首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tripalmitoyl‐S‐glycero‐Cys‐(Lys) 4 (Pam3CSK4) interacted with TLR2 induces inflammatory responses through the mitogen‐activated protein kinases (MAPKs) and nuclear factor‐κB (NF‐κB) signal pathway. Rapamycin can suppress TLR‐induced inflammatory responses; however, the detailed molecular mechanism is not fully understood. Here, the mechanism by which rapamycin suppresses TLR2‐induced inflammatory responses was investigated. It was found that Pam3CSK4‐induced pro‐inflammatory cytokines were significantly down‐regulated at both the mRNA and protein levels in THP‐1 cells pre‐treated with various concentrations of rapamycin. Inhibition of phosphatidylinositol 3‐kinase/protein kinase‐B (PI3K/AKT) signaling did not suppress the expression of pro‐inflammatory cytokines, indicating that the immunosuppression mediated by rapamycin in THP1 cells is independent of the PI3K/AKT pathway. RT‐PCR showed that Erk and NF‐κB signal pathways are related to the production of pro‐inflammatory cytokines. Inhibition of Erk or NF‐κB signaling significantly down‐regulated production of pro‐inflammatory cytokines. Additionally, western blot showed that pre‐treatment of THP‐1 cells with rapamycin down‐regulates MAPKs and NF‐κB signaling induced by Pam3CSK4 stimulation, suggesting that rapamycin suppresses Pam3CSK4‐induced pro‐inflammatory cytokines via inhibition of TLR2 signaling. It was concluded that rapamycin suppresses TLR2‐induced inflammatory responses by down‐regulation of Erk and NF‐κB signaling.  相似文献   

2.
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with a life expectancy of less than 5 years post diagnosis for most patients. Poor molecular characterization of IPF has led to insufficient understanding of the pathogenesis of the disease, resulting in lack of effective therapies. In this study, we have integrated a label‐free LC‐MS based approach with systems biology to identify signaling pathways and regulatory nodes within protein interaction networks that govern phenotypic changes that may lead to IPF. Ingenuity Pathway Analysis of proteins modulated in response to bleomycin treatment identified PI3K/Akt and Wnt signaling as the most significant profibrotic pathways. Similar analysis of proteins modulated in response to vascular endothelial growth factor (VEGF) inhibitor (CBO‐P11) treatment identified natural killer cell signaling and PTEN signaling as the most significant antifibrotic pathways. Mechanistic/mammalian target of rapamycin (mTOR) and extracellular signal‐regulated kinase (ERK) were identified to be key mediators of pro‐ and antifibrotic response, where bleomycin (BLM) treatment resulted in increased expression and VEGF inhibitor treatment attenuated expression of mTOR and ERK. Using a BLM mouse model of pulmonary fibrosis and VEGF inhibitor CBO‐P11 as a therapeutic measure, we identified a comprehensive set of signaling pathways and proteins that contribute to the pathogenesis of pulmonary fibrosis that can be targeted for therapy against this fatal disease.  相似文献   

3.
The local anaesthetics (LAs) are widely used for peripheral nerve blocks, epidural anaesthesia, spinal anaesthesia and pain management. However, exposure to LAs for long duration or at high dosage can provoke potential neuronal damages. Autophagy is an intracellular bulk degradation process for proteins and organelles. However, both the effects of LAs on autophagy in neuronal cells and the effects of autophagy on LAs neurotoxicity are not clear. To answer these questions, both lipid LAs (procaine and tetracaine) and amide LAs (bupivacaine, lidocaine and ropivacaine) were administrated to human neuroblastoma SH‐SY5Y cells. Neurotoxicity was evaluated by MTT assay, morphological alterations and median death dosage. Autophagic flux was estimated by autolysosome formation (dual fluorescence LC3 assay), LC3‐II generation and p62 protein degradation (immunoblotting). Signalling alterations were examined by immunoblotting analysis. Inhibition of autophagy was achieved by transfection with beclin‐1 siRNA. We observed that LAs decreased cell viability in a dose‐dependent manner. The neurotoxicity of LAs was tetracaine > bupivacaine > ropivacaine > procaine > lidocaine. LAs increased autophagic flux, as reflected by increases in autolysosome formation and LC3‐II generation, and decrease in p62 levels. Moreover, LAs inhibited tuberin/mTOR/p70S6K signalling, a negative regulator of autophagy activation. Most importantly, autophagy inhibition by beclin‐1 knockdown exacerbated the LAs‐provoked cell damage. Our data suggest that autophagic flux was up‐regulated by LAs through inhibition of tuberin/mTOR/p70S6K signalling, and autophagy activation served as a protective mechanism against LAs neurotoxicity. Therefore, autophagy manipulation could be an alternative therapeutic intervention to prevent LAs‐induced neuronal damage.  相似文献   

