首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are developing a rapid, time‐resolved method using laser‐activated cross‐linking to capture protein‐peptide interactions as a means to interrogate the interaction of serum proteins as delivery systems for peptides and other molecules. A model system was established to investigate the interactions between bovine serum albumin (BSA) and 2 peptides, the tridecapeptide budding‐yeast mating pheromone (α‐factor) and the decapeptide human gonadotropin‐releasing hormone (GnRH). Cross‐linking of α‐factor, using a biotinylated, photoactivatable p‐benzoyl‐L‐phenylalanine (Bpa)–modified analog, was energy‐dependent and achieved within seconds of laser irradiation. Protein blotting with an avidin probe was used to detect biotinylated species in the BSA‐peptide complex. The cross‐linked complex was trypsinized and then interrogated with nano‐LC–MS/MS to identify the peptide cross‐links. Cross‐linking was greatly facilitated by Bpa in the peptide, but some cross‐linking occurred at higher laser powers and high concentrations of a non‐Bpa–modified α‐factor. This was supported by experiments using GnRH, a peptide with sequence homology to α‐factor, which was likewise found to be cross‐linked to BSA by laser irradiation. Analysis of peptides in the mass spectra showed that the binding site for both α‐factor and GnRH was in the BSA pocket defined previously as the site for fatty acid binding. This model system validates the use of laser‐activation to facilitate cross‐linking of Bpa‐containing molecules to proteins. The rapid cross‐linking procedure and high performance of MS/MS to identify cross‐links provides a method to interrogate protein‐peptide interactions in a living cell in a time‐resolved manner.  相似文献   

2.
Mammalian interphase chromosomes fold into a multitude of loops to fit the confines of cell nuclei, and looping is tightly linked to regulated function. Chromosome conformation capture (3C) technology has significantly advanced our understanding of this structure‐to‐function relationship. However, all 3C‐based methods rely on chemical cross‐linking to stabilize spatial interactions. This step remains a “black box” as regards the biases it may introduce, and some discrepancies between microscopy and 3C studies have now been reported. To address these concerns, we developed “i3C”, a novel approach for capturing spatial interactions without a need for cross‐linking. We apply i3C to intact nuclei of living cells and exploit native forces that stabilize chromatin folding. Using different cell types and loci, computational modeling, and a methylation‐based orthogonal validation method, “TALE‐iD”, we show that native interactions resemble cross‐linked ones, but display improved signal‐to‐noise ratios and are more focal on regulatory elements and CTCF sites, while strictly abiding to topologically associating domain restrictions.  相似文献   

3.
Exposure of glioblastoma U87MG cells to a cAMP analog leads to a decrease in proliferation, invasion, and angiogenic potential. Here, we apply a label‐free MS‐based approach to identify formerly N‐linked glycopeptides that change in abundance upon cAMP treatment. Over 150 unique glycopeptides in three biological repetitions were quantified, leading to the identification of 14 upregulated proteins and 21 downregulated proteins due to cAMP treatment. Of these, eight have been validated, either through comparison with microarray data or by Western blot. We estimate our ability to identify differentially expressed peptides at greater than 85% in a single biological repetition, while the analysis of multiple biological repetitions lowers the false positive rate to ~2%. Many of the proteins identified in this study are involved in cell signaling and some, such as Tenascin C, Cathepsin L, Neuroblastoma suppressor of tumorigenicity, and AXL/UFO tyrosine–protein kinase receptor, have been previously shown to be involved in glioblastoma progression. We also identify several semitryptic peptides that increase in abundance upon cAMP treatment, suggesting that cAMP regulates protease activity in these cells. Overall, these results demonstrate the benefits of using a highly specific enrichment method for quantitative proteomic experiments.  相似文献   

