首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a simple mathematical model that describes how primary and secondary sex ratios of offspring may vary adaptively in order to maintain equal numbers of the sexes at the age of reproductive maturity. The model postulates that the sex of an offspring depends probabilistically on a weighted linear combination of maternal testosterone and male vulnerability. The model operates at population level, and is based on three physiological phenomena: first that maternal testosterone in follicular fluid is normally distributed, with levels above the mean more likely to be associated with the conception of males; secondly, that males are more vulnerable than females from conception onwards; and thirdly that under conditions of chronic stress, increased secretion of female testosterone coincides with increased male vulnerability. Thus during times of chronic stress, more males are conceived, but their number of live births is moderated by increased male loss. Variations in secondary sex ratios should therefore be related not only to the stressfulness of environmental conditions, but also to the timing of changes in stressfulness.  相似文献   

2.
Separate sexes can evolve under nuclear inheritance when unisexuals have more than twice the reproductive fitness of hermaphrodites through one sex function (e.g., when females have more than twice the seed fertility of hermaphrodites). Because separate sexes are thought to evolve most commonly via a gynodioecious intermediate (i.e., populations in which females and hermaphrodites cooccur), the conditions under which females can become established in populations of hermaphrodites are of considerable interest. It has been proposed that resource-poor conditions could promote the establishment of females if hermaphrodites are plastic in their sex allocation and allocate fewer resources to seed production under these conditions. If this occurs, the seed fertility of females could exceed the doubling required for the evolution of unisexuality under low-, but not high-resource conditions (the sex-differential plasticity hypothesis). We tested this hypothesis using replicate experimental arrays of the aquatic herb Sagittaria latifolia grown under two fertilizer treatments. The results supported the sex-differential plasticity hypothesis, with females having more than twice the seed fertility of hermaphrodites under low-, but not high-fertilizer conditions. Our findings are consistent with the idea that separate sexes are more likely to evolve under unfavorable conditions.  相似文献   

3.
Sex-specific plasticity, the differential response that the genome of males and females may have to different environments, is a mechanism that can affect the degree of sexual dimorphism. Two adaptive hypotheses have been proposed to explain how sex-specific plasticity affects the evolution of sexual size dimorphism. The adaptive canalization hypothesis states that the larger sex exhibits lesser plasticity compared to the smaller sex due to strong directional selection for a large body size, which penalizes individuals attaining sub-optimal body sizes. The condition-dependence hypothesis states that the larger sex exhibits greater plasticity than the smaller sex due to strong directional selection for a large body size favoring a greater sensitivity as an opportunistic mechanism for growth enhancement under favorable conditions. While the relationship between sex-specific plasticity and sexual dimorphism has been studied mainly in invertebrates, its role in long-lived vertebrates has received little attention. In this study we tested the predictions derived from these two hypotheses by comparing the plastic responses of body size and shape of males and females of the snapping turtle (Chelydra serpentina) raised under common garden conditions. Body size was plastic, sexually dimorphic, and the plasticity was also sex-specific, with males exhibiting greater body size plasticity relative to females. Because snapping turtle males are larger than females, sexual size dimorphism in this species appears to be driven by an increased plasticity of the larger sex over the smaller sex as predicted by the condition-dependent hypothesis. However, male body size was enhanced under relatively limited resources, in contrast to expectations from this model. Body shape was also plastic and sexually dimorphic, however no sex by environment interaction was found in this case. Instead, plasticity of sexual shape dimorphism seems to evolve in parallel for males and females as both sexes responded similarly to different environments.  相似文献   

4.
According to theory, sexual selection in males may efficiently purge mutation load of sexual populations, reducing or fully compensating ‘the cost of males’. For this to occur, mutations not only need to be deleterious to both sexes, they also must affect males more than females. A frequently overlooked problem is that relative strength of selection on males versus females may vary between environments, with social conditions being particularly likely to affect selection in males and females differently. Here, we induced mutations in red flour beetles (Tribolium castaneum) and tested their effect in both sexes under three different operational sex ratios (1:2, 1:1 and 2:1). Induced mutations decreased fitness of both males and females, but their effect was not stronger in males. Surprisingly, operational sex ratio did not affect selection against deleterious mutations nor its relative strength in the sexes. Thus, our results show no support for the role of sexual selection in the evolutionary maintenance of sex.  相似文献   

