首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two‐dimensional blue native/SDS‐PAGE is widely applied to investigate native protein–protein interactions, particularly those within membrane multi‐protein complexes. MS has enabled the application of this approach at the proteome scale, typically by analysis of picked protein spots. Here, we investigated the potential of using LC‐MS/MS as an alternative for SDS‐PAGE in blue native (BN) analysis of protein complexes. By subjecting equal slices from BN gel lanes to label‐free semi‐quantitative LC‐MS/MS, we determined an abundance profile for each protein across the BN gel, and used these profiles to identify potentially interacting proteins by protein correlation profiling. We demonstrate the feasibility of this approach by considering the oxidative phosphorylation complexes I–V in the native human embryonic kidney 293 mitochondrial fraction, showing that the method is capable of detecting both the fully assembled complexes as well as assembly/turnover intermediates of complex I (NADH:ubiquinone oxidoreductase). Using protein correlation profiling with a profile for subunits NDUFS2, 3, 7 and 8 we identified multiple proteins possibly involved in the biogenesis of complex I, including the recently implicated chaperone C6ORF66 and a novel candidate, C3ORF60.  相似文献   

2.
Sulfate-reducing bacteria (SRB) are inhibited by nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) in the presence of nitrate. This inhibition has been attributed either to an increase in redox potential or to production of nitrite by the NR-SOB. Nitrite specifically inhibits the final step in the sulfate reduction pathway. When the NR-SOB Thiomicrospira sp. strain CVO was added to mid-log phase cultures of the SRB Desulfovibrio vulgaris Hildenborough in the presence of nitrate, sulfate reduction was inhibited. Strain CVO reduced nitrate and oxidized sulfide, with transient production of nitrite. Sulfate reduction by D. vulgaris resumed once nitrite was depleted. A DNA macroarray with open reading frames encoding enzymes involved in energy metabolism of D. vulgaris was used to study the effects of NR-SOB on gene expression. Shortly following addition of strain CVO, D. vulgaris genes for cytochrome c nitrite reductase and hybrid cluster proteins Hcp1 and Hcp2 were upregulated. Genes for sulfate reduction enzymes, except those for dissimilatory sulfite reductase, were downregulated. Genes for the membrane-bound electron transferring complexes QmoABC and DsrMKJOP were downregulated and unaffected, respectively, whereas direct addition of nitrite downregulated both operons. Overall the gene expression response of D. vulgaris upon exposure to strain CVO and nitrate resembled that observed upon direct addition of nitrite, indicating that inhibition of SRB is primarily due to nitrite production by NR-SOB.  相似文献   

3.
In the past decade, encouraging results have been obtained in extraction and analysis of proteins from formalin‐fixed, paraffin‐embedded (FFPE) tissues. However, 2‐D PAGE protein maps with satisfactory proteomic information and comparability to fresh tissues have never been described to date. In the present study, we report 2‐D PAGE separation and MS identification of full‐length proteins extracted from FFPE skeletal muscle tissue. The 2‐D protein profiles obtained from FFPE tissues could be matched to those achieved from frozen tissues replicates. Up to 250 spots were clearly detected in 2‐D maps of proteins from FFPE tissue following standard mass‐compatible silver staining. Protein spots from both FFPE and frozen tissue 2‐D gels were excised, subjected to in situ hydrolysis, and identified by MS analysis. Matched spots produced matched protein identifications. Moreover, 2‐D protein maps from FFPE tissues were successfully subjected to Western immunoblotting, producing comparable results to fresh‐frozen tissues. In conclusion, this study provides evidence that, when adequately extracted, full‐length proteins from FFPE tissues might be suitable to 2‐D PAGE‐MS analysis, allowing differential proteomic studies on the vast existing archives of healthy and pathological‐fixed tissues.  相似文献   