4.
MS/MS is the technology of choice for analyzing complex protein mixtures. However, due to the intrinsic complexity and dynamic range present in higher eukaryotic proteomes, prefractionation is an important step to maximize the number of proteins identified. Off‐gel IEF (OG‐IEF) and high pH RP (Hp‐RP) column chromatography have both been successfully utilized as a first‐dimension peptide separation technique in shotgun proteomic experiments. Here, a direct comparison of the two methodologies was performed on ex vivo peripheral blood mononuclear cell lysate. In 12‐fraction replicate analysis, Hp‐RP resulted in more peptides and proteins identified than OG‐IEF fractionation. Distributions of peptide pIs and hydropathy did not reveal any appreciable bias in either technique. Resolution, defined here as the ability to limit a specific peptide to one particular fraction, was significantly better for Hp‐RP. This leads to a more uniform distribution of total and unique peptides for Hp‐RP across all fractions collected. These results suggest that fractionation by Hp‐RP over OG‐IEF is the better choice for typical complex proteome analysis.  相似文献   

5.
N‐succinimidyloxycarbonylmethyl tris(2,4,6‐trimethoxyphenyl) phosphonium bromide (TMPP‐Ac‐OSu) reacts rapidly, mildly, and specifically with the N‐terminals of proteins and peptides. Thus, it can be developed as an ideal isotope‐coded tag to be used in quantitative proteomics. Here, we present a strategy for light and heavy TMPP‐based quantitative proteomic analysis, in which peptides in a mixture can be quantified using an on‐tip TMPP derivatization approach. To demonstrate the accuracy of this strategy, light and heavy TMPP‐labeled peptides were combined at different ratios and subsequently analyzed by LC‐MS/MS. The MS spectra and scatter plots show that peptide and protein ratios were both consistent with the mixed ratios. We observed a linear correlation between protein ratios and the predicted ratios. In comparison with SILAC method, the TMPP labeling method produced similarly accurate quantitative results with low CVs. In conclusion, our results suggest that this isotope‐coded TMPP method achieved accurate quantification and compatibility with IEF‐based separation. With the inherent advantages of TMPP derivatization, we believe that it holds great promise for future applications in quantitative proteomics analysis.  相似文献   

6.
In proteomic studies, assigning protein identity from organisms whose genomes are yet to be completely sequenced remains a challenging task. For these organisms, protein identification is typically based on cross species matching of amino acid sequence obtained from collision induced dissociation (CID) of peptides using mass spectrometry. The most direct approach of de novo sequencing is slow and often difficult, due to the complexity of the resultant CID spectra. For MALDI-MS, this problem has been addressed by using chemical derivatisation to direct peptide fragmentation, thereby simplifying CID spectra and facilitating de novo interpretation. In this study, milk whey proteins from the tammar wallaby (Macropus eugenii) were used to evaluate three chemical derivatisation methods compatible with MALDI MS/MS. These methods included (i) guanidination and sulfonation using chemically-assisted fragmentation (CAF), (ii) guanidination and sulfonation using 4-sulfophenyl isothiocyanate (SPITC) and (iii) derivatising the epsilon-amino group of lysine residues with Lys Tag 4H. Derivatisation with CAF and SPITC resulted in more protein identification than Lys Tag 4H. Sulfonation using SPITC was the preferred method due to the low cost per experiment, the reactivity with both lysine and arginine terminated peptides and the resultant simplified MS/MS spectra.*Australian Peptide Conference Issue.**This project was funded by an ARC Linkage grant to Deane supported by TGR Biosciences and facilitated by access to the Australian Proteome Analysis Facility established under the Australian Government’s Major National Research Facilities program.  相似文献   

