首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proteoglycans of the Rhesus monkey corneal stroma were characterized by analyzing both radiolabeled proteoglycans synthesized by corneas in organ culture and native corneal proteoglycans obtained by large scale preparations. The analyses indicate that the proteoglycans synthesized in organ culture were similar to, if not identical with, their counterparts in the stroma although they are synthesized in different prportions in vitro than they acumulate in vivo. The corneal stroma contains two proteoglycans. The chondroitin-dermatan sulfate proteoglycan consists of approximately 70% protein and has a Mr = approximately 100,000 to 150,000. It contains one chondroitin-dermatan sulfate side chain of Mr = approximately 55,000. The keratan sulfate proteoglycan consists of approximately 74% protein and has a Mr = approximately -40,000 to 70,000. It contains one or two keratan sulfate side chains with a Mr = approximately 7,000 each. Radiolabeling indicates that both proteoglycans contain glycoprotein-type oligosaccharides as part of their structure.  相似文献   

2.
The proteoglycans of the cynomolgus monkey corneal stroma were isolated and characterized by using a combination of physiochemical and biochemical methods. Proteoglycans were biosynthetically radiolabeled by incubating whole corneas in medium containing [35S]sulfate and either [3H]serine or [3H]mannose as precursors. Macromolecules were extracted from the corneal stromas with 4 m guanidine-HCl. After dialysis into 8 m urea, proteoglycans in the extracts were initially purified by DEAE-cellulose chromatography. A portion of the proteoglycan fraction was digested with chondroitinase ABC, and the keratan sulfate proteoglycans were then isolated by rechromatography of the digest on DEAE-cellulose. Another portion of the proteoglycan fraction was digested with endo-β-galactosidase and the dermatan sulfate-proteoglycans were then isolated by chromatography of the digest on Sepharose CL-4B. Each proteoglycan population was further fractionated by chromatography on concanavalin A-Sepharose and by CsCl density gradient centrifugation. Four subpopulations for both the keratan sulfate proteoglycans and the dermatan sulfate proteoglycans were isolated. Based on differences in binding to concanavalin A-Sepharose, buoyant densities, and glycosaminoglycan content, subpopulations of each proteoglycan differ by the number and properties of both the glycosaminoglycan chains and the mannose-containing oligosaccharides attached to their protein core.  相似文献   

3.
Radioisotopically labeled proteoglycans were isolated from a 4 M guanidine HCl, 2% Triton X-100 extract of corneal stroma from day 18 chicken embryos by anion-exchange chromatography. Two predominant proteoglycans in the sample were separated by octyl-Sepharose chromatography using a gradient elution of detergent in 4 M guanidine HCl. One proteoglycan had an overall mass of approximately 125 kDa, a single dermatan sulfate chain (approximately 85-90% chondroitin 4-sulfate, low iduronate content) of approximately 65 kDa, and a core protein after chondroitinase ABC digestion of approximately 45 kDa which also contained one to three N-linked oligosaccharides and one O-linked oligosaccharide. The other proteoglycan had an overall size of approximately 100 kDa, two to three keratan sulfate chains of approximately 15 kDa each, and a core protein following keratanase digestion of approximately 51 kDa which included two to three N-linked but no O-linked oligosaccharides. A larger size, a greater overall hydrophobicity (as measured by its interaction with octyl-Sepharose) and an absence of O-linked oligosaccharides argue that this core protein is a distinct gene product from the core protein of the dermatan sulfate proteoglycan.  相似文献   

4.
Keratan sulfate proteoglycan in rabbit compact bone is bone sialoprotein II   总被引:4,自引:0,他引:4  
A keratan sulfate proteoglycan was isolated under denaturing conditions from the mineral compartment of rabbit cortical bone. This small proteoglycan (Kd = 0.39 on Superose 6, Mr approximately 20,000 on sodium dodecyl sulfate gels) contained small keratan sulfate chains that were distinctly bimodal in size. The keratanase and endo-beta-galactosidase digestible glycosaminoglycan chains were O-linked to a core protein of Mr approximately 80,000. This core protein had several properties in common with the bone sialoprotein II molecule of bovine and human bone including: a closely spaced doublet band on sodium dodecyl sulfate electrophoresis gels; a high staining intensity with Stains All that was greatly diminished by neuraminidase; a significant amount of small O-linked oligosaccharides; and an amino-terminal amino acid sequence that was nearly identical to human bone sialoprotein II. (In contrast, bone sialoprotein II in human, bovine, and rat bone does not appear to have any keratan sulfate chains.) Antiserum made against the keratan sulfate proteoglycan reacted with its core protein on electrotransfers from sodium dodecyl sulfate-polyacrylamide gels.  相似文献   