5.
We examined sex differences in tyrosine hydroxylase immunoreactive (TH-ir) cell populations in the preoptic area (POA), suprachiasmatic nucleus (SCN), posterior tuberculum (TP), and caudal hypothalamus (Hy) in the leopard frog (Rana pipiens), in addition to the effects of natural variation in sex steroid hormones on these same populations in both sexes. All four of these populations have been shown to be dopaminergic. Gonadal sex, androgens, and estrogen all influenced TH-ir cell numbers, but in a complicated pattern of interactions. After factoring out the effects of sex steroids by multiple regression, TH-ir cell numbers in all four areas differed between the sexes, with males having a greater number of TH-ir cells. The influence of androgens and estrogen differed by region and sex of the animals. Androgens were the main influence on TH-ir cell numbers in the POA and SCN. Plasma androgen concentrations were positively correlated with TH-ir cell numbers in both areas in males. In females, androgen concentration was negatively correlated with TH-ir cell numbers in the POA; there was no significant relationship in the SCN in females. In the more caudal populations, estrogen (E2) levels were positively correlated with TH-ir cell numbers in the TP of both males and females. In the caudal hypothalamus, E2 levels were positively correlated with TH-ir cell numbers in females, but there was no significant correlation in males. The results indicate that gonadal sex imposes a baseline sex difference in the four TH-ir (dopamine) populations, resulting in a higher number of such cells in males. Individual and sex-linked differences in gonadal steroid hormones lead to variation around this baseline condition, with androgens having a greater influence on rostral populations and estrogen on caudal populations. Last, an individual's gonadal sex determines the effect that androgens and estrogen have on each population.  相似文献   

6.
Anisogamy is known to generate an important cost for sexual reproduction (the famous "twofold cost of sex"). However, male-female differences may have other consequences on the evolution of sex, due to the fact that selective pressures may differ among the sexes. On the one hand, intralocus sexual conflict should favor asexual females, which can fix female-beneficial, male-detrimental alleles. On the other hand, it has been suggested repeatedly that sexual selection among males may help to purge the mutation load, providing an advantage to sexual females. However, no analytical model has computed the strength of selection acting on a modifier gene affecting the frequency of sexual reproduction when selection differs between the sexes. In this article, we analyze a two-locus model using two approaches: a quasi-linkage-equilibrium (QLE) analysis and a local stability analysis, whose predictions are verified using a multilocus simulation. We find that costly sex can be maintained when selection is stronger in males than in females, but acts in the same direction in both. Complete asexuality, however, evolves under any other form of selection. Finally, we discuss how experimental measurements of fitness variances and covariances between sexes could be used to determine the overall direction and strength on selection for sex arising from differences in selection between males and females.  相似文献   

7.
The importance of ecological factors such as sex lability, spatial segregation, and resource allocation in the evolution of dioecy were examined in Schiedea globosa. S. globosa is a subdioecious species with equal numbers of plants possessing strictly male or female function and a small proportion of hermaphrodites. The propensity for labile sex expression was under both environmental and genetic control; some plants with male function became hermaphroditic (by producing female flowers) under better growing conditions in the field and in the greenhouse. There was some spatial segregation of the sexes. Because of sex lability, more hermaphrodites than males occurred on moister slopes. Although there were not measurable sex-related differences in mortality within or between two flowering seasons, more females than males and hermaphrodites occurred at the bottom of slopes. Males and females produced the same number of ramets and inflorescences, but females had a greater number of flowers per inflorescence. Males and females had the same number of ovules (vestigial in males), but females had larger ovules and longer stigmas. Hermaphrodites and males had the same amount of pollen per flower despite the production of fruit by the hermaphrodites. In hermaphrodites, there was no apparent tradeoff within flowers between pollen production and ovule production. These results indicate that spatial segregation, sex lability, and environmental conditions influence allocation patterns of S. globosa, and in combination with high inbreeding depression and selling rates, may promote the further evolution of dioecy in S. globosa.  相似文献   