7.
Imbalance in protein homeostasis in specific subcellular organelles is alleviated through organelle‐specific stress response pathways. As a canonical example of stress activated pathway, accumulation of misfolded proteins in ER activates unfolded protein response (UPR) in almost all eukaryotic organisms. However, very little is known about the involvement of proteins of other organelles that help to maintain the cellular protein homeostasis during ER stress. In this study, using iTRAQ‐based LC–MS approach, we identified organelle enriched proteins that are differentially expressed in yeast (Saccharomyces cerevisiae) during ER stress in the absence of UPR sensor Ire1p. We have identified about 750 proteins from enriched organelle fraction in three independent iTRAQ experiments. Induction of ER stress resulted in the differential expression of 93 proteins in WT strains, 40 of which were found to be dependent on IRE1. Our study reveals a cross‐talk between ER‐ and mitochondrial proteostasis exemplified by an Ire1p‐dependent induction of Hsp60p, a mitochondrial chaperone. Thus, in this study, we show changes in protein levels in various organelles in response to ER stress. A large fraction of these changes were dependent on canonical UPR signalling through Ire1, highlighting the importance of interorganellar cross‐talk during stress.  相似文献   

8.
Efficient and high resolution separation of the protein mixture prior to trypsin digestion and mass spectrometry (MS) analysis is generally used to reduce the complexity of samples, an approach that highly increases the probability of detecting low‐copy‐number proteins. Our laboratory has constructed an affinity ligand library composed of thousands of ligands with different protein absorbance effects. Structural differences between these ligands result in different non‐bonded protein–ligand interactions, thus each ligand exhibits a specific affinity to some protein groups. In this work, we first selected out several synthetic affinity ligands showing large band distribution differences in proteins absorbance profiles, and a tandem composition of these affinity ligands was used to distribute complex rat liver cytosol into simple subgroups. Ultimately, all the fractions collected from tandem affinity pre‐fractionation were digested and then analyzed by LC‐MS/MS, which resulted in high confidence identification of 665 unique rat protein groups, 1.8 times as many proteins as were detected in the un‐fractionated sample (371 protein groups). Of these, 375 new proteins were identified in tandem fractions, and most of the proteins identified in un‐fractionated sample (290, 80%) also emerged in tandem fractions. Most importantly, 430 unique proteins (64.7%) only characterized in specific fractions, indicating that the crude tissue extract was well distributed by tandem affinity fractionation. All detected proteins were bioinformatically annotated according to their physicochemical characteristics (such as MW, pI, GRAVY value, TM Helices). This approach highlighted the sensitivity of this method to a wide variety of protein classes. Combined usage of tandem affinity pre‐fractionation with MS‐based proteomic analysis is simple, low‐cost, and effective, providing the prospect of broad application in proteomics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Novel magnetic cross‐linked lipase aggregates were fabricated by immobilizing the cross‐linked lipase aggregates onto magnetic particles with a high number of ‐NH2 terminal groups using p‐benzoquinone as the cross‐linking agent. At the optimal fabrication conditions, 100% of immobilization efficiency and 139% of activity recovery of the magnetic cross‐linked lipase aggregates were achieved. The magnetic cross‐linked lipase aggregates were able to efficiently resolve (R, S)‐2‐octanol, and retained 100% activity and 100% enantioselectivity after 10 cycles of reuse, whereas the cross‐linked lipase aggregates only retained about 50% activity and 70% enantioselectivity due to insufficient cross‐linking. These results provide a great potential for industrial applications of the magnetic cross‐linked lipase aggregates. Chirality 27:199–204, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
To obtain a comprehensive understanding of proteins involved in mitochondrion‐sarcoplasmic reticulum (SR) linking, a catalog of proteins from mitochondrion‐associated membrane (MAM) of New Zealand white rabbit skeletal muscle were analyzed by an optimized shotgun proteomic method. The membrane fractions were prepared by differential centrifugation and separated by 1D electrophoresis followed by a highly reproducible, automated LC‐MS/MS on the hybrid linear ion trap (LTQ)‐Orbitrap mass spectrometer. By integrating as low as 1% false discovery rate as one of the features for quality control method, 459 proteins were identified from both of the two independent MAM preparations. Protein pI value, molecular weight range, and transmembrane region were calculated using bioinformatics softwares. One hundred one proteins were recognized as membrane proteins. This protein database suggested that the MAM preparations composed of proteins from mitochondrion, SR, and transverse‐tubule. This result indicated mitochondria physically linked with SR in rabbit skeletal muscle, voltage‐dependent anion channel 1 (VDAC1), VDAC2, and VDAC3 might participate in formation of the tethers between SR and mitochondria.  相似文献   

