Methylosinus trichosporium OB3b was cloned. It contained a 2.2-kb EcoRI fragment. With this cloned component B gene as probe, methanotroph types I, II, and X and environmental and bioreactor samples were screened for the presence of the gene encoding soluble MMO. Fragments produced by digestion of DNA with rare cutting restriction endonucleases were separated by pulsed-field gel electrophoresis and transferred to Zeta-Probe membrane (Bio-Rad) for Southern blot analysis. Samples were also analyzed for the presence of soluble MMO by Western blot analysis and the ability to degrade TCE. The physiological groups of methanotrophs in each sample were determined by hybridizing cells with fluorescence-labelled signature probes. Among twelve pure or mixed cultures, DNA fragments of seven methanotrophs hybridized with the soluble MMO B gene probe. When grown in media with limited copper, all of these bacteria degraded TCE. All of them are type II methanotrophs. The soluble MMO component B gene of the type X methanotroph, Methylococcus capsulatus Bath, did not hybridize to the M. trichosporium OB3b soluble MMO component B gene probe, although M. capsulatus Bath also produces a soluble MMO.  相似文献   

17.
Restriction fragment length polymorphisms, Western blot (immunoblot) analysis, and fluorescence-labelled signature probes were used for the characterization of methanotrophic bacteria as well as for the identification of methanotrophs which contained the soluble methane monooxygenase (MMO) gene and were able to degrade trichloroethylene (TCE). The gene encoding a soluble MMO component B protein from Methylosinus trichosporium OB3b was cloned. It contained a 2.2-kb EcoRI fragment. With this cloned component B gene as probe, methanotroph types I, II, and X and environmental and bioreactor samples were screened for the presence of the gene encoding soluble MMO. Fragments produced by digestion of DNA with rare cutting restriction endonucleases were separated by pulsed-field gel electrophoresis and transferred to Zeta-Probe membrane (Bio-Rad) for Southern blot analysis. Samples were also analyzed for the presence of soluble MMO by Western blot analysis and the ability to degrade TCE. The physiological groups of methanotrophs in each sample were determined by hybridizing cells with fluorescence-labelled signature probes. Among twelve pure or mixed cultures, DNA fragments of seven methanotrophs hybridized with the soluble MMO B gene probe. When grown in media with limited copper, all of these bacteria degraded TCE. All of them are type II methanotrophs. The soluble MMO component B gene of the type X methanotroph, Methylococcus capsulatus Bath, did not hybridize to the M. trichosporium OB3b soluble MMO component B gene probe, although M. capsulatus Bath also produces a soluble MMO.  相似文献   

18.
A new carbazole (CAR)-degrading bacterium, called strain OM1, was isolated from activated sludge obtained from sewage disposal plants in Fukuoka Prefecture, and it was identified as Pseudomonas stutzeri. Anthranilic acid (AN), 2'-aminobiphenyl-2,3-diol and its meta-cleavage product, 2-hydroxy-6-oxo-6-(2'-aminophenyl)-hexa-2,4-dienoic acid, were identified as metabolic intermediates of CAR in the ethyl acetate extract of the culture broth. Therefore, the CAR catabolic pathway to AN in strain OM1 was indicated to be identical to those found in the Pseudomonas sp. strains CA06 and CA10. The strain OM1 degraded catechol (CAT) via a meta-cleavage pathway in contrast to strains CA06 and CA10, which transform catechol into cis, cis-munonic acid. Clones containing a 6.9-kb EcoRI fragment and a 3-kb PstI-SphI fragment were isolated from colonies, forming a clear zone of CAR and a yellow ring-cleavage product from CAT, respectively. Recombinant E. coli carrying the 6.9-kb fragment degraded CAR in the L-broth and produced AN. Cell-free extract from the clone carrying a 3-kb PstI-SphI fragment had high meta-ring-cleavage dioxygenase activity for CAT. The nucleotide sequences of these fragments were determined. The 6.9-kb fragment showed a very high degree of homology with the CAR catabolic genes of strain CA10. The amino acid and nucleotide sequences of the 3-kb fragment were found to exhibit significant homology with the genes for the CAT-catabolic enzymes of TOL plasmid pWW0, plasmid NAH7, and plasmid pVI150.  相似文献   

19.
DNA encoding the catabolism of the s-triazines ammelide and cyanuric acid was cloned from Pseudomonas sp. strain NRRLB-12228 and Klebsiella pneumoniae 99 with, as a probe, a 4.6-kb PstI fragment from a third strain, Pseudomonas sp. strain NRRLB-12227, which also encodes these activities. In strains NRRLB-12228 and 99 the ammelide aminohydrolase (trzC) and cyanuric acid amidohydrolase (trzD) genes are located on identical 4.6-kb PstI fragments which are part of a 12.4-kb DNA segment present in both strains. Strain NRRLB-12227 also carries this 12.4-kb DNA segment, except that a DNA segment of 0.8 to 1.85 kb encoding a third enzyme, ammeline aminohydrolase (trzB), has been inserted next to the ammelide aminohydrolase gene with the accompanying deletion of 1.1 to 2.15 kb of DNA. In addition, the s-triazine catabolic genes are flanked in strain NRRLB-12227 by apparently identical 2.2-kb segments that are not present in the other two strains and that seem to cause rearrangements in adjacent DNA.  相似文献   

20.
An open-reading-frame fragment of a Methylobacterium sp. strain AM1 gene (moxF) encoding a portion of the methanol dehydrogenase structural protein has been used as a hybridization probe to detect similar sequences in a variety of methylotrophic bacteria. This hybridization was used to isolate clones containing putative moxF genes from two obligate methanotrophic bacteria, Methylococcus capsulatus Bath and Methylomonas albus BG8. The identity of these genes was confirmed in two ways. A T7 expression vector was used to produce methanol dehydrogenase protein in Escherichia coli from the cloned genes, and in each case the protein was identified by immunoblotting with antiserum against the Methylomonas albus methanol dehydrogenase. In addition, a moxF mutant of Methylobacterium strain AM1 was complemented to a methanol-positive phenotype that partially restored methanol dehydrogenase activity, using broad-host-range plasmids containing the moxF genes from each methanotroph. The partial complementation of a moxF mutant in a facultative serine pathway methanol utilizer by moxF genes from type I and type X obligate methane utilizers suggests broad functional conservation of the methanol oxidation system among gram-negative methylotrophs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号