首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Light-induced production of superoxide (O2*-) in spinach PSII (photosystem II) membrane particles was studied using EPR spin-trapping spectroscopy. The presence of exogenous PQs (plastoquinones) with a different side-chain length (PQ-n, n isoprenoid units in the side-chain) enhanced O2*- production in the following order: PQ-1>PQ-2>PQ-9. In PSII membrane particles isolated from the tobacco cyt (cytochrome) b559 mutant which carries a single-point mutation in the beta-subunit and also has a decreased amount of the alpha-subunit, the effect of PQ-1 was less than in the wild-type. The increase in LP (low-potential) cyt b559 content, induced by the incubation of spinach PSII membrane particles at low pH, resulted in a significant increase in O2*- formation in the presence of PQ-1, whereas it had little effect on O2*- production in the absence of PQ-1. The enhancement of O2*- formation induced by PQ-1 was not abolished by DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea]. Under anaerobic conditions, dark oxidation of LP cyt b559 increased, as pH was decreased. The presence of molecular oxygen significantly enhanced dark oxidation of LP cyt b559. Based on these findings it is suggested that short-chain PQs stimulate O2*- production via a mechanism that involves electron transfer from Pheo- (pheophytin) to LP cyt b559 and subsequent auto-oxidation of LP cyt b559.  相似文献   

2.
L K Thompson  G W Brudvig 《Biochemistry》1988,27(18):6653-6658
Although cytochrome b-559 is an integral component of the photosystem II complex (PSII), its function is unknown. Because cytochrome b-559 has been shown to be both photooxidized and photoreduced in PSII, one of several proposals is that it mediates cyclic electron transfer around PSII, possibly as a protective mechanism. We have used electron paramagnetic resonance spectroscopy to investigate the pathway of photooxidation of cytochrome b-559 in PSII and have shown that it proceeds via photooxidation of chlorophyll. We propose that this photooxidation of chlorophyll is the first step in the photoinhibition of PSII. The unique susceptibility of PSII to photoinhibition is probably due to the fact that it is the only reaction center in photosynthesis which generates an oxidant with a reduction potential high enough to oxidize chlorophyll. We propose that the function of cytochrome b-559 is to mediate cyclic electron transfer to rereduce photooxidized chlorophyll and protect PSII from photoinhibition. We also suggest that the chlorophyll(s) which are susceptible to photooxidation are analogous to the monomer chlorophylls found in the bacterial photosynthetic reaction center complex.  相似文献   

3.
The PsbH protein, a small subunit of the photosystem II complex (PSII), was identified as a 6-kDa protein band in the PSII core and subcore (CP47-D1-D2-cyt b-559) from the wild-type strain of the cyanobacterium Synechocystis PCC 6803. The protein was missing in the D1-D2-cytochrome b-559 complex and also in all PSII complexes isolated from IC7, a mutant lacking the psbH gene. The following properties of PSII in the mutant contrasted with those in wild-type: (a) CP47 was released during nondenaturing electrophoresis of the PSII core isolated from IC7; (b) depletion of CO2 resulted in a reversible decrease of the QA- reoxidation rate in the IC7 cells; (c) light-induced decrease in PSII activity, measured as 2,5-dimethyl-benzoquinone-supported Hill reaction, was strongly dependent on the HCO3- concentration in the IC7 cells; and (d) illumination of the IC7 cells lead to an extensive oxidation, fragmentation and cross-linking of the D1 protein. We did not find any evidence for phosphorylation of the PsbH protein in the wild-type strain. The results showed that in the PSII complex of Synechocystis attachment of CP47 to the D1-D2 heterodimer appears weakened and binding of bicarbonate on the PSII acceptor side is destabilized in the absence of the PsbH protein.  相似文献   

