首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to evaluate embryo development of prepubertal goat oocytes fertilised by ICSI according to their diameter. Three experiments were carried out to achieve this objective. In all experiments, oocytes were matured in TCM199 supplemented with hormones, cysteamine and serum for 27 h at 38.5 degrees C. In Experiment 1, we studied the nuclear stage of goat zygotes produced by conventional ICSI and IVF using 20 nM ionomycin plus 10 microM heparin as sperm treatment. A group of Sham-injected oocytes was used as control. Results showed differences in the percentage of 2 PN (zygotes with male and female pronuclei) between ICSI, IVF and Sham (40.9, 26.6 and 3.0%, respectively; P<0.05). In Experiment 2, we evaluated the embryo development of prepubertal goat oocytes produced by ICSI and IVF after 192 h of culture in SOF medium. The percentage of morulae plus blastocysts obtained was higher in the ICSI than in the IVF group (13.4 and 5.1%, respectively; P<0.05). In Experiment 3, IVM-oocytes were classified in four groups depending on their diameter (Group A: <110 microm; Group B: 110-125 microm; Group C: 125-135 microm; Group D: >135 microm), fertilised by ICSI and cultured for 192 h. Results showed a positive correlation between oocyte diameter and embryo development (morulae+blastocysts: Group A: 0%; Group B: 6.2%; Group C: 46.4% and Group D: 33.3%). In conclusion, sperm treatment with ionomycin plus heparin using the conventional ICSI protocol improved fertilisation rates in comparison to IVF. Oocytes smaller than 125 microm were unable to develop up to blastocyst stage.  相似文献   

2.
The developmental competence of oocytes from prepubertal and adult goats was studied through in vitro maturation, fertilization and embryo culture up to the blastocyst stage. Oocytes were recovered from antral follicles of prepubertal and adult goat ovaries, with or without ovarian stimulation with exogenous FSH. The effect of different sources of granulosa cells during IVM on the developmental competence of prepubertal goat oocytes was also noted. Oocytes were matured for 27 h at 38.5 degrees C in 5% CO(2) in air in 50-microl microdrops in TCM199 supplemented with 20% estrus goat serum, FSH, LH and estradiol-17beta or in 2 ml of the same medium supplemented with granulosa cells. Matured oocytes were inseminated with freshly ejaculated spermatozoa following capacitation At 24 h post-insemination, the oocytes were transferred to a granulosa cell monolayer, and early embryo development was evaluated until Day 10. Results show that the developmental ability of embryos from prepubertal goats after IVM and IVF is similar to those from adult goats. Treatment of the prepubertal and adult goats with FSH did not improve the developmental capacity of the resulting embryos. On studying the addition of different sources of granulosa cells to a maturation system of 2 ml of medium, a significantly positive effect of the cells from primed females was observed on the percentage of maturation, on embryo cleavage and on the percentage of embryos that overcame the in vitro developmental block from 8 to 16 cells.  相似文献   

3.
The objective of this study was to assess the efficacy of a novel intracytoplasmic sperm injection (ICSI) procedure, as well as the in vitro and in vivo developmental competence of goat embryos produced by ICSI. Oocyte-cumulus complexes recovered by LOPU from donors stimulated with gonadotrophins were matured in vitro. Fresh goat semen was used for ICSI following Percoll gradient washing. Tail-cut spermatozoa were microinjected into the ooplasm of goat oocytes using a piezo micropipette-driving system (PiezoDrill). In order to assess developmental competence, the ICSI-derived zygotes were cultured in one of two media systems (mTALP-mKSOM vs G1.3-G2.3) for in vitro development or were transferred into recipients for full-term development. The results suggest that cutting sperm tails using the oocyte-holding pipette coupled with the PiezoDrill is an efficient approach for goat ICSI in terms of oocyte survival, pronuclear development and initial cleavage. The mTALP-mKSOM culture system was more suitable for in vitro development of ICSI-derived goat embryos than G1.3-G2.3. This first report of full-term development of an ICSI-derived goat embryo suggests that ICSI can be applied to assisted reproduction in goats.  相似文献   