5.
The proteoglycans extracted from adult chicken were initially purified by DEAE-chromatography. Digestion of these proteoglycans with chondroitinase ABC generated a single 40-kDa core protein while digestion with keratanase generated a single 52-kDa core protein. Digestion with both enzymes combined, however, increased the amount of 40-kDa core protein produced. This suggested that the 40-kDa core protein exists with chondroitin/dermatan sulfate (C/DS) side chains alone and with both C/DS and keratan sulfate (KS) side chains. The proteoglycan fraction was initially digested with chondroitinase ABC, and the M(r) = 40,000 core protein derived from proteoglycans containing C/DS side chains alone was isolated. Amino-terminal sequencing showed it to be the chick cognate of decorin. The remaining proteoglycans were then digested with keratanase, and both the 40-kDa core protein and the 52-kDa core proteins derived from KS-containing proteoglycans were purified. The M(r) = 40,000 core protein derived from proteoglycans containing both C/DS and KS side chains had the same amino-terminal sequence as decorin and cross-reacted with antibodies to decorin. Sequence from the 52-kDa core protein derived from KS-containing proteoglycans showed it to be lumican. The results of this study suggest that adult chick corneas contain two isoforms of decorin: one containing C/DS side chains and the other, a hybrid, containing both C/DS and KS side chains. Embryonic corneas did not contain the hybrid isoform of decorin. These results suggest that different post-translational modifications occur to the decorin gene product during corneal development and maturation.  相似文献   

6.
Corneal explants with scleral rims were freshly prepared from day 18 chicken embryos and incubated in vitro for 3 h in the presence of various radioactive precursors. Radiolabeled proteoglycans were isolated from the stromal tissue and culture medium for analysis. Two predominant proteoglycans were identified in corneal stroma. One contains dermatan sulfate and the other contains keratan sulfate; a structural analysis of each is reported in the accompanying paper (Midura, R.J., and Hascall, V.C. (1989) J. Biol. Chem. 264, 1423-1430). A minor keratan sulfate proteoglycan distinct from the major form, a small amount of heparan sulfate proteoglycan, and some sulfated glycoproteins were also detected in stromal extracts. The biosynthesis of the dermatan sulfate proteoglycan was stable in vitro and in ovo, whereas that of the major keratan sulfate proteoglycan was stable only in ovo. Various treatments were tried to maintain a high rate of keratan sulfate synthesis with time in culture. Cooling the corneal explants to 5 degrees C was the only treatment that reduced this decline in keratan sulfate synthesis in vitro to any significant extent. Three major proteoglycans were observed in the culture medium. Two were dermatan sulfate proteoglycan and appeared to be mainly derived from the scleral tissue surrounding the corneal explant. The third proteoglycan contained keratan sulfate. It was smaller in size and lower in charge density compared to the keratan sulfate proteoglycan found in the stroma, but both appeared to have similar core protein sizes. It seems likely that this proteoglycan was synthesized in the stroma and secreted into the medium. A small amount of heparan sulfate proteoglycan and some sulfated glycoproteins were also detected in the medium.  相似文献   

