首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genes responsible for exopolysaccharide (EPS) synthesis in Streptococcus thermophilus Sfi39 were identified on a 20-kb genomic fragment. The two genes, epsE and epsG, were shown to be involved in EPS synthesis as their disruption lead to the loss of the ropy phenotype. Several naturally selected nonropy mutants were isolated, one acquired an insertion sequence (IS)-element (IS905) in the middle of the eps gene cluster. The eps gene cluster was cloned and transferred into a nonEPS-producing heterologous host, Lactococcus lactis MG1363. The EPS produced was shown by chemical analysis and NMR spectroscopy to be identical to the EPS produced by S. thermophilus Sfi39. This demonstrated first that all genes needed for EPS production and export were present in the S. thermophilus Sfi39 eps gene cluster, and second that the heterologous production of an EPS was possible by transfer of the complete eps gene cluster alone, provided that the heterologous host possessed all necessary genetic information for precursor synthesis.  相似文献   

2.
F Bourgoin  A Pluvinet  B Gintz  B Decaris  G Guédon 《Gene》1999,233(1-2):151-161
A 32.5kb variable locus of the Streptococcus thermophilus CNRZ368 chromosome, the eps locus, contains 25 ORF and seven insertion sequences (IS). The putative products of 17 ORF are related to proteins involved in the synthesis of polysaccharides in various bacteria. The two distal regions and a small central region of the eps locus are constant and present in all or almost all of the S. thermophilus strains tested. The other regions are variable and present in only some S. thermophilus strains tested, particularly in the closely related strains CNRZ368 and A054. A 13.6kb variable region of the eps locus of S. thermophilus CNRZ368 contains two ORF that are almost identical to epsL and orfY of the eps locus of Lactococcus lactis NIZOB40 and seven IS belonging to four different families, ISS1, IS981, IS1193 and IS1194. Five of these sequences were probably acquired by horizontal transfer from L. lactis (Bourgoin, F., et al., 1996. Gene 178, 15-23). Three probes of this 13.6kb region hybridized with the DNA of several L. lactis strains tested. A specific probe for another sequence within the S. thermophilus eps locus, epsF, hybridized with the DNA of one of the L. lactis strains tested. Sequence comparisons also suggest that five ORF of the eps locus have a mosaic structure and probably result from recombinations between sequences that are 10 to 50% divergent. The chimeric structure of the eps locus suggests a very complex evolution. This evolution probably involves both the acquisition of the 13.6kb region from L. lactis by horizontal transfer and exchanges within the S. thermophilus species.  相似文献   

3.
Sixteen exopolysaccharide (EPS)-producing Lactococcus lactis strains were analyzed for the chemical compositions of their EPSs and the locations, sequences, and organization of the eps genes involved in EPS biosynthesis. This allowed the grouping of these strains into three major groups, representatives of which were studied in detail. Previously, we have characterized the eps gene cluster of strain NIZO B40 (group I) and determined the function of three of its glycosyltransferase (GTF) genes. Fragments of the eps gene clusters of strains NIZO B35 (group II) and NIZO B891 (group III) were cloned, and these encoded the NIZO B35 priming galactosyltransferase, the NIZO B891 priming glucosyltransferase, and the NIZO B891 galactosyltransferase involved in the second step of repeating-unit synthesis. The NIZO B40 priming glucosyltransferase gene epsD was replaced with an erythromycin resistance gene, and this resulted in loss of EPS production. This epsD deletion was complemented with priming GTF genes from gram-positive organisms with known function and substrate specificity. Although no EPS production was found with priming galactosyltransferase genes from L. lactis or Streptococcus thermophilus, complementation with priming glucosyltransferase genes involved in L. lactis EPS and Streptococcus pneumoniae capsule biosynthesis could completely restore or even increase EPS production in L. lactis.  相似文献   