4.
The structure of the porin complexes of Neisseria meningitidis was assessed in the vaccine strain H44/76 and its homologous mutants lacking the main porins (PorA and PorB) and other outer membrane (OM) components (RmpM and FetA). The analysis using 1‐D blue native (BN) electrophoresis, 2‐D BN/SDS‐PAGE and 2‐D diagonal electrophoresis, followed by LC/MS‐MS (for 1‐D gels) or MALDI‐TOF (for 2‐D gels) revealed at least six porin complexes in the wild‐type strain with molecular masses (MW) ranging from 145 to 195 kDa and variable composition: The two higher MW complexes are formed by PorA, PorB and RmpM, the following three are formed by PorA and PorB, and the lower MW one is formed by only PorB. Complexes in the mutants lacking either PorA, PorB or RmpM, but not those in the mutant lacking FetA, were alterered respect to those in the wild‐type strain. The most evident alteration was seen in the mutant lacking PorB, in which PorA formed only a high MW complex (≈?800 kDa). Our results suggest that PorA and PorB could form a ‘basic’ template for the transportation systems in the OM of the meningococci. Other proteins (such as RmpM) could be transiently associated to the porin complexes, depending on the specific tranport needs at different stages of the meningococcal life cycle, resulting in a dynamic net of pores of variable composition.  相似文献   

5.
The large‐scale analysis of protein complexes is an emerging challenge in the field of proteomics. Currently, there are few methods available for the fractionation of protein complexes that are compatible with downstream proteomic techniques. Here, we describe the technique of blue native continuous elution electrophoresis (BN‐CEE). It combines the features of blue native PAGE (BN‐PAGE) and continuous elution electrophoresis (CEE), generating liquid‐phase fractions of protein complexes of up to 800 kDa. The resulting complexes can be further analysed by BN‐PAGE, by SDS‐PAGE and/or by MS. This can help define the constituent proteins of many complexes and their stoichiometry. As BN‐CEE is also micropreparative, with a capacity to separate milligram quantities of protein complexes, it will assist the study of proteins of lower abundance. In this regard, the acrylamide concentration and elution rate during separation can be controlled to help ‘zoom in’ on particular high mass regions and thus complexes of interest. We illustrate the utility of the technique in the analysis of Saccharomyces cerevisiae cellular lysate.  相似文献   

6.
Klodmann J  Lewejohann D  Braun HP 《Proteomics》2011,11(9):1834-1839
SDS normally is strictly avoided during Blue native (BN) PAGE because it leads to disassembly of protein complexes and unfolding of proteins. Here, we report a modified BN-PAGE procedure, which is based on low-SDS treatment of biological samples prior to native gel electrophoresis. Using mitochondrial OXPHOS complexes from Arabidopsis as a model system, low SDS concentrations are shown to partially dissect protein complexes in a very defined and reproducible way. If combined with 2-D BN/SDS-PAGE, generated subcomplexes and their subunits can be systematically investigated, allowing insights into the internal architecture of protein complexes. Furthermore, a 3-D BN/low-SDS BN/SDS-PAGE system is introduced to facilitate structural analysis of individual protein complexes without their previous purification.  相似文献   

7.
The sensitivity of Western blotting analysis after Phos‐tag SDS‐PAGE is occasionally inferior to that after normal (Phos‐tag‐free) SDS‐PAGE under similar experimental conditions, possibly as a result of inefficient electrotransfer from the Phos‐tag gel to the blotting membrane. We therefore present tips on improving the efficiency of electrotransfer of proteins in semidry and wet‐tank blotting. When model samples containing several standard phosphoproteins were subjected to semidry blotting, their electrotransfer efficiencies after Phos‐tag SDS‐PAGE were markedly inferior to those of their dephosphorylated counterparts in the same gel. This was ameliorated by immersing the electrophoresed Phos‐tag gel in a transfer buffer containing 1 mM EDTA for 30 min before electroblotting. Similarly, phosphoproteomes in crude cell extracts were inefficiently transferred by semidry blotting, but the efficiencies of their electrotransfer were improved by pretreatment with EDTA. In contrast, the efficiencies of wet‐tank blotting of the same samples were not dependent on the degree of phosphorylation, and the efficiencies of electrotransfer of all proteins from Phos‐tag gels were similar to those from normal gels. In some cases involving the use of a Phos‐tag gel, addition of 0.1% w/v of SDS to the transfer buffer significantly improved the electrotransfer.  相似文献   