8.
A new nonlinear age-dependent model for age-structured sexual populations is introduced, based on two assumptions: (1) the birth function depends on the ages of the two parents; and (2) the death functions of the two sexes are composed of two types of additive terms depending on age and sex and on time evolution of population densities, respectively. Formal arguments are given that suggest that time-persistent age profiles may exist and that the intrinsic rate of growth for the two sexes is the same. If the ratio between the number of newborn females and the number of newborn males is equal to the square root of the ratio of the corresponding per capita birth rates, then the intrinsic rate of growth has an optimal value. The optimal sex ratio for the whole population is equal to the reciprocal value of the sex ratio at birth.  相似文献   

9.
An alternative to classic sexual selection hypotheses for sex differentiated pre-mating behavior is that time available for mating-as individuals experience it-along with fitness differences among alternative potential mates, induces choosy versus indiscriminate mating behavior. This alternative hypothesis says that selection has acted so that all individuals flexibly express fitness-enhancing choosy, indiscriminate, and competitive mating behavior, induced by time-varying life histories, environmental and social cues. Key predictions of DYNAMATE, the formal model of adaptively flexible sex role behavior of individuals of both sexes within dynamically changing populations, include: (1) All individuals regardless of sex assess likely fitness outcomes from mating with alternative potential mates before expressing choosy or indiscriminate behavior. (2) Males and females express adaptively flexible, choosy and indiscriminate behavior so that individuals may change their behavior-from moment to moment-to fit dynamically changing circumstances. (3) Indiscriminate behavior of males and (4) choosy behavior of females would often be maladaptive even in species with greater female than male parental investment, when females have longer latencies to receptivity to re-mating than males, and when the relative reproductive rate of males is greater than in females. (5) Whether or not females show choosy behavior will not affect whether or not males exhibit choosy or indiscriminate behavior, and vice versa. (6) When other model parameters are equal, the proportion of individuals of a given sex expressing choosy or indiscriminate mating behavior is a function of the distribution of fitness ratios (a distribution of all fitness differences that would be conferred on an individual by mating with any two sequentially or simultaneously encountered alternative potential mates). (7) Whether same-sex individuals behaviorally compete is a function of the fitness that would be conferred if the strategist won access to a potential mate, but not a function of relative reproductive rate or its proxy, the operational sex ratio. We call for re-evaluation of sex differences in choosy, indiscriminate, and competitive behavior under strong experimental controls that level the ecological playing fields of males and females, i.e., under experimental conditions informing the mechanisms of phenotypic expression. We end with comments on the classic question of questions: why are the sexes as they are?  相似文献   

10.
Heike Pröhl  Olaf Berke 《Oecologia》2001,129(4):534-542
In many species with a resource-based mating system, males defend resources to increase their attractiveness to females. In the strawberry poison frog, Dendrobates pumilio, suitable tadpole-rearing sites appear to be a limited resource for females. Territorial males have been suggested to defend tadpole-rearing sites to increase their access to females. In this study we investigate the spatial association between tadpole-rearing sites and the sexes as well as the spatial association of males and females. If strawberry poison frogs have resource defense polygyny, we expect males and females to be associated with tadpole-rearing sites and that females will deposit their offspring in tadpole-rearing sites inside the territories of their mates. To test this hypothesis, home range and core area sizes were calculated for both sexes and the association patterns were compared in two areas that differed in their abundance of tadpole-rearing sites. Home ranges and core areas of females were much larger than male home ranges. Females showed a clumped distribution in the vicinity of tadpole-rearing sites. Males were not clumped and were less associated with tadpole-rearing sites. Females generally did not use tadpole-rearing sites in the territory of their mates and we therefore conclude that males did not defend tadpole-rearing sites for females. Our data are consistent with the general assumption that female distribution is influenced by resource distribution and that male distribution depends on female distribution. Nevertheless, the distribution of D. pumilio females was also influenced by male spacing patterns. Males probably initially establish their core areas where female density is high and then females move among territories to sample males. Males compete vigorously for places with high female density, the defense of which is likely important for enhancing their mating success. In general, the spacing patterns did not differ between populations but the sex ratio was strongly female biased in the habitat with more tadpole-rearing sites, reflecting the direct reliance of females on these resources.  相似文献   