4.
Social (S)-motility in Myxococcus xanthus is a flagellum-independent gliding motility system that allows bacteria to move in groups on solid surfaces. S-motility has been shown to require type IV pili (TFP), exopolysaccharide (EPS; a component of fibrils) and lipopolysaccharide (LPS). Previously, information concerning EPS biogenesis in M. xanthus was lacking. In this study, we screened 5000 randomly mutagenized colonies for defects in S-motility and EPS and identified two genetic regions essential for EPS biogenesis: the EPS synthesis (eps) region and the EPS-associated (eas) region. Mutants with insertions in the eps and eas regions were defective in S-motility and fruiting body formation. These mutants failed to bind the dye calcofluor white, indicating that they lacked EPS; however, they retained normal TFP and LPS. Analysis of the eps locus showed several open reading frames (ORFs) that encode homologues to glycosyltransferases, glucanases and EPS transporters as well as regulatory proteins; the eas locus contains two ORFs: one exhibits homology to hypothetical proteins with a conserved domain of unknown function and the other displays no apparent homology to other proteins in the database. Further genetic mutagenesis analysis indicates that the whole eps region is involved in the biosynthesis of fibrils and fibril EPS. The operon at the proximal end of the eps region was analysed by generating in-frame deletion mutations. These mutants showed varying degrees of defects in the bacterium's ability to produce EPS or perform EPS-related functions, confirming the involvement of these genes in M. xanthus EPS biogenesis.  相似文献   

5.
The monomer composition of the exopolysaccharides (EPS) produced by Streptococcus thermophilus LY03 and S. thermophilus Sfi20 were evaluated by high-pressure liquid chromatography with amperometric detection and nuclear magnetic resonance spectroscopy. Both strains produced the same EPS composed of galactose, glucose, and N-acetylgalactosamine. Further, it was demonstrated that the activity of the precursor-producing enzyme UDP-N-acetylglucosamine 4-epimerase, converting UDP-N-acetylglucosamine into UDP-N-acetylgalactosamine, is responsible for the presence of N-acetylgalactosamine in the EPS repeating units of both strains. The activity of UDP-N-acetylglucosamine 4-epimerase was higher in both S. thermophilus strains than in a non-EPS-producing control strain. However, the level of this activity was not correlated with EPS yields, a result independent of the carbohydrate source applied in the fermentation process. On the other hand, both the amounts of EPS and the carbohydrate consumption rates were influenced by the type of carbohydrate source used during S. thermophilus Sfi20 fermentations. A correlation between activities of the enzymes alpha-phosphoglucomutase, UDP-glucose pyrophosphorylase, and UDP-galactose 4-epimerase and EPS yields was seen. These experiments confirm earlier observed results for S. thermophilus LY03, although S. thermophilus Sfi20 preferentially consumed glucose for EPS production instead of lactose in contrast to the former strain.  相似文献   

6.
7.
The activities of some enzymes belonging to the Leloir pathway, phosphoglucomutase, UDP-glucose pyrophosphorylase, UDP-galactose 4-epimerase and galactose 1-P uridyl transferase, were studied in a wild ropy, a non-ropy and an overproducing mutant ropy strain of Streptococcus thermophilus. These activities were assayed over successive culture transfers along with exocellular polysaccharide (EPS) production. The overproducing mutant ropy strain showed increments in polysaccharide production over successive culture transfers, as opposed to reductions in production by the wild ropy strain. The observed variations among strains in the enzyme activities that were analysed in relation to EPS production suggest their involvement in the synthesis of sugar-nucleotide EPS precursors.  相似文献   

8.
To investigate phage-host interactions in Streptococcus thermophilus, a phage-resistant derivative (SMQ-301R) was obtained by challenging a Tn917 library of phage-sensitive strain S. thermophilus SMQ-301 with virulent phage DT1. Mutants of phages DT1 and MD2 capable of infecting SMQ-301 and SMQ-301R were isolated at a frequency of 10(-6). Four host range phage mutants were analyzed further and compared to the two wild-type phages. Altogether, three genes (orf15, orf17, and orf18) contained point mutations leading to amino acid substitutions and were responsible for the expanded host range. These three proteins were also identified in both phages by N-terminal sequencing and/or matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. The results suggest that at least three phage structural proteins may be involved in phage-host interactions in S. thermophilus.  相似文献   

