首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A common observation in plants grown in elevated CO2 concentration is that the rate of photosynthesis is lower than expected from the dependence of photosynthesis upon CO2 concentration in single leaves of plants grown at present CO2 concentration. Furthermore, it has been suggested that this apparent down regulation of photosynthesis may be larger in leaves of plants at low nitrogen supply than at higher nitrogen supply. However, the available data are rather limited and contradictory. In this paper, particular attention is drawn to the way in which whole plant growth response to N supply constitutes a variable sink strength for carbohydrate usage and how this may affect photosynthesis. The need for further studies of the acclimation of photosynthesis at elevated CO2 in leaves of plants whose N supply has resulted in well-defined growth rate and sink activity is emphasised, and brief consideration is made of how this might be achieved.Abbreviations A rate of CO2 assimilation - Ci internal CO2 concentration - PCR photosynthetic carbon reduction - Rubisco Ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate  相似文献   

2.
With the changing climate, plants will be facing increasingly harsh environmental conditions marked by elevated salinity in the soils and elevated concentrations of CO2 in the atmosphere. These two factors have opposite effects on water status in plants. Therefore, our objective was to determine the interaction between these two factors and to determine whether elevated [CO2] might alleviate the adverse effects of salt stress on water status in two barley cultivars, Alpha and Iranis, by studying their relative water content and their water potential and its components, transpiration rate, hydraulic conductance, and water use efficiency. Both cultivars maintained their water status under salt stress, increasing water use efficiency and conserving a high relative water content by (1) reducing water potential via passive dehydration and active osmotic adjustment and (2) decreasing transpiration through stomatal closure and reducing hydraulic conductance. Iranis showed a greater capacity to achieve osmotic adjustment than Alpha. Under the combined conditions of salt-stress and elevated [CO2], both cultivars (1) achieved osmotic adjustment to a greater extent than at ambient [CO2], likely due to elevated rates of photosynthesis, and (2) decreased passive dehydration by stomatal closure, thereby maintaining a greater turgor potential, relative water content, and water use efficiency. Therefore, we found an interaction between salt stress and elevated [CO2] with regard to water status in plants and found that elevated [CO2] is associated with improved water status of salt-stressed barley plants.  相似文献   

3.
徐胜  陈玮  何兴元  黄彦青  高江艳  赵诣  李波 《生态学报》2015,35(8):2452-2460
大气CO2浓度升高已成为世界范围内的重要环境问题。CO2浓度升高势必会对植物的生理生态变化产生重要影响。综述了国内外有关高浓度CO2对树木生理生态影响研究的最新进展,具体包括高浓度CO2对树木生长发育、光合和呼吸作用、抗氧化系统、树木代谢物质、挥发性有机化合物以及树木凋落物等方面的影响。高浓度CO2一般会促进树木地上植株的生长和发育,但也因树种差异而有所不同。最新研究表明,高浓度CO2促进了树木细根周转,树木根系生长在大气CO2浓度升高条件下表现为促进作用,这种作用加快了全球森林生态系统的C循环。高浓度CO2虽然在一定程度上促进树木光合速率的增加,但长期熏蒸也往往会发生光合驯化,这种现象产生的生理学机制目前仍无定论。高浓度CO2对树木呼吸作用尤其是根系呼吸的影响将是未来研究的重点和难点。高浓度CO2一般会提高树木抗氧化酶活性与抗氧化剂含量,但不同树种响应高浓度CO2的过程和机理也有所差异。研究表明,高浓度CO2一般对树木凋落物的分解产生不利影响,但也因树种而异。需要强调的是,目前关于树木地下部分、树木对高浓度CO2的适应机理和重要过程(碳氮水耦合及基因调控等)以及多个树种包括不同类型树种及不同品种之间比较研究较少;关于某一重要生理生态机制(如根系生理代谢)尤其是多个生态因子复合条件下缺乏长期深入的研究。在此基础上给出了大气CO2浓度升高下树木生理生态学研究的未来发展方向,包括高CO2浓度条件下树木根系生理代谢及机制、树木碳氮水耦合的生理过程及机制、不同生态因子复合作用对树木生理影响机制以及树木分子作用机理等方面的研究。这些研究不仅将丰富森林树木应对未来气候变化的有关科学理论,也为全球气候变化背景下实现森林树种生态功能的优化选择及森林生态系统的可持续发展与经营提供重要的生理生态学理论依据和参考。  相似文献   