11.
The median proportion of investment in females among 11 populations of seven bumble bee (Bombus) species was 0.32 (range 0.07 to 0.64). By contrast, two species of workerless social parasites in the related genus Psithyrus had female-biased sex allocation, the reasons for which remain unclear. Male-biased sex allocation in Bombus contradicts the predictions of Trivers and Hare''s sex ratio model for the social Hymenoptera, which are that the population sex investment ratio should be 0.5 (1:1) under queen control and 0.75 (3:1 females:males) under worker control (assuming single, once-mated, outbred queens and non-reproductive workers). Male bias in Bombus does not appear to be either an artefact, or purely the result of symbiotic sex ratio distorters. According to modifications of the Trivers–Hare model, the level of worker male-production in Bombus is insufficient to account for observed levels of male bias. There is also no evidence that male bias arises from either local resource competition (related females compete for resources) or local mate enhancement (related males cooperate in securing mates). Bulmer presented models predicting sexual selection for protandry (males are produced before females) in annual social Hymenoptera and, as a consequence (given some parameter values), male-biased sex allocation. Bumble bees fit the assumptions of Bulmer''s models and are protandrous. These models therefore represent the best current explanation for the bees'' male-biased sex investment ratios. This conclusion suggests that the relative timing of the production of the sexes strongly influences sex allocation in the social Hymenoptera.  相似文献   

12.
Females of dioecious species are known often to prioritize defense, while males grow faster. As climatic change is known to influence both growth and defense in plants, it would be important to know whether it affects the sexes of dioecious species differently. This could have impacts on future sex ratios in nature. We grew four clones of each sex of Salix myrsinifolia in greenhouse chambers under ambient conditions, enhanced temperature, enhanced CO2 or enhanced temperature + enhanced CO2. The females had the greatest growth and also the highest levels of phenolic compounds in twigs, while in leaves some compounds were higher in males, some in females. Enhanced CO2 increased growth equally in both sexes, while growth was not affected by elevated temperature. Phenolic compounds in twigs were, however, lowered under elevated temperature. The gender differences were not strongly affected by the simulated climatic changes, but the effects seen on some highly concentrated compounds may be important. We interpret the intensive growth at pre‐reproductive phase as a strategy in females to get an initial advantage before later periods with fewer resources available for growth.  相似文献   

13.
In dioecious plant species, males and females are thought to have dissimilar allocation patterns. Females are believed to invest more in reproduction and less in growth and maintenance than males. This differential investment between sexes could result in distinct growth patterns and contrasting survival rates, thereby affecting the sex ratio of a population and the age and size distribution of males and females, possibly leading to habitat segregation according to sex. These effects might become more apparent under particularly limiting conditions, such as in nutrient-deficient soils or in climatically stressed environments. To verify these predictions, growth patterns, microsite characteristics, and age and size distribution of male and female individuals were compared, and population sex ratio was determined in three populations of the dioecious shrub Juniperus communis var. depressa (Cupressaceae, Pinophyta) along a short latitudinal gradient on the eastern coast of Hudson Bay (Northern Québec, Canada). We found that the northernmost population had a male-biased sex ratio, but that the southernmost one had a higher proportion of females. Our results failed to reveal any significant differences in radial growth patterns, mean sensitivity, annual elongation of the main axis, and size and age frequency distribution between males and females in any population. Furthermore, there was no evidence of microhabitat segregation according to sex as indicated by the lack of differences in the physicochemical characteristics of the substrate under males and females. Clearly, the expected ecological consequences of a presumed greater investment of females in reproduction were not apparent even under the very stressful conditions prevailing on subarctic dunes. Many factors could reduce differences in the cost of reproduction between males and females, such as the number and quality of reproductive structures produced annually by individuals of each sex, the possible photosynthetic activity of the immature female cones, and the complexity of the source/sink relationship within individuals. Alternatively, there may be no differences between sexes in their reproductive investment.  相似文献   

