首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
beta-Alanine aminotransferase from rabbit liver has been purified 1,700-fold over the initial liver extract. The purified enzyme was shown to be homogeneous by disc electrophoresis and SDS polyacrylamide electrophoresis. The molecular weight of the purified enzyme determined by gel filtration was 95,000 +/- 5,700 and the subunit molecular weight was 48,000 +/- 2,100. The enzyme showed absorption maxima at 282, 330, and 414 nm and contained only 1 mol of pyridoxal 5'-phosphate/mol of dimer. The pH optimum for enzyme activity was 8.8 and the Km values for beta-alanine and 2-oxoglutaric acid were calculated to be 3.9 and 1.4 mM, respectively. The enzyme catalyzed transamination of various omega-amino acids with 2-oxoglutaric acid, which was a favourable amino acceptor. beta-Alanine, gamma-aminobutyric acid, and beta-aminoisobutyric acid, which are naturally occurring substrates, were preferred amino donors, but taurine, alanine, ornithine, spermine, and spermidine were not. 6-Azauracil inhibited the enzyme activity with a Ki of approximately 1.5 mM. From the above properties, beta-alanine aminotransferase from rabbit liver was seen to closely resemble with 4-aminobutyrate aminotransferase from liver and brain.  相似文献   

2.
An enzyme which catalyzes the transamination of beta-alanine with alpha-ketoglutarate was purified to homogeneity from Streptomyces griseus IFO 3102 and crystallized. Molecular weight of the enzyme was found to be 185,000 +/- 10,000 by a gel-filtration method. The enzyme consists of four subunits identical in molecular weight (51,000 +/- 1,000). The transaminase is composed of 483 amino acids/subunit containing 7 and 8 residues of half-cystine and methionine, respectively. The enzyme exhibits absorption maxima at 278 and 415 nm. The pyridoxal 5'-phosphate content was determined to be 4 mol/mol of enzyme. The enzyme catalyzes transamination of omega-amino acids including taurine and hypotaurine. beta-Alanine and DL-beta-aminoisobutyrate served as a good amino donor; the Michaelis constants are 8.0 and 12.5 mM, respectively. alpha-Ketoglutarate is the only amino acceptor (Km = 4.0 mM); pyruvate and oxalacetate are inactive. Based on the substrate specificity, the terminology of beta-alanine:alpha-ketoglutarate transaminase is proposed for the enzyme. Carbonyl reagents, HgCl2,DL-gabaculine, and alpha-fluoro-beta-alanine strongly inhibited the enzyme.  相似文献   

3.
P A Der Garabedian 《Biochemistry》1986,25(19):5507-5512
A new enzyme that catalyzes the transamination of delta-aminovalerate with alpha-ketoglutarate was purified to homogeneity from adapted cells of Candida guilliermondii var. membranaefaciens. The relative molecular mass determined by gel filtration was estimated to be close to 118,000. The transaminase behaved as a dimer with two similar subunits in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has a maximum activity in the pH range of 7.8-8.5 and at 40 degrees C. alpha-Ketoglutarate and to a lesser extent pyridoxal 5'-phosphate were effective protecting agents toward temperature raising. The enzyme exhibits absorption maximum at 330 and 410 nm. The enzyme catalyzes the transamination between omega-amino acids and alpha-ketoglutarate. delta-Aminovaleric acid is the best amino donor. The Km values for delta-aminovalerate, alpha-ketoglutarate, and pyridoxal 5'-phosphate determined from the Lineweaver-Burk plot were 4.9 mM, 3.6 mM, and 22.7 microM, respectively. The inhibitory effect of various amino acids analogues on the transamination reaction between delta-aminovalerate and alpha-ketoglutarate was studied, and Ki values were determined.  相似文献   