4.
The involvement of the PsbI protein in the assembly and repair of the photosystem II (PSII) complex has been studied in the cyanobacterium Synechocystis sp. PCC 6803. Analysis of PSII complexes in the wild-type strain showed that the PsbI protein was present in dimeric and monomeric core complexes, core complexes lacking CP43, and in reaction center complexes containing D1, D2, and cytochrome b-559. In addition, immunoprecipitation experiments and the use of a histidine-tagged derivative of PsbI have revealed the presence in the thylakoid membrane of assembly complexes containing PsbI and either the precursor or mature forms of D1. Analysis of PSII assembly in the psbI deletion mutant and in strains lacking PsbI together with other PSII subunits showed that PsbI was not required for formation of PSII reaction center complexes or core complexes, although levels of unassembled D1 were reduced in its absence. However, loss of PsbI led to a dramatic destabilization of CP43 binding within monomeric and dimeric PSII core complexes. Despite the close structural relationship between D1 and PsbI in the PSII complex, PsbI turned over much slower than D1, whereas high light-induced turnover of D1 was accelerated in the absence of PsbI. Overall, our results suggest that PsbI is an early assembly partner for D1 and that it plays a functional role in stabilizing the binding of CP43 in the PSII holoenzyme.  相似文献   

5.
Cytochromeb-559 is an integral protein of the photosystem II (PSII) reaction center from both plants and cyanobacteria. Cytochromeb-559 has the unique structure of a heme crosslinked α- and β-subunit heterodimer. The stoichiometry of cytochromeb-559 (one or two copies) per the PSII reaction center has been the subject of controversy and the molar ratio of the heme group to the special chlorophyll P-680 has a number of significant implications on our understanding of the functional role of cytochromeb-559, the mechanism of electron donation in PSII, and the stoichiometry of the other redox-active reaction center components. In order to determine the number of the cytochromeb-559 heme in the PSII reaction center ofSynechocystis sp. PCC 6803, the α- and β-subunits are covalently linked by use of the molecular genetic techniques. The resultingpsbEF fusion mutant was able to grow photoautotrophically, implying that the PSII complexes are assembled and functional in thylakoids. This result supports the fact that there are two set of cytochromeb-559 in the PSII reaction center ofSynechocystis sp. PCC 6803.  相似文献   

6.
Accumulation of monomer and dimer photosystem (PS) II reaction center core complexes has been analyzed by two-dimensional Blue-native/SDS-PAGE in Synechocystis PCC 6803 wild type and in mutant strains lacking genes psbA, psbB, psbC, psbDIC/DII, or the psbEFLJ operon. In vivo pulse-chase radiolabeling experiments revealed that mutant cells assembled PSII precomplexes only. In DeltapsbC and DeltapsbB, assembly of reaction center cores lacking CP43 and reaction center complexes was detected, respectively. In DeltapsbA, protein subunits CP43, CP47, D2, and cytochrome b559 were synthesized, but proteins did not assemble. Similarly, in DeltapsbD/C lacking D2, and CP43, the de novo synthesized proteins D1, CP47, and cytochrome b559 did not form any mutual complexes, indicating that assembly of the reaction center complex is a prerequisite for assembly with core subunits CP47 and CP43. Finally, although CP43 and CP47 accumulated in DeltapsbEFLJ, D2 was neither expressed nor accumulated. We, furthermore, show that the amount of D2 is high in the strain lacking D1, whereas the amount of D1 is low in the strain lacking D2. We conclude that expression of the psbEFLJ operon is a prerequisite for D2 accumulation that is the key regulatory step for D1 accumulation and consecutive assembly of the PSII reaction center complex.  相似文献   

7.
Analysis of a number of PSII complexes detectable in the wild-type and mutant cells of the cyanobacterium Synechocystis sp. PCC 6803 showed that the PsbH protein is present in the complexes containing CP47, including unassembled CP47. In a mutant lacking CP47, in which the PSII assembly is stopped at the level of the D1-D2-cytochrome b-559 reaction centre complex, a negligible amount of the PsbH protein was not bound to this complex but was detected in the free form. The results indicate that the PsbH protein has a high affinity for CP47 and during PSII assembly most probably first associates with CP47 and this pair is subsequently attached to the reaction centre complex. Similarly to CP47, the PsbH protein exhibits a slow light-induced degradation in the presence of protein synthesis inhibitor. The absence of the PsbH protein leads to a greatly increased D1 pool that is not associated with other PSII proteins or it is present as a part of the reaction centre complex. We conclude that PsbH is important for the prompt incorporation of the newly synthesized D1 protein into PSII complexes and for the fast D1 maturation.  相似文献   