14.
Identifying the target of sexual selection in externally fertilizing taxa has been problematic because species in these taxa often lack sexual dimorphism. However, these species often show sex differences in spawning behavior; males spawn before females. I investigated the consequences of spawning order and time intervals between male and female spawning in two field experiments. The first involved releasing one female sea urchin's eggs and one or two males' sperm in discrete puffs from syringes; the second involved inducing males to spawn at different intervals in situ within a population of spawning females. In both, fertilization success was measured as the fraction of eggs fertilized and the paternity share of each male. The results indicate that spawning after females imposes a cost on males but only during sperm competition. Further, the optimal interval between the initiations of male and female spawning depends on degree of sperm competition, distance between males and females, and water velocity. The results show that sex differences in spawning timing of marine invertebrates can be explained on the basis of the differential costs and benefits of spawning out of synchrony with the other sex and that the result of sexual selection on external fertilizers may be behavioral rather than morphological differentiation of the sexes.  相似文献   

15.
In many mammals, early survival differs between the sexes, with males proving the more fragile sex [“Fragile male (FM) hypothesis”], especially in sexually dimorphic species where males are the larger sex. Male-biased allocation (MBA) by females may offset this difference. Here, we evaluate support for the FM and MBA hypotheses using a dataset on Galapagos sea lions (Zalophus wollebaeki). We statistically model sex-specific survival as it depends on body mass and environmental conditions (sea surface temperature, SST, a correlate of marine productivity) at three developmental stages, the perinatal phase (1st month), the main lactation period (1st year), and the weaning period (2nd year). Supporting the FM hypothesis, we found that, early in life (1st month), at equal birth mass, males survived less well than females. During the remainder of the first year of life, male survival was actually less sensitive to harsh environmental conditions than that of females, contradicting the FM hypothesis and supporting the MBA hypothesis. During the second year of life, only male survival suffered with high SSTs as predicted by the FM hypothesis. At each developmental stage, observed survival rates were almost equal for both sexes, suggesting that mothers buffer against the inherent fragility of male offspring through increased allocation, thereby masking the differences in survival prospects between the sexes.  相似文献   

16.
In most species, sexes differ in levels of parasitism. These differences have traditionally been believed to be static, but a capacity for adjusting anti-parasite investments would allow sexes to allocate resources adaptively contingent on environmental conditions. During stressful periods, such as a food shortage, allocation decisions would be mandated in males and females, but the biasing of resources may differ depending on the value of various physiological alternatives to the fitness of each sex. To determine whether sexes sacrifice immune or reproductive capacity when stressed, male and female Siberian hamsters (Phodopus sungorus) were pharmacologically deprived of glucose. Glucose deprivation was expected to compromise immune activity (delayed-type hypersensitivity) more than reproductive capacity in males because male fitness is limited by reproductive opportunities. The opposite was predicted for females because of the greater value of surviving to breed in favorable conditions. Contrary to expectations, glucoprivation compromised immune activity in female, but not male, hamsters. Conversely, glucoprivation reduced male, but not female, reproductive organ masses. These results may reflect the adjustments made by wild hamsters during food shortages, or they may be influenced by the study design; neither sex was permitted to incur other behavioral and physiological costs, such as lactation and parental care. Regardless, our results indicate that sex differences in parasitism are likely to be plastic in many circumstances, but further work in free-living animals is critical to ascertain whether results of the present study are naturally representative.  相似文献   