4.
An enzyme which catalyzes the transamination of 4-aminobutyrate with 2-oxoglutarate was purified 588-fold to homogeneity from Candida guilliermondii var. membranaefaciens, grown with 4-aminobutyrate as sole source of nitrogen. An apparent relative molecular mass of 107,000 was estimated by gel filtration. The enzyme was found to be a dimer made up of two subunits identical in molecular mass (Mr 55,000). The enzyme has a maximum activity in the pH range 7.8-8.0 and a temperature optimum of 45 degrees C. 2-Oxoglutarate protects the enzyme from heat inactivation better than pyridoxal 5'-phosphate. The absorption spectrum of the enzyme exhibits two maxima at 412 nm and 330 nm. The purified enzyme catalyzes the transamination of omega-amino acids; 4-aminobutyrate is the best amino donor and low activity is observed with beta-alanine. The Michaelis constants are 1.5 mM for 2-oxoglutarate and 2.3 mM for 4-aminobutyrate. Several amino acids, such as alpha,beta-alanine and 2-aminobutyrate, are inhibitors (Ki = 38.7 mM, Ki = 35.5 mM and Ki = 33.2 mM respectively). Propionic and butyric acids are also inhibitors (Ki = 3 mM and Ki = 2 mM).  相似文献   

5.
A transaminase from Vibrio fluvialis JS17 showing activity toward chiral amines was purified to homogeneity and its enzymatic properties were characterized. The transaminase showed an apparent molecular mass of 100 kDa as determined by gel filtration chromatography and a subunit mass of 50 kDa by MALDI-TOF mass spectrometry, suggesting a dimeric structure. The enzyme had an isoelectric point of 5.4 and its absorption spectrum exhibited maxima at 320 and 405 nm. The optimal pH and temperature for enzyme activity were 9.2 and 37 degrees C, respectively. Pyruvate and pyridoxal 5'-phosphate increased enzyme stability whereas (S)-alpha-methylbenzylamine reversibly inactivated the enzyme. The transaminase gene was cloned from a V. fluvialis JS17 genomic library. The deduced amino acid sequence (453 residues) showed significant homology with omega-amino acid:pyruvate transaminases (omega-APT) from various bacterial strains (80 identical residues with four omega-APTs). However, of 159 conserved residues in the four omega-APTs, 79 were not conserved in the transaminase from V. fluvialis JS17. Taken together with the sequence homology results, and the lack of activity toward beta-alanine (a typical amino donor for the omega-APT), the results suggest that the transaminase is a novel amine:pyruvate transaminase that has not been reported to date.  相似文献   

6.
4-Aminobutyrate: 2-oxoglutarate aminotransferase of Streptomyces griseus was purified to homogeneity on disc electrophoresis. The relative molecular mass of the enzyme was found to be 100 000 +/- 10 000 by a gel filtration method. The enzyme consists of two subunits identical in molecular mass (Mr 50 000 +/- 1000). The transaminase is composed of 486 amino acids/subunit containing 10 and 12 residues of half-cystine and methionine respectively. The NH2-terminal amino acid sequence of the enzyme was determined to be Thr-Ala-Phe-Pro-Gln. The enzyme exhibits absorption maxima at 278 nm, 340 nm and 415 nm with a molar absorption coefficient of 104 000, 11 400 and 7280 M-1 cm-1 respectively. The pyridoxal 5'-phosphate content was calculated to be 2 mol/mol enzyme. The enzyme has a maximum activity in the pH range of 7.5-8.5 and at 50 degrees C. The enzyme is stable at pH 6.0-10.0 and at temperatures up to 50 degrees C. Pyridoxal 5'-phosphate protects the enzyme from thermal inactivation. The enzyme catalyzes the transamination of omega-amino acids with 2-oxoglutarate; 4-aminobutyrate is the best amino donor. The Michaelis constants are 3.3 mM for 4-aminobutyrate and 8.3 mM for 2-oxoglutarate. Low activity was observed with beta-alanine. In addition to omega-amino acids the enzyme catalyzes transamination with ornithine and lysine; in both cases the D isomer is preferred. Carbonyl reagents and sulfhydryl reagents inhibit the enzyme activity. Chelating agents, non-substrate L and D-2-amino acids, and metal ions except cupric ion showed no effect on the enzyme activity.  相似文献   