8.
Cytochrome b-559 in photosystem Ⅱ reaction center was purified from spinach (Spinacia oleracea L.) and rice (Oryza sativa L.) by a rapid and simple procedure. Their low temperature fluorescence emission and excitation spectra, ultraviolet fluorescence spectra and absolute absorption spectra were presented. The author's purification methods, which enhanced the yield of pure protein and shorted the time for isolation, have several advantages: 1. use of oxygen-evolving PSⅡ core complexes as the starting material in order to avoid disturbing from other cytochromes; 2. isocratic elution of cytochrome b-559 from a DEAE-Sephacel column for eliminating the impurity and yielding the protein in pure state; 3. a simple column procedure for removal of excess Triton X-100. Purified cytochromes b-559 from these species have similar optical spectra and mobility during gel electrophoresis under native conditions. From the results of novel electrophoresis (Tricine-SDS-PAGE), cytochrome b-559 from both spinach and rice reveal two polypeptide bands (apparent molecular weight 9 kD and 4 kD, respectively). By measuring of 77 K fluorescence spectra, it was shown that for the purified cytochrome b-559 there were two excitation peaks at 439 nm and 413 nm, and two emission peaks at 563 nm and 668 nm. This is the first indication that Cyt b-559 is able to emit fluorescence and also transfer excited electrons to chlorophyll. By the use of ultraviolet fluorescence spectra, it was demonstrated for the first time that the location of Trp residue could be in the hydrophobic transmembrane region of cytochrome b-559.  相似文献   

9.
The requirements for reconstitution of electron transfer activity with a plastoquinone (PQ)-depleted cytochrome b6-f complex from spinach have been considered. Full restoration of activity measured as plastocyanin reduction with either duroquinol in the dark or Photosystem II (PSII) in the light requires both PQ-9 and phospholipid. However, a substantial dark activity can be observed with duroquinol and phospholipid in the absence of any added PQ-9. PSII, with its associated PQ molecules, can also donate electrons in the light to the cytochrome complex which has been depleted of plastoquinone. Electron donation by duroquinol in the dark to the PQ-depleted cytochrome complex is stimulated by PSII, and this stimulation is dependent on the presence of the two PQ molecules in the PSII preparation. Measurements of proton translocation with the PQ-depleted complex indicate this quinone is not required for the observed H+/e- ratio of 2. Studies of cytochrome b6 kinetics with the free and liposome-incorporated PQ-depleted complex show this cytochrome undergoes redox reactions similar to those of a control complex which contains PQ. These results indicate the PQ that copurifies with the cytochrome complex is not essential for any of the measured activities. These findings are considered in relation to a quinone binding site(s) in the cytochrome complex which is not specific to PQ but can bind other quinones, such as duroquinol, in a lipid-dependent process.  相似文献   

10.
Preparation of a minimum PSII core complex from spinach is described, containing four Mn per reaction center (RC) and exhibiting high O2 evolving activity [approximately 4000 micromol of O2 (mg of chl)(-1) x h(-1)]. The complex consists of the CP47 and CP43 chlorophyll binding proteins, the RC D1/D2 pair, the cytochrome b559 subunits, and the Mn-stabilizing psbO (33 kDa) protein, all present in the same stoichiometric amounts found in the parent PSII membranes. Several small subunits are also present. The cyt b559 content is 1.0 per RC in core complexes and PSII membranes. The total chlorophyll content is 32 chl a and <1 chl b per RC, the lowest yet reported for any active PSII preparation. The core complex exhibits the characteristic EPR signals seen in the S2 state of higher plant PSII. A procedure for preparing low-temperature samples of very high optical quality is developed, allowing detailed optical studies in the S1 and S2 states of the system to be made. Optical absorption, CD, and MCD spectra reveal unprecedented detail, including a prominent, well-resolved feature at 683.5 nm (14630 cm(-1)) with a weaker partner at 187 cm(-1) to higher energy. On the basis of band intensity, CD, and MCD arguments, these features are identified as the exciton split components of P680 in an intact, active reaction center special pair. Comparisons are made with solubilized D1/D2/cyt b559 material and cyanobacterial PSII.  相似文献   