9.
We report the identification and characterization of the eps gene cluster of Streptococcus thermophilus Sfi6 required for exopolysaccharide (EPS) synthesis. This report is the first genetic work concerning EPS production in a food microorganism. The EPS secreted by this strain consists of the following tetrasaccharide repeating unit:-->3)-beta-D-Galp-(1-->3)-[alpha-D-Galp-(1-->6)]-beta-D- D-Galp-(1-->3)-alpha-D-Galp-D-GalpNAc-(1-->. The genetic locus The genetic locus was identified by Tn916 mutagenesis in combination with a plate assay to identify Eps mutants. Sequence analysis of the gene region, which was obtained from subclones of a genomic library of Sfi6, revealed a 15.25-kb region encoding 15 open reading frames. EPS expression in the non-EPS-producing heterologous host, Lactococcus lactis MG1363, showed that within the 15.25-kb region, a region with a size of 14.52 kb encoding the 13 genes epsA to epsM was capable of directing EPS synthesis and secretion in this host. Homology searches of the predicted proteins in the Swiss-Prot database revealed high homology (40 to 68% identity) for epsA, B, C, D, and E and the genes involved in capsule synthesis in Streptococcus pneumoniae and Streptococcus agalactiae. Moderate to low homology (37 to 18% identity) was detected for epsB, D, F, and H and the genes involved in capsule synthesis in Staphylococcus aureus for epsC, D, and E and the genes involved in exopolysaccharide I (EPSI) synthesis in Rhizobium meliloti for epsC to epsJ and the genes involved in lipopolysaccharide synthesis in members of the Enterobacteriaceae, and finally for eps K and lipB of Neisseria meningitidis. Genes (epsJ, epsL, and epsM) for which the predicted proteins showed little or no homology with proteins in the Swiss-Prot database were shown to be involved in EPS synthesis by single-crossover gene disruption experiments.  相似文献   

10.
A gene of the unicellular cyanobacterium Synechocystis sp strain PCC 6803 that is homologous to the conserved chloroplast open reading frame orf184 has been cloned and sequenced. The nucleotide sequence of the gene predicts a protein of 184 amino acids with a calculated molecular mass of 21.5 kD and two membrane-spanning regions. Amino acid sequence analysis showed 46 to 37% homology of the cyanobacterial orf184 with tobacco orf184, rice orf185, liverwort orf184, and Euglena gracilis orf206 sequences. Two orf184-specific mutants of Synechocystis sp PCC 6803 were constructed by insertion mutagenesis. Cells of mutants showed growth characteristics similar to those of the wild type. Their pigment composition was distinctly different from the wild type, as indicated by an increase in the phycocyanin-to-chlorophyll ratio. In addition, mutants also had a two- to threefold increase in photosynthetic electron transfer rates as well as in photosystem II-to-photosystem I ratio-a phenomenon hitherto not reported for mutants with altered photosynthetic characteristics. The observed alterations in the orf184-specific mutants provide strong evidence for a functional role of the orf184 gene product in photosynthetic processes.  相似文献   

11.
Over the last years, important advances have been made in the study of the production of exopolysaccharides (EPS) by several lactic acid bacteria, including Lactococcus lactis. From different EPS-producing lactococcal strains the specific eps gene clusters have been characterised. They contain eps genes, which are involved in EPS repeating unit synthesis, export, polymerisation, and chain length determination. The function of the glycosyltransferase genes has been established and the availability of these genes opened the way to EPS engineering. In addition to the eps genes, biosynthesis of EPS requires a number of housekeeping genes that are involved in the metabolic pathways leading to the EPS-building blocks, the nucleotide sugars. The identification and characterisation of several of these housekeeping genes (galE, galU, rfbABCD) allows the design of metabolic engineering strategies that should lead to increased EPS production levels by L. lactis. Finally, model developme nt has been initiated in order to predict the physicochemical consequences of the addition of a EPS to a product.  相似文献   