8.
Immunoblotting, after polyacrylamide gel electrophoresis with sodium dodecyl sulfate (SDS‐PAGE), is a technique commonly used to detect specific proteins. SDS‐PAGE often results in the visualization of protein band(s) in addition to the one expected based on the theoretical molecular mass (TMM) of the protein of interest. To determine the likelihood of additional band(s) being nonspecific, we used liquid chromatography – mass spectrometry to identify proteins that were extracted from bands with the apparent molecular mass (MM) of 40 and 26 kD, originating from protein extracts derived from non‐malignant HEK293 and cancerous MDA‐MB231 (MB231) cells separated using SDS‐PAGE. In total, approximately 57% and 21% of the MS/MS spectra were annotated as peptides in the two cell samples, respectively. Moreover, approximately 24% and 36.2% of the identified proteins from HEK293 and MB231 cells matched their TMMs. Of the identified proteins, 8% from HEK293 and 26% from MB231 had apparent MMs that were larger than predicted, and 67% from HEK293 and 37% from MB231 exhibited smaller MM values than predicted. These revelations suggest that interpretation of the positive bands of immunoblots should be conducted with caution. This study also shows that protein identification performed by mass spectrometry on bands excised from SDS‐PAGE gels could make valuable contributions to the identification of cancer biomarkers, and to cancer‐therapy studies.  相似文献   

9.
Mitochondria are central to cellular metabolism and energy conversion. In plants they also enable photosynthesis through additional components and functional flexibility. A majority of those processes relies on the assembly of individual proteins to larger protein complexes, some of which operate as large molecular machines. There has been a strong interest in the makeup and function of mitochondrial protein complexes and protein–protein interactions in plants, but the experimental approaches used typically suffer from selectivity or bias. Here, we present a complexome profiling analysis for leaf mitochondria of the model plant Arabidopsis thaliana for the systematic characterization of protein assemblies. Purified organelle extracts were separated by 1D Blue native (BN) PAGE, a resulting gel lane was dissected into 70 slices (complexome fractions) and proteins in each slice were identified by label free quantitative shot‐gun proteomics. Overall, 1359 unique proteins were identified, which were, on average, present in 17 complexome fractions each. Quantitative profiles of proteins along the BN gel lane were aligned by similarity, allowing us to visualize protein assemblies. The data allow re‐annotating the subunit compositions of OXPHOS complexes, identifying assembly intermediates of OXPHOS complexes and assemblies of alternative respiratory oxidoreductases. Several protein complexes were discovered that have not yet been reported in plants, such as a 530 kDa Tat complex, 460 and 1000 kDa SAM complexes, a calcium ion uniporter complex (150 kDa) and several PPR protein complexes. We have set up a tailored online resource ( https://complexomemap.de/at_mito_leaves ) to deposit the data and to allow straightforward access and custom data analyses.  相似文献   

10.
To avoid the specific problems concerning intrinsic membrane proteins in proteome analysis, an alternative strategy is described that is complementary to previous investigations using 2-D polyacrylamide gel electrophoresis (PAGE) techniques. The strategy involves (a) obtaining purified preparations of the membranes from Chlorobium tepidum by washing with 2 M NaBr, which removed membrane-associated soluble proteins and membrane-associated organelles; (b) separation of membrane protein complexes using 1-D Blue-native polyacrylamide gel electrophoresis (BN-PAGE) after solubilization with n-dodecyl-beta-d-maltoside (DDM); (c) combination of the BN with Tricine-SDS-PAGE; (d) high-throughput mass spectrometric analysis after gel band excision, in-gel digestion, and MALDI target spotting; and (e) protein identification from mixtures of tryptic peptides by peptide mass fingerprinting. Using this approach, we identified 143 different proteins, 70 of which have not been previously reported using 2-D PAGE techniques. Membrane proteins with up to 14 transmembrane helices were found, and this procedure proved to be efficient with proteins within a wide pI range (4.4-11.6). About 54% of the identified membrane proteins belong to various functional categories like energy metabolism, transport, signal transduction, and protein translocation, while for the others, a function is not yet known, indicating the potential of the method for the elucidation of the membrane proteomes in general.  相似文献   

11.
In this study, a new hydrazide derivative (UGF202) was synthesized and introduced as a highly sensitive and selective fluorescent probe to pre‐stain glycoproteins in 1D and 2D SDS‐PAGE. As low as 0.5–1 ng glycoproteins (transferrin, α1‐acid glycoprotein, avidin) could be selectively detected, which is comparable to that of Pro‐Q Emerald 300 stain, one of the most sensitive and commonly used glycoprotein staining kit. In addition, the specificity of the newly developed method was confirmed by the study of de‐glycosylation, glycoproteins affinity enrichment and LC‐MS/MS, respectively. According to the results, it is concluded that UGF202 pre‐stain can provide an alternative for the visualization of gel‐separated glycoproteins.  相似文献   