17.
Abstract.  1. In haplodiploid organisms, virgin or sperm-depleted females can reproduce but are constrained to produce only male progeny. According to Godfray's constrained model, when p , the proportion of females constrained to produce only male progeny, is not null in a panmictic population, unconstrained females should bias their sex allocation towards females to compensate for the excess of males. These unconstrained females should be able to adjust the sex ratio in response to local variation of p .
2. In this paper an experimental approach is used to test the hypotheses of this model in the solitary endoparasitoid Venturia canescens under both field and laboratory conditions. Specifically, it is tested whether unconstrained females use their encounters with conspecifics (either male or female) to estimate p and then adjust their sex ratio accordingly.
3. As assumed by Godfray's model, constrained females actively search for host patches in the field and under laboratory conditions produce the same number of offspring during their lifetime as unconstrained females. As predicted by the model, unconstrained females produce a sex ratio biased towards females both in the laboratory and in the field.
4. The results show that this bias is not a response to encounters with conspecifics previous to oviposition. The hypothesis that the bias is due to differential mortality between sexes during ontogeny is also rejected. The proportions of constrained ovipositions estimated in two natural populations explain only a small fraction of the sex ratio bias observed in V. canescens.  相似文献   

18.
Sexual imprinting is the learning of a mate preference by direct observation of the phenotype of another member of the population. Sexual imprinting can be paternal, maternal, or oblique if individuals learn to prefer the phenotypes of their fathers, mothers, or other members of the population, respectively. Which phenotypes are learned can affect trait evolution and speciation rates. “Good genes” models of polygynous systems predict that females should evolve to imprint on their fathers, because paternal imprinting helps females to choose mates that will produce offspring that are both viable and sexy. Sexual imprinting by males has been observed in nature, but a theory for the evolution of sexual imprinting by males does not exist. We developed a good genes model to study the conditions under which sexual imprinting by males or by both sexes can evolve and to ask which sexual imprinting strategies maximize the fitness of the choosy sex. We found that when only males imprint, maternal imprinting is the most advantageous strategy. When both sexes imprint, it is most advantageous for both sexes to use paternal imprinting. Previous theory suggests that, in a given population, either males or females but not both will evolve choosiness in mating. We show how environmental change can lead to the evolution of sexual imprinting behavior by both sexes in the same population.  相似文献   

19.
Decisions over what sex ratio to produce can have far-reaching evolutionary consequences, for both offspring and parents. However, the extent to which males and females come into evolutionary conflict over aspects of sex allocation depends on the genetic system: when genes are passed to the next generation unequally by the two sexes (as in haplodiploidy, for example), this biased transmission can facilitate a range of conflicts not seen in diploids. However, much less attention has been paid to these forms of sexual conflict, not least because it has not always been clear how the conflicts could be realized. Here we consider how biased gene transmission, as expressed in different genetic systems, enhances the opportunity for sex ratio conflict and give empirical examples that confirm that males and females have the opportunity to influence sex ratios.  相似文献   

20.
We investigated sex recognition in female zebrafish (Danio rerio) to better understand the underlying sensory mechanisms and identify male secondary sexual traits. Females were simultaneously presented with two fish, a male and a female, in a flow-chamber apparatus, and females’ relative attraction towards males was observed under different conditions. With domesticated fish, females were more attracted to males when presented with both visual and chemosensory cues from stimulus fish. They still discriminated the sexes when only visual cues were provided, but not when white ambient light was changed to yellow, indicating that colour plays a role. Sex discrimination under yellow light was improved when chemosensory cues were also provided. Surprisingly, females’ attraction to males was not more pronounced in the morning when mating occurs. Domesticated females discriminated the sexes when presented with wild-derived, as well as domesticated fish, whereas wild-derived females did not show any biases for domesticated or wild-derived males. Behavioural observations indicated that the wild-derived females were distressed, which explains their lack of attraction to males. In summary, domesticated female zebrafish discriminated the sexes using both visual (body colour) and olfactory cues; however, wild-derived zebrafish were too distressed for behavioural experiments under these laboratory conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号