7.
The transport kinetics of gamma-aminobutyric acid (GABA), taurine, and beta-alanine in addition to the mutual inhibition patterns of these compounds were investigated in cultures of neurons and astrocytes derived from mouse cerebral cortex. A high-affinity uptake system for each amino acid was demonstrated both in neurons (Km GABA = 24.9 +/- 1.7 microM; Km Tau = 20.0 +/- 3.3 microM; Km beta-Ala = 73.0 +/- 3.6 microM) and astrocytes (Km GABA = 31.4 +/- 2.9 microM, Km Tau = 24.7 +/- 1.3 microM; Km beta-Ala = 70.8 +/- 3.6 microM). The maximal uptake rates (Vmax) determined were such that, in neurons, Vmax GABA greater than Vmax beta-Ala = Vmax Tau, whereas in astrocytes, Vmax beta-Ala greater than Vmax Tau = Vmax GABA. Taurine was found to inhibit beta-alanine uptake into neurons and astrocytes in a competitive manner, with Ki values of 217 microM in neurons and 24 microM in astrocytes. beta-Alanine was shown to inhibit taurine uptake in neurons and astrocytes, also in a competitive manner, with Ki values of 72 microM in neurons and 71 microM in astrocytes. However, beta-alanine was found to be a weak noncompetitive inhibitor of neuronal and astrocytic GABA uptake, whereas in reverse experiments, GABA displayed weak noncompetitive inhibition of neuronal and astrocytic uptake of beta-alanine. Likewise, taurine was a weak noncompetitive inhibitor of GABA uptake in neurons and similarly, GABA was a weak noncompetitive inhibitor of taurine uptake into neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The most abundant aromatic amino acid aminotransferase of Rhizobium leguminosarum biovar trifolii was partially purified. The molecular mass of the enzyme was estimated to be 53 kDa by gel filtration. The enzyme transaminated aromatic amino acids and histidine. It used aromatic keto acids and alpha-ketoglutaric and oxalacetic acids as amino-group acceptors. The optimum temperature was 35 degrees C. Using phenylalanine and alpha-ketoglutaric acid as substrates the activation energy was 46.2 kJ.mol-1 and for the couple tryptophan:alpha-ketoglutaric acid it was 70.3 kJ.mol-1. The optimum pH was different for each substrate: 7.3 for phenylalanine, 7.9 for histidine and 8.7 for tryptophan.  相似文献   

9.
The efflux of 20 amino acids, induced by either high K+ concentration or veratrine, was determined in pigeon tectal slices. Ca2+-dependent, K+-induced release of beta-alanine, gamma-aminobutyric acid (GABA), and glutamate was observed. Veratrine caused release of the same amino acids plus glycine in a tetrodotoxin-sensitive manner. beta-Alanine had a strong inhibitory effect on the activity of tectal neurons which was blocked by strychnine but not by bicuculline. The results indicated a transmitter function for beta-alanine in the optic tectum, and were consistent with the previously proposed transmitter role of GABA and glutamate in this structure.  相似文献   

10.
beta-Alanine aminotransferase from rat liver was purified to electrophoretic homogeneity. The immunological and kinetic properties of this enzyme were similar to those of the enzyme from rat brain. However, the liver enzyme transaminates from beta-alanine to 2-oxoglutaric acid, while the brain enzyme transaminates from gamma-aminobutyric acid. beta-Alanine aminotransferase activity in regenerating rat liver was lower than that in control rat liver. Activity of this enzyme, as well as of other uracil-catabolizing enzymes (Weber, G., Queener, S.F. and Ferdinandus, A. (1970) in Advances in Enzyme Regulation (Weber, G., ed.), Vol. 9, pp. 63-95, Pergamon Press, Oxford), was low in newborn rat liver and increased about 5-fold, reaching the level observed in adult rat liver. beta-Alanine and prednisolone induced beta-alanine aminotransferase in rat liver.  相似文献   