12.
13.
While protein interaction studies and protein network modeling come to the forefront, the isolation and identification of protein complexes in a cellular context remains a major challenge for plant science. To this end, a nondenaturing extraction procedure was optimized for plant whole cell matrices and the combined use of gel filtration and BN‐PAGE for the separation of protein complexes was studied. Hyphenation to denaturing electrophoresis and mass spectrometric analysis allows for the simultaneous identification of multiple (previously unidentified) protein interactions in single samples. The reliability and efficacy of the technique was confirmed (i) by the identification of well‐studied plant protein complexes, (ii) by the presence of nonplant interologs for several of the novel complexes (iii) by presenting physical evidence of previously hypothetical plant protein interactions and (iv) by the confirmation of found interactions using co‐IP. Furthermore practical issues concerning the use of this 2‐D BN/SDS‐PAGE display method for the analysis of protein–protein interactions are discussed.  相似文献   

14.
Native polyacrylamide gel electrophoresis (PAGE) is an important technique for the analysis of membrane protein complexes. A major breakthrough was the development of blue native (BN‐) and high resolution clear native (hrCN‐) PAGE techniques. Although these techniques are very powerful, they could not be applied to all systems with the same resolution. We have developed an alternative protocol for the analysis of membrane protein complexes of plant chloroplasts and cyanobacteria, which we termed histidine‐ and deoxycholate‐based native (HDN‐) PAGE. We compared the capacity of HDN‐, BN‐ and hrCN‐PAGE to resolve the well‐studied respiratory chain complexes in mitochondria of bovine heart muscle and Yarrowia lipolytica, as well as thylakoid localized complexes of Medicago sativa, Pisum sativum and Anabaena sp. PCC7120. Moreover, we determined the assembly/composition of the Anabaena sp. PCC7120 thylakoids and envelope membranes by HDN‐PAGE. The analysis of isolated chloroplast envelope complexes by HDN‐PAGE permitted us to resolve complexes such as the translocon of the outer envelope migrating at approximately 700 kDa or of the inner envelope of about 230 and 400 kDa with high resolution. By immunodecoration and mass spectrometry of these complexes we present new insights into the assembly/composition of these translocation machineries. The HDN‐PAGE technique thus provides an important tool for future analyses of membrane complexes such as protein translocons.  相似文献   

15.
We report here a rapid and sensitive technique for negative visualization of protein in 1D and 2D SDS‐PAGE by using 2′, 7′‐dichlorofluorescein (DCF), which appeared as transparent and colorless bands in an opaque gel matrix background. For DCF stain, down to 0.1–0.2 ng protein could be easily visualized within 7 min by only two steps, and the staining is fourfold more sensitive than that of Eosin Y (EY) negative stain and glutaraldehyde (GA) silver stain, and eightfold more sensitive than that of the commonly used imidazole‐zinc (IZ) negative stain. Furthermore, DCF stain provided good reproducibility, linearity, and MS compatibility compared with those of IZ stain. In addition, the potential staining mechanism was investigated by colorimetric experiment and molecular docking, and the results demonstrated that the interaction between DCF and protein occurs mainly via van der waals force, electrostatic interaction, and hydrogen bonding.  相似文献   

16.
Spore‐forming, Gram‐positive sulfate‐reducing bacteria (SRB) represent a group of SRB that dominates the deep subsurface as well as niches in which resistance to oxygen and dessication is an advantage. Desulfotomaculum reducens strain MI‐1 is one of the few cultured representatives of that group with a complete genome sequence available. The metabolic versatility of this organism is reflected in the presence of genes encoding for the oxidation of various electron donors, including three‐ and four‐carbon fatty acids and alcohols. Synteny in genes involved in sulfate reduction across all four sequenced Gram‐positive SRB suggests a distinct sulfate‐reduction mechanism for this group of bacteria. Based on the genomic information obtained for sulfate reduction in D. reducens, the transfer of electrons to the sulfite and APS reductases is proposed to take place via the quinone pool and heterodisulfide reductases respectively. In addition, both H2‐evolving and H2‐consuming cytoplasmic hydrogenases were identified in the genome, pointing to potential cytoplasmic H2 cycling in the bacterium. The mechanism of metal reduction remains unknown.  相似文献   