11.
We have found that plastoquinone-A (PQ-A) and α-tocopherol (α-Toc) increased the reduction level of the high-potential form of cytochrome b-559 (cyt. b-559 HP) and α-tocopherol quinone (α-TQ) decreased the level of this cytochrome form in Scenedesmus obliquus wild-type, while the investigated prenyllipids were not active in the restoration of the cyt. b-559 HP form in Scenedesmus PS28 mutant and Synechococcus 6301 (Anacystis nidulans) where the cyt. b-559 HP form is naturally not present. Among the tested prenyllipids, α-TQ quenched fluorescence in thylakoids of S. obliquus wild-type, the PS28 mutant and tobacco to the highest extent, while PQ-A was less effective in this respect. α-Tocopherol showed the opposite effect to α-TQ and it was rather small. The fluorescence quenching measurements of thylakoids in the presence of DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) showed that the α-Toc and FCCP (carbonylcyanide-p-trifluoromethoxy-phenyl-hydrazone) did not quench non-photochemically chlorophyll fluorescence while PQ-9 and α-TQ were effective fluorescence quenchers at higher concentrations (> 15 μM). However, at the lower α-TQ concentrations where its effective fluorescence quenching was found in DCMU-free samples, there was nearly no quenching effect by α-TQ observed in DCMU-treated thylakoids. This suggested a specific, not non-photochemical, DCMU sensitive, fluorescence quenching of photosystem II (PSII) at low α-TQ concentrations which is probably connected with the cyclic electron transport around PSII and might have a function of excess light energy dissipation. The effects of α-TQ on PSII resembled those of FCCP under many respects which might suggest similar mechanism of action of these compounds on PSII, i.e. the catalytic deprotonation and/or redox changes of some components of PSII such as the water splitting system, tyrosine D, Chlz or cytochrome b-559.  相似文献   

12.
Chung-Hsien Hung 《BBA》2007,1767(6):686-693
Cytochrome (cyt) b559 has been proposed to play an important role in the cyclic electron flow processes that protect photosystem II (PSII) from light-induced damage during photoinhibitory conditions. However, the exact role(s) of cyt b559 in the cyclic electron transfer pathway(s) in PSII remains unclear. To study the exact role(s) of cyt b559, we have constructed a series of site-directed mutants, each carrying a single amino acid substitution of one of the heme axial-ligands, in the cyanobacterium Synechocystis sp. PCC6803. In these mutants, His-22 of the α or the β subunit of cyt b559 was replaced with either Met, Glu, Tyr, Lys, Arg, Cys or Gln. On the basis of oxygen-evolution and chlorophyll a fluorescence measurements, we found that, among all mutants that were constructed, only the H22Kα mutant grew photoautotrophically, and accumulated stable PSII reaction centers (∼ 81% compared to wild-type cells). In addition, we isolated one pseudorevertant of the H22Yβ mutant that regained the ability to grow photoautotrophically and to assemble stable PSII reaction centers (∼ 79% compared to wild-type cells). On the basis of 77 K fluorescence emission measurements, we found that energy transfer from the phycobilisomes to PSII reaction centers was uncoupled in those cyt b559 mutants that assembled little or no stable PSII. Furthermore, on the basis of immunoblot analyses, we found that in thylakoid membranes of cyt b559 mutants that assembled little or no PSII, the amounts of the D1, D2, cyt b559α and β polypeptides were very low or undetectable but their CP47 and PsaC polypeptides were accumulated to the wild-type level. We also found that the amounts of cyt b559β polypeptide were significantly increased (larger than two folds) in thylakoid membranes of cyt b559 H22YβPS+ mutant cells. We suspected that the increase in the amounts of cyt b559 H22YβPS+ mutant polypeptides in thylakoid membranes might facilitate the assembly of functional PSII in cyt b559 H22YβPS+ mutant cells. Moreover, we found that isolated His-tagged PSII particles from H22Kα mutant cells gave rise to redox-induced optical absorption difference spectra of cyt b559. Therefore, our results concluded that significant fractions of H22Kα mutant PSII particles retained the heme of cyt b559. Finally, this work is the first report of cyt b559 mutants having substitutions of an axial heme-ligands that retain the ability to grow photoautotrophically and to assemble stable PSII reaction centers. These two cyt b559 mutants (H22Kα and H22YβPS+) and their PSII reaction centers will be very suitable for further biophysical and biochemical studies of the functional role(s) of cyt b559 in PSII.  相似文献   