4.
Abamectin (ABA) as one of the worldwide used compounds in agriculture has raised safety concerns on nontarget organism toxicity. However, the study of male reproductive system damage caused by ABA remains unclear. Our aim is to investigate the effect of ABA‐induced cytotoxicity in TM3 Leydig cells and their underlying mechanisms. ABA inhibits TM3 cell viability and proliferation via cell cycle arrested in the G0/G1 phase. In addition, ABA‐induced mitochondrial depolarization leads to an imbalance in Bcl‐2 family expression, causing caspase‐dependent apoptosis in TM3 cells. The increased ratio of cells expression LC3 protein and LC3‐II to LC3‐I indicated the activation of autophagy potentially. Further experiments revealed ABA treatment reduced phosphatidylinositol 3‐kinase (PI3K), protein kinase B (AKT) phosphorylation, and mammalian target of rapamycin (mTOR) phosphorylation. Pretreatment with a PI3K/AKT inhibitor, LY294002, mimicked the ABA‐mediated effects on cytotoxicity. Pretreatment with a PI3K/AKT agonist, insulin‐like growth factor‐1, reversed the effects of ABA. ABA caused the accumulation of intracellular reactive oxygen species (ROS) by increased intensity of the ROS indicator. However, N‐acetylcysteine as ROS scavengers inhibited ABA‐induced apoptosis and autophagy and reversed these ABA‐mediated effects on PI3K/AKT/mTOR pathway. On the basis of the above results, it is suggested that ABA exposure induces apoptosis and autophagy in TM3 cells by ROS accumulation to mediate PI3K/AKT/mTOR signaling pathway suppression.  相似文献   

5.
目的 观察趋化因子CXCL9对人外周血单个核细胞的趋化作用,并探讨其对CXCR3受体后信号通路的影响.方法 分离人外周血单个核细胞并进行培养,Transwell小室趋化实验检测不同浓度的趋化因子CXCL9对外周血单个核细胞的趋化作用;Western blot方法检测CXCL9刺激外周血单个核细胞时ERK1/2及PI3K/Akt信号通路的蛋白表达变化,并检测上述通路抑制剂PD98059和Wortmannin处理细胞后,CXCL9对ERK1/2、PI3K/Akt信号通路的影响有无变化.结果 与空白对照组相比,不同浓度的CXCL9刺激对人外周血单个核细胞均有明显的趋化作用,并且CXCL9刺激人外周血单个核细胞能激活ERK1/2及PI3K/Akt信号通路,其关键蛋白ERK1/2及Akt磷酸化水平显著增加;通路特异性抑制剂PD98059和Wortmannin的应用能明显抑制CXCL9对这两条信号通路的激活.结论 CXCL9能趋化人外周血单个核细胞发生迁移,ERK1/2及PI3K/Akt信号通路可能在此过程中发挥重要作用.  相似文献   

6.
Ketamine is widely used as an anesthetic, analgesic, or sedative in pediatric patients. We reported that ketamine alters the normal neurogenesis of rat fetal neural stem progenitor cells (NSPCs) in the developing brain, but the underlying mechanisms remain unknown. The PI3K‐PKB/Akt (phosphatidylinositide 3‐kinase/protein kinase B) signaling pathway plays many important roles in cell survival, apoptosis, and proliferation. We hypothesized that PI3K‐PKB/Akt signaling may be involved in ketamine‐altered neurogenesis of cultured NSPCs in vitro. NSPCs were isolated from Sprague‐Dawley rat fetuses on gestational day 17. 5‐bromo‐2′‐deoxyuridine (BrdU) incorporation, Ki67 staining, and differentiation tests were utilized to identify primary cultured NSPCs. Immunofluorescent staining was used to detect Akt expression, whereas Western blots measured phosphorylated Akt and p27 expression in NSPCs exposed to different treatments. We report that cultured NSPCs had properties of neurogenesis: proliferation and neural differentiation. PKB/Akt was expressed in cultured rat fetal cortical NSPCs. Ketamine inhibited the phosphorylation of Akt and further enhanced p27 expression in cultured NSPCs. All ketamine‐induced PI3K/Akt signaling changes could be recovered by N‐methyl‐d ‐aspartate (NMDA) receptor agonist, NMDA. These data suggest that the inhibition of PI3K/Akt‐p27 signaling may be involved in ketamine‐induced neurotoxicity in the developing brain, whereas excitatory NMDA receptor activation may reverse these effects  相似文献   