4.
The review of publications concerning the impact of increasing CO2 concentration in the Earths atmosphere (Ca) on higher terrestrial plants. The physiological changes in plants induced by increasing Ca, including growth and biochemical composition, the characteristics of photosynthesis and respiration, as well as the molecular mechanisms of the regulation of the activity of most important biosynthetic enzymes at early and late stages of the exposure to elevated Ca are under consideration. Various concepts of metabolic regulation during acclimation to increasing CO2 concentration are critically reviewed. The pathways of possible involvement of carbonic anhydrase-mediated systems of CO2 transport and concentration during C3 photosynthesis of higher plants, the metabolic and signal mechanisms of photosynthesis inhibition by carbohydrates and the role of ethylene at elevated Ca are presented. The effect of elevated Ca on plant development and source-sink relations, as well as its interaction with other environmental factors, such as mineral, primarily nitrogen nutrition, light, temperature, and water regime, are discussed in with the context of potential forecasting of the consequences of increase in Ca and temperature for the activities of various higher plant forms in the rapidly changing climate.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 129–145.Original Russian Text Copyright © 2005 by Romanova.  相似文献   

5.
Nutrients such as phosphorus may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of the 21st century. Elevated CO2 may overcome the diffusional limitations to photosynthesis posed by stomata and mesophyll and alter the photo-biochemical limitations resulting from phosphorus deficiency. To evaluate these ideas, cotton (Gossypium hirsutum) was grown in controlled environment growth chambers with three levels of phosphate (Pi) supply (0.2, 0.05 and 0.01 mM) and two levels of CO2 concentration (ambient 400 and elevated 800 μmol mol−1) under optimum temperature and irrigation. Phosphate deficiency drastically inhibited photosynthetic characteristics and decreased cotton growth for both CO2 treatments. Under Pi stress, an apparent limitation to the photosynthetic potential was evident by CO2 diffusion through stomata and mesophyll, impairment of photosystem functioning and inhibition of biochemical process including the carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxyganase and the rate of ribulose-1,5-bisphosphate regeneration. The diffusional limitation posed by mesophyll was up to 58% greater than the limitation due to stomatal conductance (gs) under Pi stress. As expected, elevated CO2 reduced these diffusional limitations to photosynthesis across Pi levels; however, it failed to reduce the photo-biochemical limitations to photosynthesis in phosphorus deficient plants. Acclimation/down regulation of photosynthetic capacity was evident under elevated CO2 across Pi treatments. Despite a decrease in phosphorus, nitrogen and chlorophyll concentrations in leaf tissue and reduced stomatal conductance at elevated CO2, the rate of photosynthesis per unit leaf area when measured at the growth CO2 concentration tended to be higher for all except the lowest Pi treatment. Nevertheless, plant biomass increased at elevated CO2 across Pi nutrition with taller plants, increased leaf number and larger leaf area.  相似文献   

6.
Productivity of aridland plants is predicted to increase substantially with rising atmospheric carbon dioxide (CO2) concentrations due to enhancement in plant water-use efficiency (WUE). However, to date, there are few detailed analyses of how intact desert vegetation responds to elevated CO2. From 1998 to 2001, we examined aboveground production, photosynthesis, and water relations within three species exposed to ambient (around 38 Pa) or elevated (55 Pa) CO2 concentrations at the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility in southern Nevada, USA. The functional types sampled—evergreen (Larrea tridentata), drought-deciduous (Ambrosia dumosa), and winter-deciduous shrubs (Krameria erecta)—represent potentially different responses to elevated CO2 in this ecosystem. We found elevated CO2 significantly increased aboveground production in all three species during an anomalously wet year (1998), with relative production ratios (elevated:ambient CO2) ranging from 1.59 (Krameria) to 2.31 (Larrea). In three below-average rainfall years (1999–2001), growth was much reduced in all species, with only Ambrosia in 2001 having significantly higher production under elevated CO2. Integrated photosynthesis (mol CO2 m−2 y−1) in the three species was 1.26–2.03-fold higher under elevated CO2 in the wet year (1998) and 1.32–1.43-fold higher after the third year of reduced rainfall (2001). Instantaneous WUE was also higher in shrubs grown under elevated CO2. The timing of peak canopy development did not change under elevated CO2; for example, there was no observed extension of leaf longevity into the dry season in the deciduous species. Similarly, seasonal patterns in CO2 assimilation did not change, except for Larrea. Therefore, phenological and physiological patterns that characterize Mojave Desert perennials—early-season lags in canopy development behind peak photosynthetic capacity, coupled with reductions in late-season photosynthetic capacity prior to reductions in leaf area—were not significantly affected by elevated CO2. Together, these findings suggest that elevated CO2 can enhance the productivity of Mojave Desert shrubs, but this effect is most pronounced during years with abundant rainfall when soil resources are most available.  相似文献   