4.
The aim of this study was to analyze different culture systems on embryo development of prepubertal goat oocytes. We compare (i) the effect of the age of donor (goat) of oocytes on in vitro maturation, fertilization and subsequent embryo development, (ii) the effect of the origin of oviduct cells from coculture of prepubertal goat embryo development, and (iii) the effect of in vivo culture in rabbit oviducts for 1, 2 and 3 days on the development of prepubertal goat embryos produced in vitro. In Experiment 1, at 24 h post-insemination (hpi), oocytes from adult goats were allocated in TCM199 with oviduct cells from adult goats, and oocytes from prepubertal goats were randomly placed in drops with oviduct epithelial cells from adult (aOEC) or prepubertal (pOEC) goats. Cleavage rate and embryo development were evaluated at 48 hpi and after 7 days coculture, respectively. In Experiment 2, at 24 hpi, prepubertal oocytes were allocated in TCM 199 with pOEC. At 40-42 hpi, a group of embryos remained in the coculture (control group), and the rest were transferred to rabbit oviducts (three rabbits for replicate) for culturing in vivo for 24, 48 and 72 h. After these in vivo cultures, embryos were recovered, evaluated and placed in TCM199 with pOEC until Day 8 post-insemination. The maturation, fertilization and blastocyst rates did not differ significantly between oocytes obtained from adult and prepubertal goats. The percentage of blastocysts obtained from prepubertal goat embryos cocultured with aOEC or pOEC was also similar (12.1% versus 12.2%). The transfer of prepubertal goat embryos to rabbit oviducts for 1, 2 and 3 days did not improve the blastocyst rate compared to the control group (9.7, 10.9, 4.1 and 11.5%, respectively). In conclusion, in our conditions, there were no significant differences in embryo development between oocytes obtained from prepubertal and adult goats, and the embryo development from prepubertal goat oocytes were similar in the different culture systems compared.  相似文献   

5.
Our previous studies have shown that the addition of 100 mircroM cysteamine to the in vitro maturation (IVM) medium increased the embryo development of prepubertal goat oocytes. The aim of the present study was to evaluate the effect of adding different concentrations of cysteamine to the IVM medium and to the in vitro embryo culture medium (IVC) on the embryo development of prepubertal goat oocytes selected by the brilliant cresyl blue (BCB) test. Oocytes were exposed to BCB and classified as: oocytes with a blue cytoplasm or grown oocytes (BCB+) or oocytes without blue cytoplasm or growing oocytes (BCB-). In Experiment 1, oocytes were matured in a conventional IVM medium supplemented with 100 microM, 200 microM or 400 microM cysteamine. In Experiment 2, oocytes were matured with 400 microM cysteamine and following in vitro fertilization (IVF) were cultured in SOF medium supplemented with 50 microM and 100 microM cysteamine. In Experiment 1, BCB+ oocytes matured with 100 microM and 200 microM cysteamine showed higher normal fertilization and embryo development rates than BCB- oocytes. Oocytes matured with 400 microM cysteamine did not present these differences between BCB+ and BCB- oocytes. In Experiment 2, the addition of 50 microM and 100 microM cysteamine to culture medium did not affect the proportion of total embryos obtained from BCB+ oocytes (35.89% and 38.29%, respectively) but was significantly different in BCB- oocytes (34.23% and 29.04%, respectively, P < 0.05). In conclusion, the addition of 400 microM cysteamine to the IVM improved normal fertilization and embryo development of BCB- oocytes at the same rates as those obtained from BCB+ oocytes. The proportions of morulae plus blastocyst development were not affected by the treatments.  相似文献   

6.
Androgenetic embryos are useful model for investigating the contribution of the paternal genome to embryonic development. Little work has been done with androgenetic embryo production in domestic animals. The aim of this study was the production of diploid androgenetic sheep embryos. In vitro matured sheep oocytes were enucleated and fertilized in vitro; parthenogenetic and normally fertilized embryos were also produced as a control. Fifteen hours after in vitro fertilization (IVF), presumptive zygotes were centrifuged and scored for the number of pronucleus. IVF, parthenogenetic, and androgenetic embryos (haploid, diploid, and triploid) were cultured in SOFaa medium with bovine serum albumin (BSA). The proportion of oocytes with polyspermic fertilization increased linearly with increasing sperm concentration. After IVF, there was no significant difference in early cleavage and morula formation rates between the groups, while there was a significant difference on blastocyst development between IVF, parthenogenetic, and androgenetic embryos, the last ones displaying poor developmental potential (IVF, parthenogenetic, and haploid, diploid, and triploid androgenetic embryos: 43%, 38%, 0%, 2%, and 2%, respectively). In order to boost androgenetic embryonic development, we produced diploid androgenetic embryos through pronuclear transfer. Single pronuclei were aspirated with a bevelled pipette from haploid or diploid embryos and transferred into the perivitelline space of other haploid embryos, and the zygotes were reconstructed by electrofusion. Fusion rates approached 100%. Pronuclear transfer significantly increased blastocyst development (IVF, parthenogenetic, androgenetic: Diploid into Haploid, and Haploid into Haploid: 42%, 42%, 19%, and 3%, respectively); intriguingly, the Haploid + Diploid group showed the highest development to blastocyst stage. The main findings of our study are: (1) sheep androgenetic embryos display poor developmental ability compared with IVF and parthenogenetic embryos; (2) diploid androgenetic embryos produced by pronuclear exchange developed in higher proportion to blastocyst stage, particularly in the Diploid-Haploid group. In conclusion, pronuclear transfer is an effective method to produce sheep androgenetic blastocysts.  相似文献   

