首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hand RA  Jia N  Bard M  Craven RJ 《Eukaryotic cell》2003,2(2):306-317
The response to damage is crucial for cellular survival, and eukaryotic cells require a broad array of proteins for an intact damage response. We have found that the YPL170W (DAP1 [for damage response protein related to membrane-associated progesterone receptors]) gene is required for growth in the presence of the methylating agent methyl methanesulfonate (MMS). The DAP1 open reading frame shares homology with a broadly conserved family of membrane-associated progesterone receptors (MAPRs). Deletion of DAP1 leads to sensitivity to MMS, elongated telomeres, loss of mitochondrial function, and partial arrest in sterol synthesis. Sensitivity of dap1 strains to MMS is not due to loss of damage checkpoints. Instead, dap1 cells are arrested as unbudded cells after MMS treatment, suggesting that Dap1p is required for cell cycle progression following damage. Dap1p also directs resistance to itraconazole and fluconazole, inhibitors of sterol synthesis. We have found that dap1 cells have slightly decreased levels of ergosterol but increased levels of the ergosterol intermediates squalene and lanosterol, indicating that dap1 cells have a partial defect in sterol synthesis. This is the first evidence linking a MAPR family member to sterol regulation or the response to damage, and these functions are probably conserved in a variety of eukaryotes.  相似文献   

2.
Bid plays a role in the DNA damage response   总被引:2,自引:0,他引:2  
Zinkel SS  Hurov KE  Gross A 《Cell》2007,130(1):9-10; author reply 10-1
  相似文献   

3.
4.
Nijmegen breakage syndrome is a recessive genetic disorder, characterized by elevated sensitivity to ionizing radiation, chromosome instability and high frequency of malignancies. Since cellular features partly overlap with those of ataxia-telangiectasia (A-T), NBS was long considered an A-T clinical variant. NBS1, the product of the gene underlying the disease, contains three functional regions: the forkhead-associated (FHA) domain and BRCA1 C-terminus (BRCT) domain at the N-terminus, several SQ motifs (consensus phosphorylation sites by ATM and ATR kinases) at a central region and MRE11-binding region at the C-terminus. NBS1 forms a multimeric complex with hMRE11/hRAD50 nuclease at the C-terminus and recruits or retains them at the vicinity of sites of DNA damage by direct binding to histone H2AX, which is phosphorylated by ATM in response to DNA damage. The combination of the FHA/BRCT domains has a crucial role for the binding of NBS1 to H2AX. Thereafter, the NBS1 complex proceeds to rejoin double-strand breaks predominantly by homologous recombination repair in vertebrates, while it also might be involved in suppression of inter-chromosomal recombination even for V(D)J recombination. These processes collaborate with cell cycle checkpoints to facilitate DNA repair, while defects of these checkpoints in NBS cells are partial in nature. A possible explanation for these moderate defects are the redundancy of multiple checkpoint regulations in vertebrates, or the modulator role of NBS1, in which NBS1 amplifies ATM activation by accumulation of the MRN complex at damaged sites. This molecular link of NBS1 to ATM may explain the phenotypic similarity of NBS to A-T.  相似文献   

5.
6.
Human DNA tumor viruses induce host cell proliferation in order to establish the necessary cellular milieu to replicate viral DNA. The consequence of such viral-programmed induction of proliferation coupled with the introduction of foreign replicating DNA structures makes these viruses particularly sensitive to the host DNA damage response machinery. In fact, sensors of DNA damage are often activated and modulated by DNA tumor viruses in both latent and lytic infection. This article focuses on the role of the DNA damage response during the life cycle of human DNA tumor viruses, with a particular emphasis on recent advances in our understanding of the role of the DNA damage response in EBV, Kaposi's sarcoma-associated herpesvirus and human papillomavirus infection.  相似文献   