7.
Corneal transparency is dependent upon the development of an organized extracellular matrix containing small diameter collagen fibrils with regular spacing, organized as orthogonal lamellae. Proteoglycan-collagen interactions have been implicated in the regulation of collagen fibrillogenesis and matrix assembly. To determine the role of dermatan sulfate proteoglycan in the development and organization of the secondary corneal stroma, its synthesis was disrupted using beta-D xyloside. The secondary corneal stroma contains two different proteoglycans, dermatan sulfate and keratan sulfate proteoglycan. beta-D xyloside interferes with xylose-mediated O-linked proteoglycan synthesis, and thus disrupts dermatan sulfate proteoglycan synthesis. Corneal keratan sulfate proteoglycan, a mannose-mediated N-linked proteoglycan, should not be altered. Biochemical analysis of corneas treated both in vitro and in ovo revealed a reduced synthesis of normally glycosylated dermatan sulfate proteoglycans and an increased synthesis of free xyloside-dermatan sulfate glycosaminoglycans. Keratan sulfate proteoglycan synthesis was unaltered in both cases. Corneal stromas were studied using histochemistry and electron microscopy after in ovo treatment with beta-D xyloside. The observed biochemical alterations in dermatan sulfate proteoglycans translated into disruptions in the organization of beta-D xyloside-treated stromas. There was a reduction in the histochemical staining of proteoglycans, but no alteration in collagen fibril diameter. In addition, focal alterations in collagen fibril packing, and a disruption of lamellar organization were observed in beta-D xyloside-treated corneas. These data suggest that dermatan sulfate proteoglycans are not involved in the regulation of corneal collagen fibril diameter, but are important in the fibril-fibril spacing as well as in lamellar organization, and cohesiveness.  相似文献   

8.
Antibodies have been made in rabbits against bovine corneal keratan sulfate proteoglycan. Antisera were titered by their ability to agglutinate sheep red blood cells that had been coated with the proteoglycan. Immune antisera, but not preimmune sera, agglutinate coated cells. Uncoated cells are not agglutinated by either serum. Immune agglutination is inhibited by prior incubation of antiserum with the intact corneal proteoglycan fraction or with 2-mercaptoethanol. Immune agglutination is also sharply reduced by the glycosaminoglycans, keratan sulfate-I (corneal type), and keratan sulfate-II (cartilage type). Desulfated keratan sulfate-I is somewhat less effective as an inhibitor than keratan sulfate-I. In contrast, chondroitin 4- and 6-sulfates, heparin, and hyaluronic acid do not interfere with immune agglutination. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by electroblot transfer of the proteins to nitrocellulose paper, incubation with antisera, and reaction with 125I-protein A suggest that the proteoglycan fraction contains high molecular weight antigenic components (Mr = approximately 300,000) whose mobility is sharply decreased by incubation with keratanase to that corresponding to molecular weights of approximately 55,000 and 40,000. No antigenic component appears sensitive to reduction by 2-mercaptoethanol. Chondroitinase ABC does not affect the mobility of proteins in the proteoglycan fraction. These results suggest that antibodies against corneal keratan sulfate proteoglycan may include some that react with the keratan sulfate chains, as well as those directed against the core protein. Keratan sulfate core proteins of two molecular weights may be present.  相似文献   

9.
The precursor protein of a basement membrane specific heparan sulfate proteoglycan has been identified as a 400,000 Mr polypeptide. Antibodies against large and small forms of this proteoglycan, isolated from a basement membrane (Engelbreth-Holm-Swarm, EHS) tumor, immunoprecipitated the same 400,000 protein from pulse-labeled EHS cells. The proteoglycan precursor protein was not recognized by antibodies against other basement membrane components or by antibodies to the cartilage proteoglycan. Furthermore, heparan sulfate proteoglycan purified from the EHS tumor blocked the immunoprecipitation of the precursor protein. Pulse-chase studies with [35S]methionine showed the precursor protein was converted to a proteoglycan. Pulse-chase studies with 35SO4 showed the large, low density proteoglycan appeared first and was degraded to a smaller, high density proteoglycan. We propose that the precursor protein is used after very little or no modification in the assembly of a large, low density heparan sulfate proteoglycan and that a portion of the population of these macromolecules are subsequently degraded to a smaller form.  相似文献   

10.
Heterogeneity of heparan sulfate proteoglycans synthesized by PYS-2 cells   总被引:5,自引:0,他引:5  
Antibodies to the basement membrane proteoglycan produced by the EHS tumor were used to immunoprecipitate [35S]sulfate-labeled protoglycans produced by PYS-2 cells. The immunoprecipitated proteoglycans were subsequently fractionated by CsCl density gradient centrifugation and Sepharose CL-4B chromatography. The culture medium contained a low-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.18, containing heparan sulfate side chains of Mr = 35-40,000. The medium also contained a high-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.23, containing heparan sulfate side chains of Mr = 30,000. The corresponding proteoglycans of the cell layer were all smaller than those in the medium. Since the antibodies used to precipitate those proteoglycans were directed against the protein core, this suggests that these proteoglycans share common antigenic features, and may be derived from a common precursor which undergoes modification by the removal of protein segments and a portion of each heparan sulfate chain.  相似文献   