7.
The energy metabolism of preimplantation embryos can be used to predict viability and postimplantation development. Although preimplantation development and mean blastocyst cell numbers of goat in vitro-fertilized (IVF) embryos and chemically activated parthenogenotes are comparable, mammalian parthenogenotes are not viable, with most dying shortly after implantation. The objective of this study was to compare glucose and pyruvate metabolism of IVF goat blastocysts with that of parthenogenetic blastocysts developing from chemically activated oocytes. Embryos derived from IVF and parthenogenotes produced by exposing oocytes to either ionomycin or ethanol followed by 6-dimethylaminopurine (6-DMAP) were cultured in G1.2/G2.2 sequential culture media. Metabolism was determined for individual blastocysts using [5-3H]glucose and [2-14C]pyruvate to determine glycolytic and Kreb's cycle activity, respectively. Data were analyzed by ANOVA. A significantly higher percentage of activated oocytes underwent cleavage and developed to the blastocyst stage compared to IVF oocytes (p < 0.05). There was no significant difference in glucose or pyruvate metabolism between IVF and parthenogenetically activated blastocysts. Mean glucose metabolism through glycolysis was 154.9 +/- 29.1, 130.3 +/- 17.1, and 129 +/- 16.5 pmol/embryo/3 h for IVF, ethanol-activated, and ionomycin-activated blastocysts, respectively. Mean pyruvate metabolism through the Kreb's cycle was 28.1 +/- 8.0, 15.8 +/- 4.2, and 24.4 +/- 4.4 in pmol/embryo/3 h for IVF, ethanol-activated, and ionomycin-activated blastocysts, respectively. Our results suggest that known differences in postimplantation development observed in IVF versus parthenogenetic embryos cannot be attributed to differences in pyruvate or glucose metabolism in the preimplantation blastocysts. Thus, these activation protocols result in embryos capable of appropriate regulation of key metabolic enzymes.  相似文献   

8.
Our previous studies have shown that larger and more competent oocytes can be selected using the brilliant cresyl blue (BCB) test. The objective of this study was to assess, in BCB-selected oocytes, the effect on the embryo development of prepubertal goat oocytes of the addition to in vitro culture (IVC) medium of either glutathione (GSH) alone or GSH in combination with glucose. Oocytes were exposed to 26 mM BCB and were classified as: oocytes with a blue cytoplasm or grown oocytes (BCB+) and oocyteswithout blue cytoplasm or growing oocytes (BCB-). Oocytes were matured in TCM-199 with 100 microM cysteamine. Presumptive zygotes were cultured in synthetic oviductal fluid (SOF) in the presence or absence of 1 mM glutathione (experiment 1) for 7 days (8 days post-insemination, p.i.). In experiment 2 we tested the addition to culture of 2.78 mM glucose at day 5 p.i. BCB+ oocytes showed higher percentages of nuclear maturation than the BCB- and control groups (82.6%, 55.7% and 74.7%, respectively). The percentage of polyspermic oocytes was higher in BCB- than BCB+ oocytes. Supplementation of SOF medium with 1 mM GSH did not affect embryo development but the percentage of total embryos developed after culture was higher in BCB+ oocytes than in BCB- oocytes independently of the GSH supplementation. Glucose, alone or with GSH, added at 5 days p.i. did not affect embryo development. In conclusion, prepubertal goat oocytes were unable to develop beyond the 8-cell stage embryo under the culture conditions in this study.  相似文献   