11.
Tyrosine kinase inhibitors, such as erlotinib, display reliable responses and survival benefits for the treatment of human non‐small cell lung cancer (NSCLC) patients. However, primary or acquired resistance limits their therapeutic success. In this study, we conducted in‐depth mass spectrometric analyses of NSCLC cell secretomes. To identify secreted proteins that are differentially regulated in erlotinib‐sensitive (PC‐9) and ‐resistant (PC‐9ER) NSCLC cell lines, SILAC experiments were performed. On average, 900 proteins were identified in each sample with low variations in the numbers of identified proteins. Fourteen proteins were found to be differently regulated among erlotinib‐sensitive and ‐resistant NSCLC cell lines, with five proteins (tissue‐type plasminogen activator, epidermal growth factor receptor, urokinase‐type plasminogen activator, platelet‐derived growth factor D, and myeloid‐derived growth factor) showing the most prominent regulation. Tissue‐type plasminogen activator (t‐PA) was up to 10‐times upregulated in erlotinib‐resistant NSCLC cells compared with erlotinib‐sensitive cells. T‐PA is an established tumor marker for various cancer types and seems to be a promising prognostic marker to differentiate erlotinib‐sensitive from erlotinib‐resistant NSCLC cells. To gain further insights into t‐PA‐regulated pathways, a t‐PA variant was expressed in E. coli cells and its interactions with proteins secreted from erlotinib‐sensitive and ‐resistant NCSLC cells were studied by a combined affinity enrichment chemical cross‐linking/mass spectrometry (MS) approach. Fourteen proteins were identified as potential t‐PA interaction partners, deserving a closer inspection to unravel the mechanisms underlying erlotinib resistance in NSCLC cells.  相似文献   

12.
Abbaraju NV  Cai Y  Rees BB 《Proteomics》2011,11(21):4257-4261
Reliable proteomic analysis of biological tissues requires sampling approaches that preserve proteins as close to their in vivo state as possible. In the current study, the patterns of protein abundance in one‐dimensional (1‐D) gels were assessed for five tissues of the gulf killifish, Fundulus grandis, following snap‐freezing tissues in liquid nitrogen or immersion of fresh tissues in RNAlater®. In liver and heart, the protein profiles in 1‐D gels were better preserved by snap‐freezing, while in gill, the 1‐D protein profile was better preserved by immersion in RNAlater®. In skeletal muscle and brain, the two approaches yielded similar patterns of protein abundance. LC‐MS/MS analyses and database searching resulted in the identification of 17 proteins in liver and 12 proteins in gill. Identified proteins include enzymes of energy metabolism, structural proteins, and proteins serving other biological functions. These protein identifications for a species without a sequenced genome demonstrate the utility of F. grandis as a model organism for environmental proteomic studies in vertebrates.  相似文献   

13.
We designed a new cross‐linker bearing a CHCA moiety. The use of the CHCA‐tagged cross‐linker JMV 3378 in conjunction with a neutral MALDI matrix α‐cyano‐4‐hydroxycinnamic methyl ester enabled specific signal enhancement in MALDI‐TOF MS of cross‐link containing peptides. Discrimination between modified and non‐modified peptides can be achieved by comparison of two spectra, one using CHCA and the other using the α‐cyano‐4‐hydroxycinnamic methyl ester matrix. The methodology was validated using cytochrome c and apo‐myoglobine as model proteins.  相似文献   

14.
The photoactivatable amino acid p‐benzoyl‐l ‐phenylalanine (pBpa) has been used for the covalent capture of protein–protein interactions (PPIs) in vitro and in living cells. However, this technique often suffers from poor photocrosslinking yields due to the low reactivity of the active species. Here we demonstrate that the incorporation of halogenated pBpa analogs into proteins leads to increased crosslinking yields for protein–protein interactions. The analogs can be incorporated into live yeast and upon irradiation capture endogenous PPIs. Halogenated pBpas will extend the scope of PPIs that can be captured and expand the toolbox for mapping PPIs in their native environment.  相似文献   