11.
Corneal buttons were obtained from patients with types 1 and 2 macular corneal dystrophy (MCD) and from control patients with Fuchs' dystrophy or keratoconus. Buttons were incubated for 20 h in the presence of [3H]glucosamine or [2-3H]mannose. Radiolabeled proteoglycans and lactosaminoglycan-glycoproteins (L-GPs) were purified using chromatography on Q-Sepharose, Superose 6, and octyl-Sepharose. They were identified using chondroitinase ABC, keratanase or endo-beta-galactosidase digestion, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis or Superose 6 chromatography. This study confirms previous reports that type 1 MCD corneas synthesize a normal dermatan sulfate-proteoglycan (DS-PG) and an abnormal keratan sulfate-proteoglycan (KS-PG). The data indicate that typ 1 MCD corneas synthesize L-GP instead of KS-PG. This L-GP has a core protein of similar hydrophobicity (elution from octyl-Sepharose) and nearly similar mass (42 kDa) as the core protein of the KS-PG. It has identical glycoconjugates as those of the KS-PG except that they lack sulfate. Thus, type 1 MCD fails to synthesize keratan sulfate as a result of a defect in a sulfotransferase specific for sulfating lactosaminoglycans. Further, proteoglycans synthesized by a cornea from a patient with type 2 MCD were studied. This cornea synthesized a normal ratio of KS-PG to DS-PG although net synthesis of proteoglycans was approximately 30% below normal. The KS-PG appeared normal whereas the DS-PG had dermatan sulfate chains that were approximately 40% shorter than normal.  相似文献   

12.
The basement membrane heparan sulfate proteoglycan produced by the Englebreth-Holm-Swarm (EHS) tumor and by glomeruli were compared by immunological methods. Antibodies to the EHS proteoglycan immunoprecipitated a single precursor protein (Mr = 400,000) from [35S]methionine-pulsed glomeruli, the same size produced by EHS cells. These antibodies detected both heparan sulfate proteoglycans and glycoproteins in extracts of unlabeled glomeruli and glomerular basement membrane. The proteoglycans contained core proteins of varying size (Mr = 150,000 to 400,000) with a Mr = 250,000 species being predominant. The glycoproteins are fragments of the core protein which lack heparan sulfate side chains. Antibodies to glomerular basement membrane proteoglycan immunoprecipitated the precursor protein (Mr = 400,000) synthesized by EHS cells and also reacted with most of the proteolytic fragments of the EHS proteoglycan. This antibody did not, however, react with the P44 fragment, a peptide situated at one end of the EHS proteoglycan core protein. These data suggest that the glomerular basement membrane proteoglycan is synthesized from a large precursor protein which undergoes specific proteolytic processing.  相似文献   

13.
Isoforms of corneal keratan sulfate proteoglycan   总被引:6,自引:0,他引:6  
Bovine corneal keratan sulfate proteoglycan was found to contain three major protein components. Two proteins (37 and 25 kDa) were released from the proteoglycan by endo-beta-galactosidase, N-glycanase, or chemical deglycosylation. A smaller protein (20 kDa), not covalently linked to keratan sulfate, co-purified with the proteoglycan by conventional and high performance ion exchange chromatography, by ethanol precipitation, and by affinity purification on columns of monoclonal antibody to keratan sulfate, but could be separated from the proteoglycan by gel filtration chromatography in dissociative agents. The three proteins produced different fragmentation patterns on sodium dodecyl sulfate-polyacrylamide gel electrophoresis after digestion with V8 protease, and each had unique two-dimensional tryptic peptide maps. The N-terminal amino acid sequence of the core proteins differed. In addition, the proteoglycans containing these proteins differed in molecular size, suggesting different levels of glycosylation of the two core proteins. Similarity of the core proteins was suggested by similar amino acid composition, similarities in tryptic maps, and antigenic cross-reactivity. Corneal keratan sulfate proteoglycan, therefore, seems to occur in two different, but related, forms whose core proteins may represent members of a homologous family.  相似文献   