11.
1. Ascorbyl-2-monophosphate was enzymatically formed in the reaction mixture of L-ascorbic acid, pyrophosphate and the homogenate of rainbow trout Oncorhynchus mykiss liver. 2. The liver had the highest activity among the liver, spleen, kidney, stomach, pyloric caeca and intestine. 3. Pyrophosphate, triphosphate, ADP and ATP were good substrates as phosphoryl donors, but phosphoric acid and AMP were poor. 4. The optimum pH and temperature of AP-forming activity in the liver were around 5.0 and 30 degrees C, respectively. 5. The Km values for ascorbic acid and pyrophosphate were 370 and 83 mM, respectively.  相似文献   

12.
The activity of taurine: alpha-ketoglutarate aminotransferase (taurine: 2-oxoglutarate aminotransferase, EC 2.6.1.55) from Achromobacter superficialis is significantly diminished by treatment of the enzyme with (NH4)2SO4 in the course of purification, and recovered by incubation with pyridoxal phosphate at high temperatures such as 60 degrees C. The inactive form of enzyme absorbing at 280 and 345 nm contains 3 mol of pyridoxal phosphate per mol. The activated enzyme contains additional 1 mol of pyridoxal phosphate with a maximum at 430 nm. This peak is shifted to about 400 nm as a shoulder by dialysis of the enzyme, but the activity is not influenced. The inactive form is regarded as a partially resolved form, i.e. a semiapoenzyme. The enzyme catalyzes transamination of various omega-amino aicds with alpha-ketoglutarate, which is the exclusive amino acceptor. Hypotaurine, DL-beta-aminoisobutyrate, beta-alanine and taurine are the preferred amino donors. The apparent Michaelis constants are as follows; taurine 12 mM, hypotaurine 16 mM, DL-beta-aminoisobutyrate 11 mM, beta-alanine 17 mM, alpha ketoglutarate 11 mM and pyridoxal phosphate 5 micron.  相似文献   

13.
To elucidate the mechanism of taurine transport across the hepatic plasma membranes, rat liver sinusoidal plasma membrane vesicles were isolated and the transport process was analyzed. In the presence of a sodium gradient across the membranes (vesicle inside less than vesicle outside), an overshooting uptake of taurine occurred. In the presence of other ion gradients (K+, Li+, and choline+), taurine uptake was very small and no such overshoot was observed. Sodium-dependent uptake of taurine occurred into an osmotically active intravesicular space. Taurine uptake was stimulated by preloading vesicles with unlabeled taurine (transstimulation) in the presence of NaCl, but not in the presence of KCl. Sodium-dependent transport followed saturation kinetics with respect to taurine concentration; double-reciprocal plots of uptake versus taurine concentration gave a straight line from which an apparent Km value of 0.38 mM and Vmax of 0.27 nmol/20 s x mg of protein were obtained. Valinomycin-induced K+-diffusion potential failed to enhance the rate of taurine uptake, suggesting that taurine transport does not depend on membrane potential. Taurine transport was inhibited by structurally related omega-amino acids, such as beta-alanine and gamma-aminobutyric acid, but not by glycine, epsilon-aminocaproic acid, or other alpha-amino acids, such as L-alanine. These results suggest that Na+-dependent uptake of taurine might occur across the hepatic sinusoidal plasma membranes via a transport system that is specific for omega-amino acids having 2-3 carbon chain length.  相似文献   

