首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Detecting protein‐RNA interactions is challenging both experimentally and computationally because RNAs are large in number, diverse in cellular location and function, and flexible in structure. As a result, many RNA‐binding proteins (RBPs) remain to be identified. Here, a template‐based, function‐prediction technique SPOT‐Seq for RBPs is applied to human proteome and its result is validated by a recent proteomic experimental discovery of 860 mRNA‐binding proteins (mRBPs). The coverage (or sensitivity) is 42.6% for 1217 known RBPs annotated in the Gene Ontology and 43.6% for 860 newly discovered human mRBPs. Consistent sensitivity indicates the robust performance of SPOT‐Seq for predicting RBPs. More importantly, SPOT‐Seq detects 2418 novel RBPs in human proteome, 291 of which were validated by the newly discovered mRBP set. Among 291 validated novel RBPs, 61 are not homologous to any known RBPs. Successful validation of predicted novel RBPs permits us to further analysis of their phenotypic roles in disease pathways. The dataset of 2418 predicted novel RBPs along with confidence levels and complex structures is available at http://sparks-lab.org (in publications) for experimental confirmations and hypothesis generation. Proteins 2014; 82:640–647. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
4.
Both Proteins and DNA undergo conformational changes in order to form functional complexes and also to facilitate interactions with other molecules. These changes have direct implications for the stability and specificity of the complex, as well as the cooperativity of interactions between multiple entities. In this work, we have extensively analyzed conformational changes in DNA‐binding proteins by superimposing DNA‐bound and unbound pairs of protein structures in a curated database of 90 proteins. We manually examined each of these pairs, unified the authors' annotations, and summarized our observations by classifying conformational changes into six structural categories. We explored a relationship between conformational changes and functional classes, binding motifs, target specificity, biophysical features of unbound proteins, and stability of the complex. In addition, we have also investigated the degree to which the intrinsic flexibility can explain conformational changes in a subset of 52 proteins with high quality coordinate data. Our results indicate that conformational changes in DNA‐binding proteins contribute significantly to both the stability of the complex and the specificity of targets recognized by them. We also conclude that most conformational changes occur in proteins interacting with specific DNA targets, even though unbound protein structures may have sufficient information to interact with DNA in a nonspecific manner. Proteins 2014; 82:841–857. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Wei Wang  Juan Liu  Lin Sun 《Proteins》2016,84(7):979-989
Protein‐DNA bindings are critical to many biological processes. However, the structural mechanisms underlying these interactions are not fully understood. Here, we analyzed the residues shape (peak, flat, or valley) and the surrounding environment of double‐stranded DNA‐binding proteins (DSBs) and single‐stranded DNA‐binding proteins (SSBs) in protein‐DNA interfaces. In the results, we found that the interface shapes, hydrogen bonds, and the surrounding environment present significant differences between the two kinds of proteins. Built on the investigation results, we constructed a random forest (RF) classifier to distinguish DSBs and SSBs with satisfying performance. In conclusion, we present a novel methodology to characterize protein interfaces, which will deepen our understanding of the specificity of proteins binding to ssDNA (single‐stranded DNA) or dsDNA (double‐stranded DNA). Proteins 2016; 84:979–989. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
7.
Studies have identified a sub‐group of SGS3‐LIKE proteins including FDM1–5 and IDN2 as key components of RNA‐directed DNA methylation pathway (RdDM). Although FDM1 and IDN2 bind RNAs with 5′ overhangs, their functions in the RdDM pathway remain to be examined. Here we show that FDM1 interacts with itself and with IDN2. Gel filtration suggests that FDM1 may exist as a homodimer in a heterotetramer complex in vivo. The XH domain of FDM1 mediates the FDM1–FDM1 and FDM1–IDN2 interactions. Deletion of the XH domain disrupts FDM1 complex formation and results in loss‐of‐function of FDM1. These results demonstrate that XH domain‐mediated complex formation of FDM1 is required for its function in RdDM. In addition, FDM1 binds unmethylated but not methylated DNAs through its coiled‐coil domain. RNAs with 5′ overhangs does not compete with DNA for binding by FDM1, indicating that FDM1 may bind DNA and RNA simultaneously. These results provide insight into how FDM1 functions in RdDM.  相似文献   