12.
Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodule formation on roots of alfalfa plants. S. meliloti produces two exopolysaccharides (EPSs), termed EPS I and EPS II, that are both able to promote symbiosis. EPS I and EPS II are secreted in two major fractions that reflect differing degrees of subunit polymerization, designated high- and low-molecular-weight fractions. We reported previously that EPSs are crucial for autoaggregation and biofilm formation in S. meliloti reference strains and isogenic mutants. However, the previous observations were obtained by use of "domesticated" laboratory strains, with mutations resulting from successive passages under unnatural conditions, as has been documented for reference strain Rm1021. In the present study, we analyzed the autoaggregation and biofilm formation abilities of native S. meliloti strains isolated from root nodules of alfalfa plants grown in four regions of Argentina. 16S rRNA gene analysis of all the native isolates revealed a high degree of identity with reference S. meliloti strains. PCR analysis of the expR gene of all the isolates showed that, as in the case of reference strain Rm8530, this gene is not interrupted by an insertion sequence (IS) element. A positive correlation was found between autoaggregation and biofilm formation abilities in these rhizobia, indicating that both processes depend on the same physical adhesive forces. Extracellular complementation experiments using mutants of the native strains showed that autoaggregation was dependent on EPS II production. Our results indicate that a functional EPS II synthetic pathway and its proper regulation are essential for cell-cell interactions and surface attachment of S. meliloti.  相似文献   

13.
The effects of different carbohydrates or mixtures of carbohydrates as substrates on bacterial growth and exopolysaccharide (EPS) production were studied for the yoghurt starter culture Streptococcus thermophilus LY03. This strain produces two heteropolysaccharides with the same monomeric composition (galactose and glucose in the ratio 4:1) but with different molecular masses. Lactose and glucose were fermented by S. thermophilus LY03 only when they were used as sole energy and carbohydrate sources. Fructose was also fermented when it was applied in combination with lactose or glucose. Both the amount of EPS produced and the carbohydrate source consumption rates were clearly influenced by the type of energy and carbohydrate source used, while the EPS monomeric composition remained constant (galactose-glucose, 4:1) under all circumstances. A combination of lactose and glucose resulted in the largest amounts of EPS. Measurements of the activities of enzymes involved in EPS biosynthesis, and of those involved in sugar nucleotide biosynthesis and the Embden-Meyerhof-Parnas pathway, demonstrated that the levels of activity of alpha-phosphoglucomutase, UDP-galactose 4-epimerase, and UDP-glucose pyrophosphorylase are highly correlated with the amount of EPS produced. Furthermore, a weaker relationship or no relationship between the amounts of EPS and the enzymes involved in either the rhamnose nucleotide synthetic branch of the EPS biosynthesis or the pathway leading to glycolysis was observed for S. thermophilus LY03.  相似文献   

14.
Milling A  Babujee L  Allen C 《PloS one》2011,6(1):e15853
Ralstonia solanacearum, which causes bacterial wilt of diverse plants, produces copious extracellular polysaccharide (EPS), a major virulence factor. The function of EPS in wilt disease is uncertain. Leading hypotheses are that EPS physically obstructs plant water transport, or that EPS cloaks the bacterium from host plant recognition and subsequent defense. Tomato plants infected with R. solanacearum race 3 biovar 2 strain UW551 and tropical strain GMI1000 upregulated genes in both the ethylene (ET) and salicylic acid (SA) defense signal transduction pathways. The horizontally wilt-resistant tomato line Hawaii7996 activated expression of these defense genes faster and to a greater degree in response to R. solanacearum infection than did susceptible cultivar Bonny Best. However, EPS played different roles in resistant and susceptible host responses to R. solanacearum. In susceptible plants the wild-type and eps(-) mutant strains induced generally similar defense responses. But in resistant Hawaii7996 tomato plants, the wild-type pathogens induced significantly greater defense responses than the eps(-) mutants, suggesting that the resistant host recognizes R. solanacearum EPS. Consistent with this idea, purified EPS triggered significant SA pathway defense gene expression in resistant, but not in susceptible, tomato plants. In addition, the eps(-) mutant triggered noticeably less production of defense-associated reactive oxygen species in resistant tomato stems and leaves, despite attaining similar cell densities in planta. Collectively, these data suggest that bacterial wilt-resistant plants can specifically recognize EPS from R. solanacearum.  相似文献   