15.
The proteomic analysis of serum (plasma) has been a major approach to determining biomarkers essential for early disease diagnoses and drug discoveries. The determination of these biomarkers, however, is analytically challenging since the dynamic concentration range of serum proteins/peptides is extremely wide (more than 10 orders of magnitude). Thus, the reduction in sample complexity prior to proteomic analyses is essential, particularly in analyzing low-abundance protein biomarkers. Here, we demonstrate a novel approach to the proteomic analyses of human serum that uses an originally developed serum protein separation device and a sequentially linked 3-D-LC-MS/MS system. Our hollow-fiber-membrane-based serum pretreatment device can efficiently deplete high-molecular weight proteins and concentrate low-molecular weight proteins/peptides automatically within 1 h. Four independent analyses of healthy human sera pretreated using this unique device, followed by the 3-D-LC-MS/MS successfully produced 12 000-13 000 MS/MS spectra and hit around 1800 proteins (>95% reliability) and 2300 proteins (>80% reliability). We believe that the unique serum pretreatment device and proteomic analysis protocol reported here could be a powerful tool for searching physiological biomarkers by its high throughput (3.7 days per one sample analysis) and high performance of finding low abundant proteins from serum or plasma samples.  相似文献   

16.
Rapid, cost‐effective, efficient, and reliable helminth species identification is of considerable importance to understand host–parasite interactions, clinical disease, and drug resistance. Cyathostomins (Nematoda: Strongylidae) are considered to be the most important equine parasites, yet research on this group is hampered by the large number of 50 morphologically differentiated species, their occurrence in mixed infections with often more than 10 species and the difficulties associated with conventional identification methods. Here, MALDI‐TOF MS, previously successfully applied to identify numerous organisms, is evaluated and compared with conventional and molecular genetic approaches. A simple and robust protocol for protein extraction and subsequent DNA isolation allowing molecular confirmation of proteomic findings is developed, showing that MALDI‐TOF MS can discriminate adult stages of the two closely related cyathostomin species Cylicostephanus longibursatus and Cylicostephanus minutus. Intraspecific variability of proteomic profiles within morphospecies demonstrated an identification of morphospecies with an accuracy of close to 100%. In contrast, three genospecies within C. minutus and sex‐specific profiles within both morphospecies could not be reliably discriminated using MALDI‐TOF MS. In conclusion, MALDI‐TOF MS complemented by the molecular protocol is a reliable and efficient approach for cyathostomin species identification.  相似文献   

17.
The quantification of changes in protein abundance in complex biological specimens is essential for proteomic studies in basic and applied research. Here we report on the development and validation of the DeepQuanTR software for identification and quantification of differentially expressed proteins using LC‐MALDI‐MS. Following enzymatic digestion, HPLC peptide separation and normalization of MALDI‐MS signal intensities to the ones of internal standards, the software extracts peptide features, adjusts differences in HPLC retention times and performs a relative quantification of features. The annotation of multiple peptides to the corresponding parent protein allows the definition of a Protein Quant Value, which is related to protein abundance and which allows inter‐sample comparisons. The performance of DeepQuanTR was evaluated by analyzing 24 samples deriving from human serum spiked with different amounts of four proteins and eight complex samples of vascular proteins, derived from surgically resected human kidneys with cancer following ex vivo perfusion with a reactive ester biotin derivative. The identification and experimental validation of proteins, which were differentially regulated in cancerous lesions as compared with normal kidney, was used to demonstrate the power of DeepQuanTR. This software, which can easily be used with established proteomic methodologies, facilitates the relative quantification of proteins derived from a wide variety of different samples.  相似文献   