7.
The objective of this study was to determine the response of nitrogen metabolism to drought and recovery upon rewatering in barley (Hordeum vulgare L.) plants under ambient (350 μmol mol−1) and elevated (700 μmol mol−1) CO2 conditions. Barley plants of the cv. Iranis were subjected to drought stress for 9, 13, or 16 days. The effects of drought under each CO2 condition were analysed at the end of each drought period, and recovery was analysed 3 days after rewatering 13-day droughted plants. Soil and plant water status, protein content, maximum (NRmax) and actual (NRact) nitrate reductase, glutamine synthetase (GS), and aminant (NADH-GDH) and deaminant (NAD-GDH) glutamate dehydrogenase activities were analysed. Elevated CO2 concentration led to reduced water consumption, delayed onset of drought stress, and improved plant water status. Moreover, in irrigated plants, elevated CO2 produced marked changes in plant nitrogen metabolism. Nitrate reduction and ammonia assimilation were higher at elevated than at ambient CO2, which in turn yielded higher protein content. Droughted plants showed changes in water status and in foliar nitrogen metabolism. Leaf water potential (Ψw) and nitrogen assimilation rates decreased after the onset of water deprivation. NRact and NRmax activity declined rapidly in response to drought. Similarly, drought decreased GS whereas NAD-GDH rose. Moreover, protein content fell dramatically in parallel with decreased leaf Ψw. In contrast, elevated CO2 reduced the water stress effect on both nitrate reduction and ammonia assimilation coincident with a less-steep decrease in Ψw. On the other hand, Ψw practically reached control levels after 3 days of rewatering. In parallel with the recovery of plant water status, nitrogen metabolism was also restored. Thus, both NRact and NRmax activities were restored to about 75-90% of control levels when water supply was restored; the GS activity reached 80-90% of control values; and GDH activities and protein content were similar to those of control plants. The recovery was always faster and slightly higher in plants grown under elevated CO2 conditions compared to those grown in ambient CO2, but midday Ψw dropped to similar values under both CO2 conditions. The results suggest that elevated CO2 improves nitrogen metabolism in droughted plants by maintaining better water status and enhanced photosynthesis performance, allowing superior nitrate reduction and ammonia assimilation. Ultimately, elevated CO2 mitigates many of the effects of drought on nitrogen metabolism and allows more rapid recovery following water stress.  相似文献   

8.
We analysed the impact of elevated CO2 on water relations, water use efficiency and photosynthetic gas exchange in barley (Hordeum vulgare L.) under wet and drying soil conditions. Soil moisture was less depleted under elevated compared to ambient [CO2]. Elevated CO2 had no significant effect on the water relations of irrigated plants, except on whole plant hydraulic conductance, which was markedly decreased at elevated compared to ambient CO2 concentrations. The values of relative water content, water potential and osmotic potential were higher under elevated CO2 during the entire drought period. The better water status of water-limited plants grown at elevated CO2 was the result of stomatal control rather than of osmotic adjustment. Despite the low stomatal conductance produced by elevated CO2, net photosynthesis was higher under elevated than ambient CO2 concentrations. With water shortage, photosynthesis was maintained for longer at higher rates under elevated CO2. The reduction of stomatal conductance and therefore transpiration, and the enhancement of carbon assimilation by elevated CO2, increased instantaneous and whole plant water use efficiency in both irrigated and droughted plants. Thus, the metabolism of barley plants grown under elevated CO2 and moderate or mild water deficit conditions is benefited by increased photosynthesis and lower transpiration. The reduction in plant water use results in a marked increase in soil water content which delays the onset and severity of water deficit.  相似文献   