14.
Germinated spores of Bacillus megaterium QM B1551 were irradiated with ultraviolet light, and spore-forming survivors were screened for germination requirements. Spore strains which failed to germinate in a variety of defined solutions germinative for spores of the parent strain were obtained. Mutant spores germinated readily in solutions containing yeast extract or one of numerous complex preparations. gamma-Aminobutyric acid, obtained from yeast extract by column chromatography, was shown to be required for germination by the mutant spores. gamma-Aminobutyric acid and l-alanine at final concentrations of 1 mm each, in solutions of KI (40 mm), equaled the potency of yeast extract (1 mg/ml) in the germination of the mutant spores. One of several other amino acids could be substituted, though less effectively, for l-alanine. alpha-Aminobutyric acid, beta-aminobutyric acid, beta-alanine, and 5-aminovaleric acid were ineffective substitutes for gamma-aminobutyric acid in mutant spore germination.  相似文献   

15.
A new enzyme which catalyzes the transamination of L-norleucine (2-aminohexanoic acid) and L-leucine with 2-oxoglutarate was purified to homogeneity from cells of Candida guilliermondii var. membranaefaciens. The relative molecular mass determined by gel filtration was estimated to be close to 100,000. The transaminase behaved as a dimer which consists of two subunits identical in molecular mass (Mr 51,000). The enzyme has a maximum activity in the pH range of 8.0-8.5 and at 55 degrees C. 2-Oxoglutarate, and to a lesser extent pyridoxal 5'-phosphate, were effective protecting agents against increasing temperature. The enzyme exhibits absorption maximum at 330 nm and 410 nm. L-Norleucine, and L-leucine to a lesser extent, are the best amino donors with 2-oxoglutarate as amino acceptor. The Km values for L-norleucine, L-leucine and 2-oxoglutarate determined from the Lineweaver-Burk plot were 1.8 mM, 6.6 mM and 2.0 mM respectively. A ping-pong bi-bi mechanism of inhibition with alternative substrates is found when the enzyme is in the presence of both L-norleucine and L-leucine. The inhibitory effect of various amino acid analogs on the transamination reaction between L-norleucine and 2-oxoglutarate was studied and Ki values were determined.  相似文献   

16.
The concentrations of D- and L-alanine in bivalves are useful as indicators of environmental pollution. Amino acid oxidase with a low substrate specificity catalyzes the oxidation of various amino acids. Among the various amino acids, pyruvic acid can be generated from alanine only by the catalytic oxidative reaction of this oxidase. Therefore, in this study, the concentrations of D- and L-alanine were determined from the concentration of pyruvic acid, which was determined from the consumption of oxygen based on the oxidative reaction of pyruvate oxidase. From this point of view, there is a very strong possibility that biosensors utilizing enzymes with a low substrate specificity can be developed. The results obtained were as follows. (1) The optimum conditions for the use of pyruvic acid sensor were as follows: temperature of 25 degrees C, pH of 6.8, flow rate of 0.1 ml/min, thiamin diphosphate concentration of 1.5 mM, and injection volume of 50 microl. (2) D-Alanine and L-alanine optimally reacted with D- and L-amino acid oxidase at 30 degrees C, pH 8.2, for 30 min and at 37 degrees C, pH 7.8, for 90 min, respectively. (3) The linear relationships between the concentrations of D- and L-alanine and the output of the sensor were obtained at 3.56-106.8 microg of D-alanine and 5.34-71.3 microg of L-alanine. (4) The concentrations of D- and L-alanine in Meretrix iusoria, Patinopecten yessonsi, and Corbicula leana obtained by the proposed assay were in good agreement with those determined by a conventional method.  相似文献   

17.
N-Carbamoyl-beta-alanine (NC beta A) amidohydrolase (EC 3.5.1.6) is regulated in opposing fashion by the substrate, NC beta A and the product, beta-alanine. The native enzyme from rat liver has a molecular weight of 235,000 in the absence of ligands. NC beta A and substrate analogs (N-amidino-beta-alanine, N-carbamoyl-glycine) produced association of the enzyme. beta-Alanine and its analog gamma-aminobutyrate caused dissociation of the enzyme and produced inhibition. Negative cooperativity was observed for the binding of all ligands as measured by the change in polymerization of the enzyme, with an average Hill coefficient (napp) of 0.5. Enzyme that had been dissociated by preincubation with beta-alanine had little or no initial activity; only after a lag of 9 s was a steady state progress curve evident. The existence of a regulatory site is proposed as a model to explain physical and kinetic data. The enzyme activity was highest in rat liver and detectable in kidney; activity was not detected in brain, lung, muscle, or spleen of rat, nor in mouse Ehrlich ascites tumor cells. The rat liver enzyme has a pH optimum of 6.8, with a Km of 6.5 microM for NC beta A and a Ki of 1.08 mM for beta-alanine at this pH.  相似文献   