14.
Three antibodies reacting with corneal keratan sulfate proteoglycan were used to detect antigenically related molecules in 11 bovine and 13 embryonic chick tissues. Two monoclonal antibodies recognized sulfated epitopes on the keratan sulfate chain and a polyclonal antibody bound antigenic sites on the core protein of corneal keratan sulfate proteoglycan. Competitive immunoassay detected core protein and keratan sulfate antigens in guanidine HCl extracts of most tissues. Keratan sulfate antigens of most bovine tissues were only partially extracted with guanidine HCl, but the remainder could be solubilized by CNBr treatment of the guanidine-extracted residue. Keratan sulfate and core protein antigens co-eluted with purified corneal keratan sulfate proteoglycan on ion exchange high-performance liquid chromatography (HPLC). Endo-beta-galactosidase digestion of the HPLC-purified keratan sulfate antigens eliminated the binding of monoclonal anti-keratan sulfate antibodies in enzyme-linked immunosorbent assay. Extracts of all 11 bovine tissues, except those from brain and cartilage, could bind both anti-keratan sulfate monoclonal antibodies and anti-core protein polyclonal antibody simultaneously. Binding was sensitive to competition with keratan sulfate and to digestion with endo-beta-galactosidase. These results suggest widespread occurrence of a proteoglycan or sulfated glycoprotein bearing keratan sulfate-like carbohydrate and a core protein resembling that of corneal keratan sulfate proteoglycan.  相似文献   

15.
Antibodies to core proteins of chicken corneal keratan sulfate proteoglycan and chondroitin sulfate proteoglycan were prepared and purified by use of an affinity column. Using these antibodies and monoclonal antibody 5-D-4 to keratan sulfate (commercial), the localization of proteoglycans in developing corneas (Days 5 to 17 of embryonic age and 2 days after hatching) was determined immunohistochemically. Keratan sulfate proteoglycan antigen was not detected in cornea on Day 5, but it was detected uniformly over the whole stroma on Day 6, ca. 12 h after invasion of the primary stroma by mesenchymal cells. The absence of the antigen in cornea of Day 5 was confirmed by Western blotting of the corneal extract. Immunohistochemistry with 5-D-4 antibody revealed that the keratan sulfate chain was undersulfated in corneas of Days 6 to 7, because the staining was much weaker than that in cornea of Day 8. In addition, keratan sulfate proteoglycan antigen was detected uniformly over the whole stroma on Days 7 to 17 and 2 days after hatching, but not in the epithelial layer on Day 13 and after: because the epithelial layer was clearly not observed on photomicrographs until Day 13, it is not known whether keratan sulfate proteoglycan was synthesized by the epithelium during Days 6 to 12. In contrast, chondroitin sulfate proteoglycan antigen was detected in cornea on Day 5 and also, like keratan sulfate proteoglycan, uniformly over the whole stroma on Day 6 through 2 days after hatching. Furthermore, the chondroitin sulfate proteoglycan was not detected in the epithelial layer on Day 13 and after. These results show that keratan sulfate proteoglycan is synthesized by the stromal cells which invade the primary stroma between Day 5.5 and 6, while chondroitin sulfate proteoglycan is synthesized by epithelial and/or endothelial cells before the invasion, and also by the stromal cells after the invasion.  相似文献   