13.
Photosystem II (PSII) composition was studied in a mutant of the cyanobacteriumSynechosystis 6803 in which synthesis of the reaction center polypeptide D1 has been inactivated. The mutant thylakoids had lost also the other reaction center polypeptide D2 and the chlorophylla-binding protein CP47. Cytochromeb559 and the chlorophylla-binding protein CP43 accumulated to almost wild-type amounts in mutant thylakoids. Also the 33 kDa polypeptide involved in water oxidation was present and membrane-bound in mutant thylakoids. The intrinsic 22 kDa polypeptide, so far known only from plants, was detected both in wild-type and mutant thylakoids.  相似文献   

14.
C A Buser  B A Diner  G W Brudvig 《Biochemistry》1992,31(46):11441-11448
The stoichiometry of cytochrome b559 (one or two copies) per reaction center of photosystem II (PSII) has been the subject of considerable debate. The molar ratio of cytochrome b559 has a number of significant implications on our understanding of the functional role of cytochrome b559, the mechanism of electron donation in PSII, and the stoichiometry of the other redox-active, reaction center components. We have reinvestigated the stoichiometry of cytochrome b559 in PSII-enriched and thylakoid membranes, using differential absorbance and electron paramagnetic resonance spectroscopies. The data from both quantitation procedures strongly indicate only one copy of cytochrome b559 per reaction center in PSII-enriched membranes and also suggest one copy of cytochrome b559 per reaction center in thylakoid membranes.  相似文献   

15.
叶绿体中的细胞色素b—559   总被引:1,自引:0,他引:1  
细胞色素b-559是由叶绿体基因编码α,β亚基为单位构成的一种血红蛋白,是光系统II反应中心的重要组分。以叶绿体为实验材料的研究表明,细胞色素b-559可通过还原变化调节光系统Ⅱ的光抑制敏感性,并对发生在供体侧和受体侧抑制的光系统II反应中心具有保护作用,但对整体植物在生理条件下的作用却未得到证实,这也正是今后需要研究的问题。  相似文献   

16.
Oxygen evolving photosystem II (PSII-OEC) complexes and PSII core complexes were isolated from spinach and the thermophilic cyanobacteriumSynechococcussp. OD24 and characterized by gel electrophoresis, immunoblotting, and absorbance spectroscopy. The mass of the core complexes was determined by scanning transmission electron microscopy (STEM) and found to be 281 ± 65 kDa for spinach and 313 ± 52 kDa forSynechococcussp. OD24. The mass of the spinach PSII-OEC complex was 327 ± 64 kDa. Digital images of negatively stained PSII-OEC and PSII core complexes were recorded by STEM and analyzed by single particle averaging. All monomeric complexes showed similar morphologies and were of comparable length (14 nm) and width (10 nm). The averages revealed a pseudo-twofold symmetry axis, which is a prominent structural element of the monomeric form. Difference maps between the averaged projections of the oxygen evolving complexes and the core complexes from both species indicated where the 33-kDa extrinsic manganese stabilizing protein is bound. A symmetric organization of the PSII complex, with the PsbA and the PsbD proteins in the center and symmetrically arranged PsbB and PsbC proteins at the periphery of the monomeric complex, is proposed.  相似文献   

17.
G S Tae  W A Cramer 《FEBS letters》1989,259(1):161-164
Removal of the extrinsic 33 kDa polypeptide increased the accessibility to trypsin of a COOH-terminal tridecapeptide epitope of the alpha subunit of cytochrome b-559 (psbE gene product). The sensitivity of the cytochrome epitope to trypsin was not measurably affected by removal of the 16 and 23 kDa extrinsic polypeptides, nor increased by removal of the OEC manganese along with the 33 kDa protein. While protecting alpha-cytochrome b-559 against trypsin, the 33 kDa protein is also proteolyzed, suggesting the possibility of an additional protein component involved in the shielding of the cytochrome. Shielding of the COOH-terminal epitope of alpha-cytochrome b-559 by the OEC 33 kDa protein implies that these COOH-terminal chains of the cytochrome are part of a protein network in the lumen space near the photosystem II reaction center. This network may contain residues that are involved in the binding of essential OEC metal ions.  相似文献   