9.
Background Increasing attention is being focused on the influence of rapid increases in atmospheric CO2 concentration on nutrient cycling in ecosystems. An understanding of how elevated CO2 affects plant utilization and acquisition of phosphorus (P) will be critical for P management to maintain ecosystem sustainability in P-deficient regions.Scope This review focuses on the impact of elevated CO2 on plant P demand, utilization in plants and P acquisition from soil. Several knowledge gaps on elevated CO2-P associations are highlighted.Conclusions Significant increases in P demand by plants are likely to happen under elevated CO2 due to the stimulation of photosynthesis, and subsequent growth responses. Elevated CO2 alters P acquisition through changes in root morphology and increases in rooting depth. Moreover, the quantity and composition of root exudates are likely to change under elevated CO2, due to the changes in carbon fluxes along the glycolytic pathway and the tricarboxylic acid cycle. As a consequence, these root exudates may lead to P mobilization by the chelation of P from sparingly soluble P complexes, by the alteration of the biochemical environment and by changes to microbial activity in the rhizosphere. Future research on chemical, molecular, microbiological and physiological aspects is needed to improve understanding of how elevated CO2 might affect the use and acquisition of P by plants.  相似文献   

10.
Industrialisation has elevated atmospheric levels of CO2 from original 280 ppm to current levels at 400 ppm, which is estimated to double by 2050. Although high atmospheric CO2 levels affect insect interactions with host plants, the impact of global change on plant defences in response to insect attack is not completely understood. Recent studies have made advances in elucidating the mechanisms of the effects of high CO2 levels in plant–insect interactions. New studies have proposed that gene regulation and phytohormones regulate resource allocation from photosynthesis to plant defences against insects. Biochemical and molecular studies demonstrated that both defensive hormones jasmonic acid (JA) and ethylene (ET) participate in modulating chemical defences against herbivores in plants grown under elevated CO2 atmosphere rather than changes in C:N ratio. High atmospheric CO2 levels increase vulnerability to insect damage by down‐regulating both inducive and constitutive chemical defences regulated by JA and ET. However, elevated CO2 levels increase the JA antagonistic hormone salicylic acid that increases other chemical defences. How plants grown under elevated CO2 environment allocate primary metabolites from photosynthesis to secondary metabolism would help to understand innate defences and prevent future herbivory in field crops. We present evidence demonstrating that changes in chemical defences in plants grown under elevated CO2 environment are hormonal regulated and reject the C:N hypothesis. In addition, we discuss current knowledge of the mechanisms that regulate plants defences against insects in elevated CO2 atmospheres.  相似文献   

11.
To study the effect of elevated CO2 concentration on plant growth and photosynthesis, two clones ofHevea brasiliensis were grown in polybags and exposed to elevated concentration (700±25ppm) for 60 days. There was higher biomass accumulation, leaf area and better growth when compared to ambient air grown plantso From A/Ci curves it is clear that photosynthetic rates increases with increase in CO2 concentrations. After 60 days of exposure to higher CO2 concentration, a decrease in the carbon assimilation rate was noticed.  相似文献   

12.
13.
Barbehenn RV  Karowe DN  Chen Z 《Oecologia》2004,140(1):96-103
The increasing CO2 concentration in Earths atmosphere is expected to cause a greater decline in the nutritional quality of C3 than C4 plants. As a compensatory response, herbivorous insects may increase their feeding disproportionately on C3 plants. These hypotheses were tested by growing the grasses Lolium multiflorum C3) and Bouteloua curtipendula C4) at ambient (370 ppm) and elevated (740 ppm) CO2 levels in open top chambers in the field, and comparing the growth and digestive efficiencies of the generalist grasshopper Melanoplus sanguinipes on each of the four plant × CO2 treatment combinations. As expected, the nutritional quality of the C3 grass declined to a greater extent than did that of the C4 grass at elevated CO2; protein levels declined in the C3 grass, while levels of carbohydrates (sugar, fructan and starch) increased. However, M. sanguinipes did not significantly increase its consumption rate to compensate for the lower nutritional quality of the C3 grass grown under elevated CO2. Instead, these grasshoppers appear to use post-ingestive mechanisms to maintain their growth rates on the C3 grass under elevated CO2. Consumption rates of the C3 and C4 grasses were also similar, demonstrating a lack of compensatory feeding on the C4 grass. We also examined the relative efficiencies of nutrient utilization from a C3 and C4 grass by M. sanguinipes to test the basis for the C4 plant avoidance hypothesis. Contrary to this hypothesis, neither protein nor sugar was digested with a lower efficiency from the C4 grass than from the C3 grass. A novel finding of this study is that fructan, a potentially large carbohydrate source in C3 grasses, is utilized by grasshoppers. Based on the higher nutrient levels in the C3 grass and the better growth performance of M. sanguinipes on this grass at both CO2 levels, we conclude that C3 grasses are likely to remain better host plants than C4 grasses in future CO2 conditions.  相似文献   