7.
8.
Abamectin (ABA) is one of the most widely used compounds in agriculture and veterinary medicine. However, the cytotoxicity of ABA in human gastric cells is utterly unknown. In this study, ABA suppressed the proliferation of MGC803 cells by arresting the cell cycle at the G0/G1‐phase. Moreover, ABA induced mitochondrial‐mediated apoptosis by inducing the loss of mitochondrial membrane potential, upregulation of Bax/Bcl‐2, and activation of caspase‐3. ABA significantly improved the LC3‐II/LC3‐I ratio and reduced P62 protein expression in a dose‐dependent manner. Through detection of the reactive oxygen species (ROS) levels, we found ABA induced the accumulation of intracellular ROS and then reduced PI3K/AKT signaling activation related to MGC803 cell apoptosis and autophagy. Our results indicate that ABA exerts cytotoxic effects on human MGC803 cells through apoptosis and autophagy by inhibiting ROS‐mediated PI3K/AKT signaling. Furthermore, ABA may be a potential risk to human gastric health.  相似文献   

9.
Ulva pertusa lectin 1 (UPL1) is a N-acetyl-D-glucosamine (GlcNAc) binding lectin in marine green alga Ulva pertusa. Exogenous UPL1 colocalized with protein arginine methyltransferase 5 (PRMT5), methylosome protein 50 (MEP50), β-actin and β-tubulin, indicating the interaction of UPL1 with the methylosome and cytoskeleton. UPL1 delivery through adenovirus vector (Ad-UPL1) dramatically induced extracellularly regulated protein kinases 1/2 (ERK1/2) phosphorylation in liver cancer cell lines BEL-7404 and Huh7. Signaling pathways including p38 mitogen-activated protein kinase (MAPK), and Akt were also affected by Ad-UPL1 in a cell type dependent manner. MEK1/2 inhibitor U0126, as well as to a lesser extent p38 MAPK inhibitor SB203580 and phosphoinositide 3-kinase (PI3K) inhibitor LY294002, completely eliminated a higher molecular weight isoform of β-tubulin induced by Ad-UPL1, and significantly enhanced the cytotoxicity of Ad-UPL1 in Huh7 cells, suggesting that the inhibition of MEK1/2, p38 MAPK, and PI3K enhanced antiproliferative effect of Ad-UPL1 possibly through regulating the modification of β-tubulin. Ad-UPL1 completely inhibited the expression of autophagy-related factor Beclin1, but induced LC3-II expression in Huh7 cells. In addition, Ad-UPL1 significantly enhanced starvation induced survival suppression in Huh7 cells. Our data elucidated intracellular signaling pathways affected by exogenous UPL1, and may provide insights into a novel way of UPL1 delivery through adenovirus vectors combined with survival signaling inhibitors for cancer treatment.  相似文献   

10.
11.
Tumour inflammatory microenvironment is considered to play a role in the sensitivity of tumour cells to therapies and prognosis of patients with lung cancer. The expression of CCL20, one of the critical chemoattractants responsible for inflammation cells recruitment, has been shown overexpressed in variety of tumours. This study aimed at investigating potential mechanisms of CCL20 function and production in human non‐small cell lung cancer (NSCLC). Expression of CCL20 gene and protein in lung tissues of patients with NSCLC and NSCLC cells (A549) were determined. The interleukin (IL)‐1β‐induced signal pathways in A549 and the effect of CCL20‐induced A549 cell migration and proliferation were determined using migration assays and cell‐alive monitoring system. Mechanisms of signal pathways involved in the migration of CCL20 were also studied. We initially found that NSCLC tumour tissues markedly overexpressed CCL20 in comparison with normal lung samples. In addition, IL‐1β could directly promote CCL20 production in lung cancer cells, which was inhibited by extracellular signal‐regulated kinase (ERK)1/2 inhibitor, p38 mitogen‐activated protein kinase (p38 MARP) inhibitor or PI3K inhibitors. CCL20 promoted lung cancer cells migration and proliferation in an autocrine manner via activation of ERK1/2‐MAPK and PI3K pathways. Our data indicated that IL‐1β could stimulate CCL20 production from lung cancer cells through the activation of MAPKs and PI3K signal pathways, and the auto‐secretion of CCL20 could promote lung cancer cell migration and proliferation through the activation of ERK and PI3K signal pathways. Our results may provide a novel evidence that CCL20 could be a new therapeutic target for lung cancer.  相似文献   