9.
The present experiments were conducted to determine if supplementation of the culture medium with a serum extender containing growth factors would increase development of bovine embryos into morulae or blastocysts, following in vitro maturation (IVM) and in vitro fertilization (IVF). In Experiment 1, bovine zygotes were cultured in CR1 medium supplemented with 0, 0.01, 0.1, 1 or 10% serum extender. In Experiment 2, bovine zygotes were cultured in the presence of cumulus cells in CR1 medium supplemented with 0, 0.01, 0.1, 1 or 10% serum extender. In Experiment 3, bovine oocytes were matured in Medium 199 supplemented with 0, 0.01, 0.1, 1 or 10% serum extender. In Experiment 4, oocytes were matured in Medium 199 with 10% fetal bovine serum (FBS) or 5% FBS with serum extender. Following maturation, zygotes were cultured in CR1 medium with 10% FBS or 5 % FBS and serum extender. In all 4 experiments, the embryos were cultured in vitro until Day 7 after IVF, and development to the morula or blastocyst stage was assessed. The findings of the first 2 experiments showed that the serum extender did not directly influence embryo development but did stimulate development when cumulus cells were included in the culture system. The remaining 2 experiments showed that the serum extender did influence development through its interactions with cumulus cells during maturation and/or culture. These findings suggest that although growth factors or other products do not directly stimulate bovine embryo development their effects may be mediated through secondary cell systems.  相似文献   

10.
绵羊胞内单精子注射技术   总被引:7,自引:0,他引:7  
In this study, the possibility of sheep transgenesis by intracytoplasmic sperm injection (ICSI) was assessed. In experiment 1, activation of ovine oocytes matured in vitro in preparation for ICSI has been investigated with 3.42 mmol/L Ca2+ treatment, ionomycin alone and ionomycin followed by 6-dimethylaminopurine (DMAP) after 3-h delay (group 1, 2 and 3, respectively). After activation, the oocytes were then cultured in SOFaaBSA medium. Cleavage rates were significantly (P<0.05) different among three groups (18.4%, 91.8% and 71.7%, respectively). In additional culture, no parthenotes in group 1, whereas 11% and 17.4% in group 2 and 3 developed to the blastocyst stage. Therefore we used the third activation method in the following ICSI tests. In experiment 2, development of ovine oocytes after ICSI was investigated. Thawed semen from two rams was separated by Percoll centrifugation and was used for ICSI or in vitro fertilization (IVF) trails. A total of 71.8% of oocytes reached the 2-cell stage following living sperm injection, which was significantly (p>0.05) different from those following IVF (41.4%) and sham-ICSI (30.2%). After seven days' culture, no sham-injected oocytes developed into the blastocyst stage, although 7% in ICSI and 16.1% in IVF-oocytes developed into the blastocyst stage, but there was no significant difference in ICSI and IVF groups (p>0.05). In the further study, the possibility of sheep transgenesis by ICSI was assessed. After coinjection of ovine oocytes matured in vitro with dead sperm cold to -20 degrees C and exogenous DNA encoding green fluorescent protein (GFP), seventy-three percent of coinjected oocytes developed to 2-cell stage (33/45) and two of them were transgene-expressing embryos. Among ten embryos at the 16-cell stage, all embryonic cells in one transgenic embryo still expressed GFP. Four coinjected blastocysts were thawed and transferred to the uterine of the two progesterone-synchronized recipient ewe. No pregnancies were detected on the 60th day. These results suggested sheep transgenic embryos could be produced by ICSI and further studies should be performed.  相似文献   

11.
We evaluated: (1) cleavage rate after IVF or intracytoplasmic sperm injection (ICSI) of in vivo- and in vitro-matured oocytes after vitrification (experiment 1); and (2) fetal development after transfer of resultant ICSI-derived embryos into recipients (experiment 2). In vivo-matured cumulus-oocyte complexes (COCs) were recovered from gonadotropin-treated donors at 24 h after LH treatment. In vitro-matured oocytes were obtained by mincing ovaries (from local veterinary clinics) and placing COCs into maturation medium for 24 h. Mature oocytes were denuded and cryopreserved in a vitrification solution of 15% DMSO, 15% ethylene glycol, and 18% sucrose. In experiment 1, for both in vivo- and in vitro-matured oocytes, cleavage frequencies after IVF of control and vitrified oocytes and after ICSI of vitrified oocytes were not different (P > 0.05). After vitrification, blastocyst development occurred only in IVF-derived, in vitro-matured oocytes. In experiment 2, 18 presumptive zygotes and four two-cell embryos derived by ICSI of vitrified in vitro-matured oocytes and 19 presumptive zygotes produced from seven in vivo- and 12 in vitro-matured oocytes were transferred by laparoscopy into the oviducts of two recipients, respectively. On Day 21, there were three fetuses in one recipient and one fetus in the other. On Days 63 and 66 of gestation, four live kittens were born. In vivo viability of zygotes and/or embryos produced via ICSI of vitrified oocytes was established by birth of live kittens after transfer to recipients.  相似文献   