14.
The direct and indirect effects of increasing levels of atmospheric carbon dioxide (CO2) on plant nitrogen (N) content were studied in a shortgrass steppe ecosystem in northeastern Colorado, USA. Beginning in 1997 nine experimental plots were established: three open-top chambers with ambient CO2 levels (approximately 365 mol mol–1), three open-top chambers with twice-ambient CO2 levels (approximately 720 mol mol–1), and three unchambered control plots. After 3 years of growing-season CO2 treatment, the aboveground N concentration of plants grown under elevated atmospheric CO2 decreased, and the carbon–nitrogen (C:N) ratio increased. At the same time, increased aboveground biomass production under elevated atmospheric CO2 conditions increased the net transfer of N out of the soil of elevated-CO2 plots. Aboveground biomass production after simulated herbivory was also greater under elevated CO2 compared to ambient CO2. Surprisingly, no significant changes in belowground plant tissue N content were detected in response to elevated CO2. Measurements of individual species at peak standing phytomass showed significant effects of CO2 treatment on aboveground plant tissue N concentration and significant differences between species in N concentration, suggesting that changes in species composition under elevated CO2 will contribute to overall changes in nutrient cycling. Changes in plant N content, driven by changes in aboveground plant N concentration, could have important consequences for biogeochemical cycling rates and the long-term productivity of the shortgrass steppe as atmospheric CO2 concentrations increase.  相似文献   

15.
蒋延玲  周广胜  王玉辉  王慧  石耀辉 《生态学报》2015,35(14):4559-4569
收集了1992—2013年关于模拟CO2浓度升高及气候变化(温度升高、降水变化)对内蒙古地带性草原群落的5个建群种针茅植物(贝加尔针茅、本氏针茅、大针茅、克氏针茅、短花针茅)影响的实验研究结果表明,模拟CO2浓度升高、增温和增雨将提高针茅植物的光合作用和株高生长,但CO2处理时间延长会导致光合适应;温度和降雨变化将改变针茅植物的物候进程,但物种之间反应有差异;CO2浓度升高有助于针茅植物生物量增加,增温和干旱则相反,CO2浓度升高对干旱的影响具有补偿作用;干旱和涝渍胁迫将提高针茅植物植株C/N,CO2浓度升高将加剧水分胁迫下针茅植物植株C/N的增加效应,导致牧草品质下降。由于当前在适应性指标、针茅植物对气候变化协同作用的适应机理及其敏感性研究等方面存在的不足,导致目前无法全面比较各针茅植物对CO2和温度、降水变化的响应差异及其敏感性,因而无法预测未来在全球变化背景下,这几种针茅植物的动态变化及其在地理分布上的迁移替代规律。为科学应对气候变化,未来应加强内蒙古地带性针茅植物的适应性指标、针茅植物对多因子协同作用的适应机理及敏感性研究。  相似文献   

16.
van de Staaij  J. W. M.  Lenssen  G. M.  Stroetenga  M.  Rozema  J. 《Plant Ecology》1993,104(1):433-439
Elymus athericus (Link) Kerguélen, a C3 grass, was grown in a greenhouse experiment to determine the effect of enhanced atmospheric CO2 and elevated UV-B radiation levels on plant growth. Plants were subjected to the following treatments; a) ambient CO2-control UV-B, b) ambient CO2-elevated UV-B, c) double CO2-control UV-B, d) double CO2-elevated UV-B. Elevated CO2 concentrations stimulated plant growth, biomass production was 67% higher than at ambient CO2. Elevated UV-B radiation had a negative effect on growth, biomass production was depressed by 31%. Enhanced CO2 combined with elevated UV-B levels caused a biomass depression of 8% when compared with the control plants. UV-B induced growth depression can be modified by a growth stimulus caused by high CO2 concentrations. Growth analysis has been performed and possible physiological mechanisms behind changing growth parameters are discussed.  相似文献   