16.
Analysis of the proteoglycans synthesized by human bone cells in vitro   总被引:3,自引:0,他引:3  
Proteoglycans were isolated by ion-exchange chromatography from the extracted cell layer and culture medium of human bone cell cultures following incubation in the presence of [35S]sulfate and [3H]leucine. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the synthesized proteoglycans consisted of at least five polydisperse species having median apparent Mr = 600,000, 400,000, 270,000, 135,000 and 40,000. When chromatographed further on octyl-Sepharose CL-4B, the proteoglycans of the cell layer resolved into three peaks. The unbound fraction (peak cell layer-I) contained a 40,000 species consisting of a single glycosaminoglycan chain with or without peptide. Peak cell layer-II contained three sulfated species on electrophoresis: a 600,000 species uniformly distributed across the peak, a 135,000 species enriched in the ascending limb (similar to bone PG-I as described previously), and a 270,000 species (similar to bone PG-I) enriched in the descending limb. Peak cell layer-III, eluting at 0.2% Triton X-100, was highly enriched in a 400,000 proteoglycan component. When media proteoglycans were chromatographed on octyl-Sepharose, two labeled peaks were found. Peak medium-I (unbound) contained a species exhibiting electrophoretic mobility similar to that of the 400,000 species present in peak cell layer-III. Peak II of the culture medium (medium-II) was apparently identical to that of peak cell layer-II, containing the 600,000, 270,000 and 135,000 species. No appreciable 40,000 species was observed in the medium. Treatment of the 600,000 species with either chondroitinase ABC or ACII generated a core protein preparation with bands of 390,000 and 340,000 on SDS gels. Neither the intact nor the chondroitinase ABC-treated 600,000 species was immunoprecipitated by a purified, polyclonal antiserum raised against the core protein of the large chondroitin sulfate proteoglycan of human articular cartilage. Treatment of the 270,000 and 135,000 proteoglycans with chondroitinase ABC, but not ACII, generated a core protein preparation with bands of 52,000 and 49,000 on SDS gels, indicating that they were dermatan sulfate-containing species. The 400,000 species contained both heparan sulfate and chondroitin sulfate, in approximately a 3:1 labeling ratio. This species changed in electrophoretic mobility following treatment with chondroitinase ABC, heparatinase, or both enzymes in combination, which suggested that it may be a hybrid proteoglycan (i.e. both types of glycosaminoglycan chain on the same core protein).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
In pathological corneas, accumulation of fibrotic extracellular matrix is characterized by proteoglycans with altered glycosaminoglycans that contribute to the reduced transparency of scarred tissue. During wound healing, keratocytes in the corneal stroma transdifferentiate into fibroblasts and myofibroblasts. In this study, molecular markers were developed to identify keratocyte, fibroblast, and myofibroblast phenotypes in primary cultures of corneal stromal cells and the structure of glycosaminoglycans secreted by these cells was characterized. Quiescent primary keratocytes expressed abundant protein and mRNA for keratocan and aldehyde dehydrogenase class 3 and secreted proteoglycans containing macromolecular keratan sulfate. Expression of these marker compounds was reduced in fibroblasts and also in transforming growth factor-beta-induced myofibroblasts, which expressed high levels of alpha-smooth muscle actin, biglycan, and the extra domain A (EDA or EIIIA) form of cellular fibronectin. Collagen types I and III mRNAs were elevated in both fibroblasts and in myofibroblasts. Expression of these molecular markers clearly distinguishes the phenotypic states of stromal cells in vitro. Glycosaminoglycans secreted by fibroblasts and myofibroblasts were qualitatively similar to and differed from those of keratocytes. Chondroitin/dermatan sulfate abundance, chain length, and sulfation were increased as keratocytes became fibroblasts and myofibroblasts. Fluorophore-assisted carbohydrate electrophoresis analysis demonstrated increased N-acetylgalactosamine sulfation at both 4- and 6-carbons. Hyaluronan, absent in keratocytes, was secreted by fibroblasts and myofibroblasts. Keratan sulfate biosynthesis, chain length, and sulfation were significantly reduced in both fibroblasts and myofibroblasts. The qualitatively similar expression of glycosaminoglycans shared by fibroblasts and myofibroblasts suggests a role for fibroblasts in deposition of non-transparent fibrotic tissue in pathological corneas.  相似文献   

18.
Binding region and link protein were prepared from pig laryngeal cartilage proteoglycans after chondroitinase ABC and trypsin digestion. Experiments on gel chromatography showed the purified binding region to interact reversibly with hyaluronate (HA), and this binding was also shown to be stabilized by native link protein. The trypsin-prepared link protein showed properties of self-association in solution that were partially inhibited by oligosaccharides (HA10-16) and abolished by modification of free amino groups (lysine residues) with 2-methylmaleic anhydride. The Mr (sedimentation equilibrium) of the modified link protein was 41 700. Analysis of binding region showed it to contain 25% (w/w) carbohydrate, mainly in galactose, glucosamine, mannose and galactosamine. It contained some keratan sulphate, as digestion with endo-beta-D-galactosidase (keratanase) removed 28% galactose and 25% glucosamine and the Mr (sedimentation equilibrium) decreased from 66 500 to 60 800. After keratanase digestion the interaction with polyclonal antibodies specific for binding region was unaffected, but the response in a radioimmunoassay with a monoclonal antibody to keratan sulphate was decreased by 47%. Preparation of a complex between binding region, link protein and HA approximately 34 showed a single component (5.5S) of Mr (sedimentation equilibrium) 133 500. In this complex the antigenic determinants of link protein appeared masked, as previously found with proteoglycan aggregates. The isolated binding region and link protein were thus shown to retain properties comparable with those involved in the structure and organization of proteoglycan aggregates.  相似文献   