18.
《BBA》1985,807(1):74-80
Photochemical and chemical properties of two Photosystem II reaction center complexes isolated from the thermophilic cyanobacterium Synechococcus sp. were examined. (1) The intact reaction center complexes contain each one of photoreducible pheophytin, secondary electron acceptor (QA) and cytochrome b-559 per 32–46 chlorophyll a molecules. (2) The reaction center complexes which lack the chlorophyll-binding 40 kDa polypeptide (CP2-b) showed photoaccumulation of reduced pheophytin and photoreduction of QA, indicating that the complexes can carry out not only the primary-charge separation, but also the stabilization of the separated charges. The contents of pheophytin, QA and cytochrome b-559 were, however, considerably reduced in CP2-b. (3) The two complexes contained very small amounts of manganese. (4) CP2-b was partially deprived of the small polypeptides: the ratios of the peak areas (corrected for molecular weight) of the 47/40/31 plus 28/9 kDa polypeptide bands resolved in sodium dodecyl sulfate gels after electrophoresis under denaturating conditions were approx. 1:1:2:2 in the intact complexes and 1:0:0.4:1 in CP2-b. The results were discussed in terms of the functional molecular organization of the Photosystem II reaction center complexes.  相似文献   

19.
The carboxyl terminus of the CP43 subunit of photosystem II (PSII) in the thermophilic cyanobacterium, Synechococcus elongatus, was genetically tagged with six consecutive histidine residues to create a metal binding site on the PSII supramolecular complex. The histidine-tagging enabled rapid isolation of an intact cyanobacterial PSII core complex from dodecyl maltoside-solubilized thylakoids by a simple one-step Ni(2+)-affinity column chromatography. The isolated core complex was in a dimeric form with a molecular mass of about 580 kDa, consisting of five major intrinsic membrane proteins (CP47, CP43, D1, D2 and cytochrome b-559), three extrinsic proteins (33 kDa, 12 kDa, and cytochrome c-550), and a few low molecular mass membrane proteins, and evolved oxygen at a rate as high as 3,400 mumol (mg Chl)-1 h-1 at 45 degrees C with ferricyanide as an electron acceptor. The core complex emitted thermoluminescence B2-, B1- and Q-bands arising from S2QB-, S3QB- and S2QA- charge recombinations at respective emission temperatures of 45, 38 and 20 degrees C, all of which were higher by about 15 degrees C as compared with those in mesophilic spinach BBY membranes. These results indicated that the isolated core complex well retained the intact properties of thermoluminescence of thermophilic cyanobacterial cells, the deeper stabilization of PSII charge pairs. The isolated complex was extremely stable in terms of both protein composition and function, exhibiting no release of extrinsic proteins, no proteolytic degradation in any of its subunits, accompanied by only a slight (less than 10%) loss in oxygen evolution, after dark-incubation at 20 degrees C for 8 d. These properties of the thermophilic PSII core complex are highly useful for various types of studies on PSII.  相似文献   

20.
Four types of differently phosphorylated hylakoids isolated from field grown spinach ( Spinacia oleracea L.) were tested for the sensitivity of photosystem II (PSII) to photoinactivation. Phosphorylation of light-harvesting II complexes (LHCII) protected PSII electron transfer from photoinhibitory damage, while the phosphorylation of the PSII core polypeptides slightly accelerated the decline of electron transfer during high irradiance treatment. Dephosphorylation of the CP43 apoprotein and PsbH protein by an alkaline phosphatase resulted in an extreme sensitivity of the thylakoids to strong illumination. The PSII photoinactivation of thylakoids with the impaired oxygen-evolving complex was found to be independent of phosphorylation.
The thylakoids of the thermophilic cyanobacterium Synechococcus elongates were used in order to compare the plants with an organism where LHCII complexes are missing and the PSII core proteins are not phosphorylated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号