12.
The present study was designed to evaluate the effect of activin-A during the in vitro oocyte maturation (IVM) and in vitro embryo culture (IVC) on nuclear maturation, blastocyst yield and blastocyst quality of prepubertal goat oocytes. In Experiment 1, three groups of oocytes were used during the IVM of prepubertal goat oocytes to determine the optimal concentration of recombinant human activin-A added to the maturation medium. Cumulus–oocyte complexes were matured in an IVM medium containing 0, 10 and 100 ng/ml (groups A0, A10 and A100), fertilized and in vitro cultured using standard procedures. In Experiment 2, the addition of 10 ng/ml activin-A at IVM (A10A0), IVC (A0A10) or IVM+IVC (A10A10) was studied and compared with the control group (A0A0). Results of the first experiment demonstrated that the addition of activin-A yielded similar percentages of maturation (⩽71.0%) and blastocyst formation rates (⩽24.9%) than the control group (A0). Experiment 2 showed that exposure of prepubertal goat oocytes to an IVC medium containing 10 ng/ml activin-A (A0A10) significantly increased the rates of development to the blastocyst stage, as compared with the control group (A0A0) (19.5±2.21% v. 13.1±2.37%, respectively; P<0.05). With regard to the blastocyst quality, total number of cells, inner cell mass (ICM) and trophectoderm of prepubertal goat embryos produced in the presence of activin-A did not differ significantly among experimental groups. In summary, these results indicate that supplementation of the IVC medium with activin-A enhances embryo development of prepubertal goat oocytes.  相似文献   

13.
14.
This study evaluated the effects of exposure and/or vitrification of porcine metaphase II (MII) oocytes on their in vitro viability and ultra-structural changes with two experiments. Experiment 1 examined the effect of vitrified oocytes on microtubule localization, mitochondrial morphology, chromosome organization and the developmental rate in IVF control and vitrified oocytes. Oocytes matured for 44 h were subjected to IVF (IVF control). Oocytes matured for 42 h were exposed to cryoprotectants (CPA control), followed by 2h culture, and subjected to IVF. Oocytes vitrified at 42 h post-maturation were warmed, cultured for 2h, and subjected to IVF (vitrified). Experiment 2 evaluated the effect of oocytes freezing on development of ICSI with and without activation and parthenotes. Fresh and vitrified oocytes were subjected to ICSI with and without electrical activation. Cleavage and blastocyst rates were significantly (P<0.05) lower in vitrified IVF, parthenote and ICSI embryos than those in fresh counterparts. Between ICSI embryos from fresh oocytes and vitrified oocytes, the rates of blastocyst were significantly higher (P<0.05) in activated group than the group without activation. Significant differences (P<0.05) were observed in normal spindle configuration of vitrified (43.5%) compared to control (81.0%) oocytes, but no significant difference was observed between CPA exposed and control groups. In conclusion, porcine oocytes at MII stage are very sensitive to vitrification with altered microtubule localization and mitochondrial organization thus resulting in impaired fertilization and embryo development.  相似文献   