8.
9.
10.
11.
12.
13.
Dribble (DBE) is an essential protein in Drosophila that belongs to the evolutionarily conserved Krr1p protein family. Proteins in this family are localised in the cell nucleolus and are important for the processing of ribosomal RNAs. However, little is known about their structural and biophysical properties. We have expressed and purified full-length DBE protein from Escherichia coli. Consistent with the native role of DBE in RNA processing, recombinant DBE was shown to bind RNA homo-polymers in vitro. By bioinformatics, size-exclusion chromatography, equilibrium sedimentation analysis, controlled proteolysis, and a variety of spectroscopic techniques, we have found that DBE is a monomeric protein in solution containing both alpha- and beta-structures. Moreover, the structure of DBE is expanded and significantly disordered (approximately 45% disordered). Natively disordered proteins are thought to provide a disproportionately large surface area and structural plasticity for nucleic acid binding. We therefore propose that the presence of structural disorder is an important feature of DBE that facilitates the protein to interact with RNAs in the nucleolus.  相似文献   

14.
The classical protein structure-function paradigm has been challenged by the emergence of intrinsically disordered proteins (IDPs), the proteins that do not adopt well-defined three-dimensional structures under physiological conditions. This development was accompanied by the introduction of a “coupled binding and folding” paradigm that suggests folding of IDPs upon binding to their partners. However, our recent studies challenge this general view by revealing a novel, previously unrecognized phenomenon – uncoupled binding and folding. This biologically important mechanism is characteristic of members of a new family of IDPs involved in immune signaling and underlies their unusual properties including: (1) specific homodimerization, (2) the lack of folding upon binding to a well-folded protein, another IDP molecule, or to lipid bilayer membranes, and (3) the “scissors-cut paradox”. The third phenomenon occurs in diverse IDP interactions and suggests that properties of IDP fragments are not necessarily additive in the context of the entire protein. The “no disorder-to-order transition” type of binding is distinct from known IDP interactions and is characterized by an unprecedented observation of the lack of chemical shift and peak intensity changes in multidimensional NMR spectra, a fingerprint of proteins, upon complex formation. Here, I focus on those interactions of IDPs with diverse biological partners where the binding phase driven by electrostatic interactions is not be necessarily followed by the hydrophobic folding phase. I also review new multidisciplinary knowledge about immune signaling-related IDPs and show how it expands our understanding of cell function with multiple applications in biology and medicine.  相似文献   

15.
Qi He  Lei Chen  Yu Xu  Weichang Yu 《Proteomics》2013,13(5):826-832
Centromeres and telomeres are DNA/protein complexes and essential functional components of eukaryotic chromosomes. Previous studies have shown that rice centromeres and telomeres are occupied by CentO (rice centromere satellite DNA) satellite and G‐rich telomere repeats, respectively. However, the protein components are not fully understood. DNA‐binding proteins associated with centromeric or telomeric DNAs will most likely be important for the understanding of centromere and telomere structure and functions. To capture DNA‐specific binding proteins, affinity pull‐down technique was applied in this study to isolate rice centromeric and telomeric DNA‐binding proteins. Fifty‐five proteins were identified for their binding affinity to rice CentO repeat, and 80 proteins were identified for their binding to telomere repeat. One CentO‐binding protein, Os02g0288200, was demonstrated to bind to CentO specifically by in vitro assay. A conserved domain, DUF573 with unknown functions was identified in this protein, and proven to be responsible for the specific binding to CentO in vitro. Four proteins identified as telomere DNA‐binding proteins in this study were reported by different groups previously. These results demonstrate that DNA affinity pull‐down technique is effective in the isolation of sequence‐specific binding proteins and will be applicable in future studies of centromere and telomere proteins.  相似文献   