7.
Protein ubiquitylation has emerged as an important regulatory mechanism that impacts almost every aspect of the DNA damage response. In this review, we discuss how DNA repair and checkpoint pathways utilize the diversity offered by the ubiquitin conjugation system to modulate the response to genotoxic lesions in space and time. In particular, we will highlight recent work done on the regulation of DNA double-strand breaks signalling and repair by the RNF8/RNF168 E3 ubiquitin ligases, the Fanconi anemia pathway and the role of protein degradation in the enforcement and termination of checkpoint signalling. We also discuss the various functions of deubiquitylating enzymes in these processes along with potential avenues for exploiting the ubiquitin conjugation/deconjugation system for therapeutic purposes.  相似文献   

8.
Comment on: Alvarez-Fernández M, et al. EMBO Rep 2010; 11:452-8.  相似文献   

9.
10.
Selenium (Se) is a chemo-preventive agent that has been shown to have a protective role against cancer. The inorganic form of Se, sodium selenite (Na2SeO3), has frequently been included in various chemo-prevention studies, and this commercially available form of Se is used as dietary supplement by the public. Because high doses of this Se compound can be toxic, the underlying molecular mechanisms of sodium selenite toxicity need to be elucidated. Recently, we have reported that sodium selenite is acting as an oxidizing agent in the budding yeast Saccharomyces cerevisiae, producing oxidative damage to DNA. This pro-oxidative activity of sodium selenite likely accounted for the observed DNA double-strand breaks (DSB) and yeast cell death. In this study we determine the genetic factors that are responsible for repair of sodium selenite-induced DSB. We report that the Rad52 protein is indispensable for repairing sodium selenite-induced DSB, suggesting a fundamental role of homologous recombination (HR) in this repair process. These results provide the first evidence that HR may have a fundamental role in the repair of sodium selenite-induced toxic DNA lesions.  相似文献   

11.
The ubiquitously expressed c-Abl tyrosine kinase is activated in the apoptotic response of cells to DNA damage. The mechanisms by which c-Abl signals the induction of apoptosis are not understood. Here we show that c-Abl binds constitutively to the mammalian homolog of the Schizosaccharomyces pombe Rad9 cell cycle checkpoint protein. The SH3 domain of c-Abl interacts directly with the C-terminal region of Rad9. c-Abl phosphorylates the Rad9 Bcl-2 homology 3 domain (Tyr-28) in vitro and in cells exposed to DNA-damaging agents. The results also demonstrate that c-Abl-mediated phosphorylation of Rad9 induces binding of Rad9 to the antiapototic Bcl-x(L) protein. The regulation of Rad9 by c-Abl in the DNA damage response is further supported by the demonstration that the interaction between c-Abl and Rad9 contributes to DNA damage-induced apoptosis. These findings indicate that Rad9 is regulated by a c-Abl-dependent mechanism in the apoptotic response to genotoxic stress.  相似文献   

12.
Previous studies have shown that human topoisomerase I cleavage complexes form as a response to various DNA damages in vivo, the so called human topoisomerase I "damage response". It was suggested that this damage response may play a role in DNA repair as well as in apoptosis, but only very few investigations have been done and the significance of the damage response still remains unclear. Here we demonstrate that human topoisomerase I cleavage complexes induced by high doses of UV irradiation are highly stable for up to 48 h. Furthermore, we show that human topoisomerase I cleavage complexes correlate with apoptosis. However, at low UV doses the cleavage complex level was very low and the complexes were repaired. Surprisingly, we found that high levels of stable cleavage complexes were not only found in UV-irradiated cells but also in untreated cells that underwent apoptosis. A possible role of human topoisomerase I in apoptosis is discussed.  相似文献   