17.
Global atmospheric CO2 is increasing at a rate of 1.5–2 ppm per year and is predicted to double by the end of the next century. Understanding how terrestrial ecosystems will respond in this changing environment is an important goal of current research. Here we present results from a field study of elevated CO2 in a California annual grassland. Elevated CO2 led to lower leaf-level stomatal conductance and transpiration (approximately 50%) and higher mid-day leaf water potentials (30–35%) in the most abundant species of the grassland, Avena barbata Brot. Higher CO2 concentrations also resulted in greater midday photosynthetic rates (70% on average). The effects of CO2 on stomatal conductance and leaf water potential decreased towards the end of the growing season, when Avena began to show signs of senescence. Water-use efficiency was approximately doubled in elevated CO2, as estimated by instantaneous gas-exchange measurements and seasonal carbon isotope discrimination. Increases in CO2 and photosynthesis resulted in more seeds per plant (30%) and taller and heavier plants (27% and 41%, respectively). Elevated CO2 also reduced seed N concentrations (9%).  相似文献   

18.

Background and Aims

Elucidation of the mechanisms by which plants adapt to elevated CO2 is needed; however, most studies of the mechanisms investigated the response of plants adapted to current atmospheric CO2. The rapid respiration rate of cotton (Gossypium hirsutum) fruits (bolls) produces a concentrated CO2 microenvironment around the bolls and bracts. It has been observed that the intercellular CO2 concentration of a whole fruit (bract and boll) ranges from 500 to 1300 µmol mol−1 depending on the irradiance, even in ambient air. Arguably, this CO2 microenvironment has existed for at least 1·1 million years since the appearance of tetraploid cotton. Therefore, it was hypothesized that the mechanisms by which cotton bracts have adapted to elevated CO2 will indicate how plants will adapt to future increased atmospheric CO2 concentration. Specifically, it is hypothesized that with elevated CO2 the capacity to regenerate ribulose-1,5-bisphosphate (RuBP) will increase relative to RuBP carboxylation.

Methods

To test this hypothesis, the morphological and physiological traits of bracts and leaves of cotton were measured, including stomatal density, gas exchange and protein contents.

Key results

Compared with leaves, bracts showed significantly lower stomatal conductance which resulted in a significantly higher water use efficiency. Both gas exchange and protein content showed a significantly greater RuBP regeneration/RuBP carboxylation capacity ratio (Jmax/Vcmax) in bracts than in leaves.

Conclusions

These results agree with the theoretical prediction that adaptation of photosynthesis to elevated CO2 requires increased RuBP regeneration. Cotton bracts are readily available material for studying adaption to elevated CO2.  相似文献   

19.
A few species of Cymbopogon and Vetiveria are potentially important tropical grasses producing essential oils. In the present study, we report on the leaf anatomy and photosynthetic carbon assimilation in five species of Cymbopogon and Vetiveria zizanioides. Kranz-type leaf anatomy with a centrifugal distribution of chloroplasts and exclusive localization of starch in the bundle sheath cells were common among the test plants. Besides the Kranz leaf anatomy, these grasses displayed other typical C4 characteristics including a low (0–5 µl/l) CO2 compensation point, lack of light saturation of CO2 uptake at high photon flux densities, high temperature (35°C) optimum of net photosynthesis, high rates of net photosynthesis (55–67 mg CO2 dm-2 leaf area h-1), little or no response of net photosynthesis to atmospheric levels of O2 and high leaf 13C/12C ratios. The biochemical studies with 14CO2 indicated that the leaves of the above plant species synthesize predominantly malate during short term (5 s) photosynthesis. In pulse-chase experiments it was shown that the synthesis of 3-phosphoglycerate proceeds at the expense of malate, the major first formed product of photosynthesis in these plant species.  相似文献   

20.
The growth responses of a grass,Poa pratensis, to elevated CO2 and nitrogen were investigated. Light-saturated photosynthetic rate per unit leaf area increased with exposure to elevated CO2, while dry weight did not respond to increased CO2. Patterns of biomass allocation within plants, including leaf area, leaf area ratio, specific leaf area, and root to shoot ratios, were not altered by elevated CO2, but changed considerably with N treatment Shoot and whole-plant tissue N concentrations were significantly diluted by elevated CO2 (Tukey test, P < 0.05). Total N content did not differ significantly among CO2 treatments. The absence of a concomitant increase in N uptake under elevated CO2 may have caused a dilution in plant tissue [N], probably negating the positive effects of increased photosynthesis on biomass accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号