18.
beta-Alanine synthase (EC 3.5.1.6) catalyzes the conversion of N-carbamyl-beta-alanine to beta-alanine, ammonia and CO2. The enzyme has been purified to apparent homogeneity from calf liver. The molecular size, pH optimum and substrate specificity have been determined. Sequence alignment of beta-alanine synthases with N-carbamyl-D-amino acid amidohydrolase from Agrobacter sp. revealed the conservation of a catalytically important triad Glu-Lys-Cys, most likely involved in the breakdown of N-carbamyl-beta-alanine.  相似文献   

19.
Taurine (2-aminoethanesulfonic acid) is a unique sulfur amino acid derivative that has putative nutritional, osmoregulatory, and neuroregulatory roles and is highly concentrated within a variety of cells. The permeability of Percoll density gradient purified rat liver lysosomes to taurine was examined. Intralysosomal amino acid analysis showed trace levels of taurine compared to most other amino acids. Taurine uptake was Na(+)-independent, with an overshoot between 5-10 minutes. Trichloroacetic acid extraction studies and detergent lysis confirmed that free taurine accumulated in the lysosomal space. Kinetic studies revealed heterogeneous uptake with values for Km1 = 31 +/- 1.82 and Km2 greater than 198 +/- 10.2 mM. The uptake had a pH optimal of 6.5 and was stimulated by the potassium specific ionophore valinomycin. The exodus rate was fairly rapid, with a t1/2 of 5 minutes at 37 degrees C. Analog inhibition studies indicated substrate specificity similar to the plasma membrane beta-alanine carrier system, with inhibition by beta-alanine, hypotaurine, and taurine. alpha-Alanine, 2-methylaminoisobutyric acid (MeAIB), and threonine were poor inhibitors. No effects were observed with sucrose and the photoaffinity derivative of taurine NAP-taurine [N-(4-azido-2-nitrophenyl)-2-aminoethanesulfonate]. In summary, rat liver lysosomes possess a high Km system for taurine transport that is sensitive to changes in K+ gradient and perhaps valinomycin induced diffusional membrane potential. These features may enable lysosomes to adapt to changing intracellular concentrations of this osmotic regulatory substance.  相似文献   

20.
An in vitro study of bile acid-CoA:amino acid N-acyltransferase activity of rat liver was undertaken in order to determine whether separate amino acid-specific enzymes catalyzed the formation of glycine and taurine conjugates of bile acids as postulated by others. Polyacrylamide gel electrophoresis of 200-fold purified enzyme localized the glycine- and taurine-dependent activities to a single band. Both activities were optimal at pH 7.8 and showed similar loss of activity at pH 6.0, pH 9.0, in the presence of 5,5'-dithiobis(2-nitrobenzoic acid), and at temperatures exceeding 50 degrees. With the purified fraction, Km for glycine was 31 mM and Km for taurine was 0.8 mM. Km for several bile acid-CoA substrates was approximately 20 micron and independent of the amino acid acceptor. Only amino acids with terminal alpha- or beta-amino groups were active as acyl acceptors. Acyl donors were limited to bile acid-CoA derivatives. The data support the conclusion that the rat has a single bile acid-CoA:amino acid N-acyltransferase. The substrate kinetics are consistent with previous observations that taurine conjugates predominate in rat bile at normal hepatocellular concentrations of glycine and taurine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号