15.
16.
Twenty-six lactic acid bacterium strains isolated from European dairy products were identified as Streptococcus thermophilus and characterized by bacterial growth and exopolysaccharide (EPS)-producing capacity in milk and enriched milk medium. In addition, the acidification rates of the different strains were compared with their milk clotting behaviors. The majority of the strains grew better when yeast extract and peptone were added to the milk medium, although the presence of interfering glucomannans was shown, making this medium unsuitable for EPS screening. EPS production was found to be strain dependent, with the majority of the strains producing between 20 and 100 mg of polymer dry mass per liter of fermented milk medium. Furthermore, no straightforward relationship between the apparent viscosity and EPS production could be detected in fermented milk medium. An analysis of the molecular masses of the isolated EPS by gel permeation chromatography revealed a large variety, ranging from 10 to >2,000 kDa. A distinction could be made between high-molecular-mass EPS (>1,000 kDa) and low-molecular-mass EPS (<1,000 kDa). Based on the molecular size of the EPS, three groups of EPS-producing strains were distinguished. Monomer analysis of the EPS by high-performance anion-exchange chromatography with amperometric detection was demonstrated to be a fast and simple method. All of the EPS from the S. thermophilus strains tested were classified into six groups according to their monomer compositions. Apart from galactose and glucose, other monomers, such as (N-acetyl)galactosamine, (N-acetyl)glucosamine, and rhamnose, were also found as repeating unit constituents. Three strains were found to produce EPS containing (N-acetyl)glucosamine, which to our knowledge was never found before in an EPS from S. thermophilus. Furthermore, within each group, differences in monomer ratios were observed, indicating possible novel EPS structures. Finally, large differences between the consistencies of EPS solutions from five different strains were assigned to differences in their molecular masses and structures.  相似文献   

17.
18.
Phage-host interactions remain poorly understood in lactic acid bacteria and essentially in all Gram-positive bacteria. The aim of this study was to identify the phage genetic determinant (anti-receptor) involved in the recognition of Streptococcus thermophilus hosts. The complete genomic sequence of the lytic S. thermophilus phage DT1 was determined previously, and bioinformatic analysis indicated that orf18 might be the anti-receptor gene. The orf18 of six additional S. thermophilus phages was determined (DT2, DT4, MD1, MD2, MD4 and Q5) and compared with the orf18 of DT1. The deduced ORF18 was divided into three domains. The first domain, which contains the N-terminal part of the protein, was conserved in all seven phages. The second domain was detected in only two phages and flanked by a motif called collagen-like repeats. The second domain also contained a variable region (VR1). All seven phages had a third domain that consisted of the C-terminal section of the protein as well as another variable region (VR2). Chimeric DT1 phages were constructed by recombination; a portion of its orf18 was replaced by the corresponding section in orf18 of the phage MD4. All DT1 chimeric phages acquired the host range of phage MD4. Analysis of the orf18 in the chimeric phages revealed that host specificity in phages DT1 and MD4 resulted from VR2. This is the first report on the identification and characterization of a phage gene involved in the host recognition process of Gram-positive bacteria.  相似文献   

19.
目的 利用传统方法和分子生物学方法从viili中筛菌并对其特性进行研究.方法 采用MRS、YPD和脱脂乳营养琼脂3种平板从viili中分离出15株单菌,利用V3区通用引物和乳杆菌特异性引物对各单菌的PCR产物进行变性梯度凝胶电泳(denaturing gradient gel electrophoresis,DGGE)分析,将其归为5种不同菌.结果 16S DNA测序表明,5种单菌分别为Lactobacillus plantarum、Streptococcus thermophilus、Lactobacillus paracasei、Bacillus cereus和Lactobacillus delbrueckii subsp. bulgaricus.混合发酵实验表明:从viili中筛出的5种菌除Bacillus cereus外均有凝乳现象,其中Lactobacillus delbrueckii凝乳能力强,可在5 h内凝乳;Lactobacillus paracasei、Bacillus cereus和Lactobacillus plantarum组合产生的EPS量最多,高达186.71 mg/L,而Streptococcus thermophilus EPS产量仅为33.56 mg/L.结论 传统方法与分子生物学方法DGGE相结合,可以快速准确判断细菌种类;筛选菌特性研究结果表明,细菌之间的相互作用导致凝乳时间和EPS产量发生变化,其复合作用有待于进一步研究.  相似文献   

20.
Altered levels of enzymes in the central carbon metabolism in Streptococcus thermophilus increased the exopolysaccharide (EPS) production 3.3 times over that of the parent strain. The influence of enhanced EPS production on the rheological properties of fermented milk is described for engineered strains of S. thermophilus which produce different levels of EPSs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号