13.
HU is one of the most abundant DNA binding proteins in Escherichia coli. We find that it binds strongly to DNA containing an abasic (AP) site or tetrahydrofuran (THF) (apparent Kd ≈50 nM). It also possesses an AP lyase activity that cleaves at a deoxyribose but not at a THF residue. The binding and cleavage of an AP site was observed only with the HUαβ heterodimer. Site-specific mutations at K3 and R61 residues led to a change in substrate binding and cleavage. Both K3A(α)K3A(β) and R61A(α)R61A(β) mutant HU showed significant reduction in binding to DNA containing AP site; however, only R61A(α)R61A(β) mutant protein exhibited significant loss in AP lyase activity. Both K3A(α)K3A(β) and R61K(α)R61K(β) showed slight reduction in AP lyase activities. The function of HU protein as an AP lyase was confirmed by the ability of hupA or hupB mutations to further reduce the viability of an E. coli dut(Ts) xth mutant, which generates lethal AP sites at 37°C; the hupA and hupB derivatives, respectively, had a 6-fold and a 150-fold lower survival at 37°C than did the parental strain. These data suggest, therefore, that HU protein plays a significant role in the repair of AP sites in E. coli.  相似文献   

14.
15.
16.
The view of DNA packaging into chromatin as a mere obstacle to DNA repair is evolving. In this review, we focus on histone variants and heterochromatin proteins as chromatin components involved in distinct levels of chromatin organization to integrate them as real players in the DNA damage response (DDR). Based on recent data, we highlight how some of these chromatin components play active roles in the DDR and contribute to the fine-tuning of damage signaling, DNA and chromatin repair. To take into account this integrated view, we revisit the existing access-repair-restore model and propose a new working model involving priming chromatin for repair and restoration as a concerted process. We discuss how this impacts on both genomic and epigenomic stability and plasticity.  相似文献   

17.
MicroRNAs, the DNA damage response and cancer   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
In yeast, the type 1 protein phosphatase (PP1) catalytic subunit Glc7 is involved in the regulation of multiple cellular processes and thought to achieve specificity through association with different regulatory subunits. Here, we report that the Glc7 regulator Shp1 plays important roles in cell morphogenesis, cell cycle progression and DNA damage response in Candida albicans. SHP1 deletion caused the formation of rod-shaped yeast cells with slow growth. Flow cytometry analysis revealed that shp1Δ cells showed a prolonged G(2)/M phase, which was rescued by deleting the spindle-checkpoint gene MAD2. Furthermore, shp1Δ cells were hypersensitive to heat and genotoxic stresses. Interestingly, depletion of Glc7 caused defects similar to the shp1Δ mutant such as arrest at G(2)/M transition; and the GLC7/glc7Δ heterozygous mutant exhibited increased sensitivity to genotoxic stresses, consistent with the recent finding that Saccharomyces cerevisiae Glc7 has a role in DNA damage response. We also show that Shp1 is required for the nuclear accumulation of Glc7, suggesting that Shp1 executes its cellular function partly by regulating Glc7 localization.  相似文献   

20.
The formation of γ-H2AX foci after DNA double strand breaks (DSBs) is crucial for the cellular response to this lethal DNA damage. We previously have shown that BRG1, a chromatin remodeling enzyme, facilitates DSB repair by stimulating γ-H2AX formation, and this function of BRG1 requires the binding of BRGI to acetylated histone H3 on γ-H2AX-containing nucleosomes using its bromodomain (BRD), a protein module that specifically recognizes acetyl-Lys moieties. We also have shown that the BRD of BRG1, when ectopically expressed in cells, functions as a dominant negative inhibitor of the BRG1 activity to stimulate γ-H2AX and DSB repair. Here, we found that BRDs from a select group of proteins have no such activity, suggesting that the γ-H2AX inhibition activity of BRG1 BRD is specific. This finding led us to search for more BRDs that exhibit γ-H2AX inhibition activity in the hope of finding additional BRD-containing proteins involved in DNA damage responses. We screened a total of 52 individual BRDs present in 38 human BRD-containing proteins, comprising 93% of all human BRDs. We identified the BRD of cat eye syndrome chromosome region candidate 2 (Cecr2), which recently was shown to form a novel chromatin remodeling complex with unknown cellular functions, as having a strong γ-H2AX inhibition activity. This activity of Cecr2 BRD is specific because it depends on the chromatin binding affinity of Cecr2 BRD. Small interfering RNA knockdown experiments showed that Cecr2 is important for γ-H2AX formation and DSB repair. Therefore, our genomewide screen identifies Cecr2 as a novel DNA damage response protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号