19.
The content and fine structure of keratan and chondroitin/dermatan sulfate in normal human corneas and corneas affected by macular corneal dystrophies (MCD) types I and II were examined by fluorophore-assisted carbohydrate electrophoresis. Normal tissues (n = 11) contained 15 microg of keratan sulfate and 8 microg of chondroitin/dermatan sulfate per mg dry weight. Keratan sulfates consisted of approximately 4% unsulfated, 42% monosulfated, and 54% disulfated disaccharides with number of average chain lengths of approximately 14 disaccharides. Chondroitin/dermatan sulfates were significantly longer, approximately 40 disaccharides per chain, and consisted of approximately 64% unsulfated, 28% 4-sulfated, and 8% 6-sulfated disaccharides. The fine structural parameters were altered in all diseased tissues. Keratan sulfate chain size was reduced to 3-4 disaccharides; chain sulfation was absent in MCD type I corneas and cartilages, and sulfation of both GlcNAc and Gal was significantly reduced in MCD type II. Chondroitin/dermatan sulfate chain sizes were also decreased in all diseased corneas to approximately 15 disaccharides, and the contents of 4- and 6-sulfated disaccharides were proportionally increased. Tissue concentrations (nanomole of chains per mg dry weight) of all glycosaminoglycan types were affected in the disease types. Keratan sulfate chain concentrations were reduced by approximately 24 and approximately 75% in type I corneas and cartilages, respectively, and by approximately 50% in type II corneas. Conversely, chondroitin/dermatan sulfate chain concentrations were increased by 60-70% in types I and II corneas. Such changes imply a modified tissue content of individual proteoglycans and/or an altered efficiency of chain substitution on the core proteins. Together with the finding that hyaluronan, not normally present in healthy adult corneas, was also detected in both disease subtypes, the data support the conclusion that a wide range of keratocyte-specific proteoglycan and glycosaminoglycan remodeling processes are activated during degeneration of the stromal matrix in the macular corneal dystrophies.  相似文献   

20.
Proteoglycans of developing bone   总被引:17,自引:0,他引:17  
We purified and characterized the bone proteoglycans from fetal calves, growing rats, and human fetuses. The major proteoglycan is part of the mineralized tissue matrix and only 10-20% can be extracted prior to demineralization. This bone proteoglycan is a small glycoconjugate (Mr = 80,000-120,000) containing approximately 20-30% protein and either one or two chondroitin sulfate chains (Mr = 40,000) attached to a relatively monodisperse protein core (Mr = 38,000). "O"-linked and "N"-linked oligosaccharide units are also present. Antibodies directed against the protein core of calf bone proteoglycan do not cross-react with cartilage, skin, corneal, or basement membrane proteoglycans in immunoassays and have minimal cross-reactivity with scleral proteoglycans. Quantitative immunoassays and indirect immunofluorescence were used to show that the molecule is localized to forming bone trabeculae and dentin, but not to any other tissue. Osteoblasts and osteoprogenitor cells adjacent to areas undergoing rapid osteogenesis also contain this small proteoglycan. A second proteoglycan (Mr approximately equal to 1,000,000) was extracted from newly forming bone prior to demineralization. This large proteoglycan, which was isolated from the cartilage-free areas of developing intramembranous bone, has a protein core similar to that of the cartilage aggregating proteoglycan and cross-reacts with antisera raised against these cartilage proteoglycans but not with the small mineral-entrapped proteoglycan. It contains larger (Mr = 40,000) and fewer chondroitin sulfate chains than its cartilage-derived analogue, and is localized to the soft connective tissue mesenchyme lying between growing bone trabeculae. More fully formed compact bone did not contain detectable quantities of this proteoglycan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号