15.
Immature bovine oocytes were matured and fertilized in vitro, and the resulting zygotes were cultured to the blastocyst stage in droplets of tissue culture medium 199 (TCM 199) conditioned by oviduct cells in the absence of serum. In Experiment 1, the effect of the number of zygotes in a constant culture volume was investigated by culturing 1, 4 or 40 zygotes in 40 mul of culture medium. The cleavage rate was low with a single embryo (36%) but increased with the number of embryos, to reach 50% with 4 embryos/40 mul and 59% with 40 embryos/40 mul. Blastocyst formation was nil with 1 embryo per 40 mul, reaching 2.5% with 4 embryos/40 mul and 18% with 40 embryos/40 mul. The effect of the size of the drop was assessed in Experiment 2, the concentration of embryos remaining constant (1 embryo/1 mul). The volumes tested were 10, 20, 30 and 40 mul. Development into blastocysts increased gradually from 12% in the 10 10 group to 20% in the 40 40 group. Experiment 3 was designed to find a minimal droplet volume able to support the development of a single embryo to the blastocyst stage. The minimum tested volume was 5 mul and was not successful. These results show that bovine embryos cultured in oviduct-conditioned TCM 199 need to cooperate to reach the blastocyst stage. The mechanism of this cooperation is not known, but some autocrine/paracrine factors, probably growth factors, could promote embryo development as was demonstrated in mice. From Experiment 2 we can hypothesize that the surface volume ratio of the droplets could play a role in the culture conditions by interfering with the exchanges between the culture medium and the surrounding environment.  相似文献   

16.
In vitro maturation and fertilization of prepubertal goat oocytes   总被引:3,自引:0,他引:3  
The aim of this work was to study the IVM-IVF of prepubertal goat oocytes collected from a slaughterhouse as an alternative source of oocytes to those of FSH-primed adult goats. In Experiment 1, IVM of prepubertal goat oocytes in co-culture with granulosa cells were compared with IVM in 50 microl microdrops of medium. There was no significant difference in the percentage of maturation (72.0 vs 76.9%) between the 2 groups. In Experiment 2, a low percentage of normal fertilization (24.4%) was observed for prepubertal goat oocytes matured with granulosa cells from prepubertal goats. This result was significantly lower than that obtained for ovulated (62.2%) or in vitro-matured (48.7%) oocytes from adult goats. There were no significant differences with respect to the oocytes from adult goats matured in vitro when prepubertal goat oocytes were cultured with adult goat granulosa cells (33.3%) or in microdrops (29.7%). No differences were observed among the treatments in the percentage of oocytes showing evidence of fertilization (normal fertilization + abnormal fertilization + polyspermy). In Experiment 3, it was shown that there were no differences in the percentage of normally fertilized oocytes after in vitro maturation in microdrops containing oocytes with 1 to 2 and 3 or more complete layers of cumulus cells (32.1 and 33.3% respectively). In conclusion, the ovaries of prepubertal slaughterhouse goats were found to be an economical alternative for an abundant source of oocytes for IVM-IVF research. In vitro maturation of oocytes in microdrops yielded maturation and fertilization rates comparable to those obtained with oocytes from FSH-primed adult goats. Moreover, similar maturation and fertilization rates were obtained using oocytes with 1 to 2 layers or 3 or more layers of cumulus cells.  相似文献   

17.
This study was conducted to determine the effect of supplementing maturation medium with beta-mercaptoethanol (betaME) on pronuclei formation and developmental competence of swamp buffalo oocytes. Buffalo oocytes were matured in TCM199 medium either with 10mM betaME or without betaME supplementation for 24h. In Experiment 1, oocytes were fixed and stained for cytological evaluation after in vitro fertilization (IVF). In Experiment 2, presumptive zygotes were cultured and their developmental competency was assessed. It was found that betaME significantly improved the proportion of oocytes that exhibited synchronous pronuclei formation (31.8+/-5.1% versus 17.9+/-3.3%, P<0.05). There were no significant differences between oocytes matured with or without betaME in their capability of developing into blastocyst-stage embryos (3.0+/-1.3% versus 1.8+/-0.9%). However, blastocysts produced from oocytes matured in the presence of betaME appeared to develop faster than those from oocytes matured in the absence of betaME (P<0.05). Cavitation of embryos from oocytes matured in the presence of betaME occurred at 156 hpi, whereas those matured in the absence of betaME occurred at 180 hpi. Although in vitro production of blastocysts did not increase by addition of betaME to maturation medium, quality of blastocysts produced from oocytes matured in the presence of betaME was improved. This study provides information for further investigations on optimizing a system for in vitro production of swamp buffalo embryos.  相似文献   