16.
17.
18.
Computational prediction of RNA‐binding residues is helpful in uncovering the mechanisms underlying protein‐RNA interactions. Traditional algorithms individually applied feature‐ or template‐based prediction strategy to recognize these crucial residues, which could restrict their predictive power. To improve RNA‐binding residue prediction, herein we propose the first integrative algorithm termed RBRDetector (RNA‐Binding Residue Detector) by combining these two strategies. We developed a feature‐based approach that is an ensemble learning predictor comprising multiple structure‐based classifiers, in which well‐defined evolutionary and structural features in conjunction with sequential or structural microenvironment were used as the inputs of support vector machines. Meanwhile, we constructed a template‐based predictor to recognize the putative RNA‐binding regions by structurally aligning the query protein to the RNA‐binding proteins with known structures. The final RBRDetector algorithm is an ingenious fusion of our feature‐ and template‐based approaches based on a piecewise function. By validating our predictors with diverse types of structural data, including bound and unbound structures, native and simulated structures, and protein structures binding to different RNA functional groups, we consistently demonstrated that RBRDetector not only had clear advantages over its component methods, but also significantly outperformed the current state‐of‐the‐art algorithms. Nevertheless, the major limitation of our algorithm is that it performed relatively well on DNA‐binding proteins and thus incorrectly predicted the DNA‐binding regions as RNA‐binding interfaces. Finally, we implemented the RBRDetector algorithm as a user‐friendly web server, which is freely accessible at http://ibi.hzau.edu.cn/rbrdetector . Proteins 2014; 82:2455–2471. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
NK-lysins are antimicrobial peptides (AMPs) that participate in the innate immune response and also have several pivotal roles in various biological processes. Such multifunctionality is commonly found among intrinsically disordered proteins. However, NK-lysins have never been systematically analyzed for intrinsic disorder. To fill this gap, the amino acid sequences of NK-lysins from various species were collected from UniProt and used for the comprehensive computational analysis to evaluate the propensity of these proteins for intrinsic disorder and to investigate the potential roles of disordered regions in NK-lysin functions. We analyzed abundance and peculiarities of intrinsic disorder distribution in all-known NK-lysins and showed that many NK-lysins are expected to have substantial levels of intrinsic disorder. Curiously, high level of intrinsic disorder was also found even in two proteins with known 3D-strucutres (NK-lysin from pig and human granulysin). Many of the identified disordered regions can be involved in protein–protein interactions. In fact, NK-lysins are shown to contain three to eight molecular recognition features; i.e. short structure-prone segments which are located within the long disordered regions and have a potential to undergo a disorder-to-order transition upon binding to a partner. Furthermore, these disordered regions are expected to have several sites of various posttranslational modifications. Our study shows that NK-lysins, which are AMPs with a set of prominent roles in the innate immune response, are expected to abundantly possess intrinsically disordered regions that might be related to multifunctionality of these proteins in the signal transduction pathways controlling the host response to pathogenic agents.  相似文献   

20.
The gene 5 protein (g5p) encoded by the Ff strains of Escherichia coli bacteriophages is a dimeric single‐stranded DNA‐binding protein (SSB) that consists of two identical OB‐fold (oligonucleotide/oligosaccharide‐binding) motifs. Ultrafast time‐resolved fluorescence measurements were carried out to investigate the effect of g5p binding on the conformation of 2‐aminopurine (2AP) labels positioned between adenines or cytosines in the 16‐nucleotide antiparallel tails of DNA hairpins. The measurements revealed significant changes in the conformational heterogeneity of the 2AP labels caused by g5p binding. The extent of the changes was dependent on sub‐binding‐site location, but generally resulted in base unstacking. When bound by g5p, the unstacked 2AP population increased from ~22% to 59–67% in C‐2AP‐C segments and from 39% to 77% in an A‐2AP‐A segment. The OB‐fold RPA70A domain of the human replication protein A also caused a significant amount of base unstacking at various locations within the DNA binding site as evidenced by steady‐state fluorescence titration measurements using 2AP‐labeled 5‐mer DNAs. These solution studies support the concept that base unstacking at most of a protein's multiple sub‐binding‐site loci may be a feature that allows non‐sequence specific OB‐fold proteins to bind to single‐stranded DNAs (ssDNAs) with minimal preference for particular sequences. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 484–496, 2013.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号