18.
All living organisms are subject to senescence accompanied by progressive and irreversible physiological changes. The error damage and cross‐linking theories suggest that cells and tissues are damaged by an accumulation of cross‐linked proteins, slowing down bodily processes and resulting in aging. A major category of these cross‐linked proteins are compounds called advanced glycation end products (AGEs). We investigated the relationship between accumulation of the AGE, pentosidine (Ps), and hydroxyproline (HYP) a post‐translationally modified amino acid, with age, sex, and breeding status (breeder/nonbreeder) from skin samples of known age (i.e., banded as fledglings), free‐ranging Double‐crested Cormorants (Phalacrocorax auritus, Lesson 1831). We developed multivariate models and evaluated the predictive capability of our models for determining age and breeding versus nonbreeding birds. We found significant relationships with Ps and HYP concentration and age, and Ps concentration and sex. Based on our two‐class model using Ps and HYP as explanatory variables, we were able to accurately determine whether a cormorant was a breeder or nonbreeder in 83.5% of modeled classifications. Our data indicate that Ps and HYP concentrations can be used to determine breeding status of cormorants and potentially age of cormorants although sex‐specific models may be necessary. Although the accumulation of Ps explained the greatest amount of variance in breeding status and age, importantly, Ps covaried with HYP and combined improved prediction of these demographics in cormorants. Our data support the error damage and cross‐linking theories of aging. Both Ps and HYP increase predictably in cormorants and are predictive of age and breeding status. Given the ubiquity of these biomarkers across taxa, their use in estimating demographic characteristics of animals could provide a powerful tool in animal ecology, conservation, and management.  相似文献   

19.
Exposure to cow's milk constitutes one of the most common causes of food allergy. In addition, exposure to soy proteins has become relevant in a restricted proportion of milk allergic pediatric patients treated with soy formulae as a dairy substitute, because of the cross‐allergenicity described between soy and milk proteins. We have previously identified several cross‐reactive allergens between milk and soy that may explain this intolerance. The purpose of the present work was to identify epitopes in the purified αS1‐casein and the recombinant soy allergen Gly m 5.0101 (Gly m 5) using an α‐casein‐specific monoclonal antibody (1D5 mAb) through two different approaches for epitope mapping, to understand cross‐reactivity between milk and soy. The 1D5 mAb was immobilized onto magnetic beads, incubated with the peptide mixture previously obtained by enzymatic digestion of the allergens, and the captured peptides were identified by MALDI‐TOF MS analysis. On a second approach, the peptide mixture was resolved by RP‐HPLC and immunodominant peptides were identified by dot blot with the mAb. Finally, recognized peptides were sequenced by MALDI‐TOF MS. This novel MS based approach led us to identify and characterize four peptides on α‐casein and three peptides on Gly m 5 with a common core motif. Information obtained from these cross‐reactive epitopes allows us to gain valuable insight into the molecular mechanisms of cross‐reactivity, to further develop new and more effective vaccines for food allergy.  相似文献   

20.
There is increasing evidence that proteins function in the cell as integrated stable or temporally formed protein complexes, interactomes. Previously, using model systems we demonstrated applicability of direct molecular fishing on paramagnetic particles for protein interactomics (Ershov et al. Proteomics, 2012, 12, 3295). In the present study, we have used a combination of affinity‐based molecular fishing and subsequent MS for investigation of human liver proteins involved in interactions with immobilized microsomal cytochrome b5 (CYB5A), and also transthyretin and BSA as alternative affinity ligands (baits). The LC?MS/MS identification of prey proteins fished on these baits revealed three sets of proteins: 98, 120, and 220, respectively. Comparison analysis of these sets revealed only three proteins common for all the baits. In the case of paired analysis, the number of common proteins varied from 2 to 9. The binding capacity of some identified proteins has been validated by a SPR‐based biosensor. All the investigated proteins effectively interacted with the immobilized CYB5A (Kd values ranged from 0.07 to 1.1 μM). Results of this study suggest that direct molecular fishing is applicable for analysis of protein–protein interactions (PPI) under normal and pathological conditions, in which altered PPIs are especially important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号