17.
With its predicted proteome of 1550 proteins (data set Etalon) Helicobacter pylori 26695 represents a perfect model system of medium complexity for investigating basic questions in proteomics. We analyzed urea‐solubilized proteins by 2‐DE/MS (data set 2‐DE) and by 1‐DE‐LC/MS (Supprot); proteins insoluble in 9 M urea but solubilized by SDS (Pellet); proteins precipitating in the Sephadex layer at the application side of IEF (Sephadex) by 1‐DE‐LC/MS; and proteins precipitating close to the application side within the IEF gel by LC/MS (Startline). The experimental proteomics data of H. pylori comprising 567 proteins (protein coverage: 36.6%) were stored in the Proteome Database System for Microbial Research ( http://www.mpiib‐berlin.mpg.de/2D‐PAGE/ ), which gives access to raw mass spectra (MALDI‐TOF/TOF) in T2D format, as well as to text files of peak lists. For data mining the protein mapping and comparison tool PROMPT ( http://webclu.bio.wzw.tum.de/prompt/ ) was used. The percentage of proteins with transmembrane regions, relative to all proteins detected, was 0, 0.2, 0, 0.5, 3.8 and 6.3% for 2‐DE, Supprot, Startline, Sephadex, Pellet, and Etalon, respectively. 2‐DE does not separate membrane proteins because they are insoluble in 9 M urea/70 mM DTT and 2% CHAPS. SDS solubilizes a considerable portion of the urea‐insoluble proteins and makes them accessible for separation by SDS‐PAGE and LC. The 2‐DE/MS analysis with urea‐solubilized proteins and the 1‐DE‐LC/MS analysis with the urea‐insoluble protein fraction (Pellet) are complementary procedures in the pursuit of a complete proteome analysis. Access to the PROMPT‐generated diagrams in the Proteome Database allows the mining of experimental data with respect to other functional aspects.  相似文献   

18.
Protein sample preparation optimisation is critical for establishing reproducible high throughput proteomic analysis. In this study, two different fractionation sample preparation techniques (in‐gel digestion and in‐solution digestion) for shotgun proteomics were used to quantitatively compare proteins identified in Vitis riparia leaf samples. The total number of proteins and peptides identified were compared between filter aided sample preparation (FASP) coupled with gas phase fractionation (GPF) and SDS‐PAGE methods. There was a 24% increase in the total number of reproducibly identified proteins when FASP‐GPF was used. FASP‐GPF is more reproducible, less expensive and a better method than SDS‐PAGE for shotgun proteomics of grapevine samples as it significantly increases protein identification across biological replicates. Total peptide and protein information from the two fractionation techniques is available in PRIDE with the identifier PXD001399 ( http://proteomecentral.proteomexchange.org/dataset/PXD001399 ).  相似文献   

19.
In biological membranes many proteins are organized in complexes. The method of choice for the global analysis of the subunits of these complexes is two-dimensional blue native (2D BN)/SDS-PAGE. In the 1st dimension complexes are separated by BN-PAGE, and in the 2nd dimension their subunits are resolved by SDS-PAGE. In the currently available protocols the 1st dimension BN gel lanes get distorted during their transfer to the 2nd dimension separation gels. This leads to low reproducibility and high variation of 2D BN/SDS-gels, rendering them unsuitable for comparative analysis. We have developed a 2D BN/SDS-PAGE protocol where the 1st dimension BN gel is cast on a GelBond PAG film. Immobilization prevents distortion of BN gel lanes, which lowers variation and greatly improves reproducibility of 2D BN/SDS-gels. 2D BN/SDS-PAGE with an immobilized 1st dimension was used for the comparative analysis of the cytoplasmic membrane proteomes of Escherichia coli cells overexpressing a membrane protein and to create a 2D BN/SDS-PAGE reference map of the E. coli cytoplasmic membrane proteome with 143 identified proteins from 165 different protein spots.  相似文献   

20.
Anaerobic toluene oxidation by the sulfate-reducing bacterium, strain Tol2 (proposed nameDesulfobacula toluolica) was specifically inhibited by benzyl alcohol when added at concentrations around 500 μM. Benzyl alcohol added at lower, non-inhibitory concentrations (around 5 μM) was not oxidized by active cells pregrown on toluene, indicating that the alcohol is not a free intermediate of toluene metabolism in the sulfate reducer. Conversion ofp-xylene in toluene-metabolizing cells top-methylbenzoate as dead-end product suggests that the sulfate reducer, like denitrifiers, initiates toluene oxidation at the methyl group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号