18.
This study was undertaken to investigate various factors affecting the outcomes of in vitro fertilization (IVF) of oocytes retrieved by laparoscopic ovum pick-up (LOPU) technique from prepubertal and adult goats, as well as to evaluate the developmental competence of in vitro produced embryos. Oocyte-cumulus complexes recovered by LOPU from donors stimulated with gonadotrophins were matured in vitro. Fresh semen was used for IVF following various capacitation treatments. In vitro produced zygotes were either cultured to assess in vitro development or were transferred into recipients for full term development. The results indicated that successful IVF of the goat oocytes was affected by factors such as sperm capacitation treatment, oocyte quality, and abundance of cumulus cells on zona pellucida. Oocytes from both prepubertal and adult goats demonstrated similar full term developmental competence despite the fact that in vitro developmental rates were lower for prepubertal goats. The births of transgenic offspring demonstrated that the established LOPU-IVF technology combined with pronuclear microinjection can be successfully used to produce transgenic goats.  相似文献   

19.
Experiments were carried out to develop an improved IVF system for prepubertal goat oocytes matured in vitro. Cumulus oocyte complexes (COC) were obtained by slicing ovaries from slaughtered prepubertal goats. Oocytes were matured in TCM199 supplemented with 20% estrous goat serum (EGS) + 10 micrograms/mL FSH + 10 micrograms/mL LH + 1 microgram/mL estradiol 17 beta for 27 h at 38.5 degrees C in 5% CO2 in air. In Experiments 1 and 2, freshly ejaculated spermatozoa were capacitated in 1 of 3 media: TALP/H, modified Defined Medium (mDM) and mH-M199 with 50 micrograms/mL heparin for 45 min. Matured oocytes were fertilized in TALP, mDM or mH-M199 in Experiment 1 and in TALP in Experiment 2. In Experiment 3, three media were used for sperm capacitation and fertilization: Treatment A (control group): spermatozoa were capacitated in mDM with 50 micrograms/mL heparin for 45 min and fertilized in TALP medium with 1 microgram/mL hypotaurine; Treatment B: spermatozoa were capacitated in mDM with 50 micrograms/mL heparin + 388 micrograms/mL caffeine for 30 min and fertilized in TALP medium without hypotaurine; Treatment C: spermatozoa were capacitated in mDM with 50 micrograms/mL heparin for 45 min and fertilized in TALP medium with PHE (20 microM penicillamine, 10 microM hypotaurine and 2 microM epinephrine). At 24 h post insemination, the ova were transferred to a granulosa cell monolayer, and early embryo development was evaluated until Day 8. In experiment 2, the results show, that mDM plus heparin for sperm capacitation and TALP medium with hypotaurine for oocyte fertilization provided the highest proportion of penetrated oocytes, both total number (79.6%) and normal fertilization (55.1%), whereas the use of caffeine (44.6 and 31.2%, total and normal fertilization rate, respectively) and PHE (31.8 and 20.6%, total and normal fertilization rate, respectively) as motility enhancers did not improve the results obtained in the control group (48.7% and 37.2%, total and normal fertilization rate, respectively). These were no differences for the results of morulae and blastocysts.  相似文献   

20.
The present study was conducted to determine the necessity for activation after intracytoplasmic sperm injection (ICSI) in sheep. The effect of chemical stimulation with either 5 μM ionomycin (I) for 5 min or ionomycin + 2 mM 6-dimethylaminopurine (6-DMAP) for 3 h on the efficiency of ICSI, was compared in six experimental groups: (1) ICSI, (2) ICSI + I, (3) ICSI + I + 6DMAP, (4) Sham, (5) Sham + I, and (6) parthenogenetics (Sham and parthenogenetic groups were used as controls). In the present study, ovine oocytes needed additional chemical stimulation, after conventional ICSI, to activate (female pronucleous formation) and to form zygotes with male and female pronuclei (2PN). The percentage of cleaved embryos obtained and developed to blastocyst stage was higher (P < 0.001) for ICSI-derived zygotes, followed by activation (I and I + 6DMAP; 18.2 and 22.5%, respectively) than ICSI and Sham injection without activation (3.0 and 0.0%, respectively). There was, however, no significant difference between activation protocols I or I + 6DMAP. Furthermore, there was no significant difference among chemically activated, ICSI-derived zygotes in term of hatchability rate; however, the percentage was significantly higher in parthenogenetic and IVF groups than ICSI and Sham injection. In conclusion, neither sperm alone nor mechanical activation was sufficient for ovine oocyte activation and pronuclei formation. Therefore, in our study conditions for in vitro embryo development, chemical activation of oocytes must be considered an essential part of the ICSI procedure in sheep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号