12.
13.
14.
High-mobility group box-1 protein (HMGB1), which is produced by immune cells, was recently identified as a proinflammatory mediator in various inflammatory diseases. In this study, we investigated the effect of HMGB1 on the expression of mucin (MUC) genes in human airway epithelial cells. We showed that HMGB1 markedly increased MUC8 expression, and that the expression of other MUC genes was also regulated by HMGB1. HMGB1 activated the JNK and PI3K/Akt signaling pathways, and inhibitors of JNK and PI3K/Akt markedly inhibited HMGB1-induced MUC8 expression. Furthermore, HMGB1 increased the production of intracellular reactive oxygen species (ROS). However, the ROS scavengers Trolox and N-acetylcysteine (NAC) had no effect on MUC8 expression in HMGB1-treated NCI-H292 cells. Taken together, our results suggest that HMGB1 induces MUC8 expression in a JNK and PI3K/Akt signaling pathway-dependent manner but that HMGB1 acts in an ROS-independent manner.  相似文献   

15.
16.
We previously reported that prolactin (PRL) induces chitotriosidase (CHIT‐1) mRNA expression in human macrophages. In this investigation we determined the signaling pathways involved in CHIT‐1 induction in response to PRL. The CHIT‐1 induction PRL‐mediated was reduced by wortmannin and LY‐294002, inhibitors of phosphatidylinositol 3‐kinase (PI3‐K) and by genistein an inhibitor of protein tyrosine kinase (PTK). Pre‐treatment of macrophages with SB203580, a specific inhibitor of the mitogen‐activated kinases (MAPK) p38, or with U0126, an inhibitor of MAPK p44/42, prevented both basal and exogenous PRL‐mediated CHIT‐1 expression. No significant effects on CHIT‐1 induction PRL‐mediated were observed with a protein kinase C inhibitor (PKC), rottlerin, or with an Src inhibitor, PP2, or with JAK2 inhibitor, AG490. In addition, PRL induced a phosphorylation of AKT that was prevented both by the two MAPK inhibitors SB203580 and U0126 and by the PI3‐K inhibitors wortmannin and LY‐294002. In conclusion, our results indicate that PRL up‐regulated CHIT‐1 expression via PTK, PI3‐K, MAPK, and signaling transduction components. J. Cell. Biochem. 107: 881–889, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
18.
19.
Fibroblast growth factor‐2 (FGF‐2) is widely used to culture human embryonic stem cells (hESC) and induced pluripotent stem (iPS) cells. Despite its importance in maintaining undifferentiated hESC phenotype, a lack of understanding in the role of FGF‐2 still exists. Here, we investigate the signaling events in hESC following the addition of exogenous FGF‐2. In this study, we show that hESC express all forms of fibroblast growth factor receptors (FGFRs) which co‐localize on Oct3/4 positive cells. Furthermore, downregulation of Oct3/4 in hESC occurs following treatment with an FGFR inhibitor, suggesting that FGF signaling may regulate Oct3/4 expression. This is also observed in iPS cells. Also, downstream of FGF signaling, both mitogen activated protein kinase (MAPK) and phosphoinositide 3‐kinase pathways (PI3‐K) are activated following FGF‐2 stimulation. Notably, inhibition of MAPK and PI3‐K signaling using specific kinase inhibitors revealed that activated PI3‐K, rather than MAPK, can mediate pluripotent marker expression. To understand the importance of PI3‐K activation, activation of Wnt/β‐catenin by FGF‐2 was investigated. Wnt signaling had been implicated to have a role in maintaining of pluripotent hESC. We found that upon FGF‐2 stimulation, GSK3β is phosphorylated following which nuclear translocation of β‐catenin and TCF/LEF activation occurs. Interestingly, inhibition of the Wnt pathway with Dikkopf‐1 (DKK‐1) resulted in only partial suppression of the FGF‐2 induced TCF/LEF activity. Prolonged culture of hESC with DKK‐1 did not affect pluripotent marker expression. These results suggest that FGF‐2 mediated PI3‐K signaling may have a direct role in modulating the downstream of Wnt pathway to maintain undifferentiated hESC. J. Cell. Physiol. 225: 417–428, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Activated human hepatic stellate cells (HSCs) showed enhanced ability of migration compared with quiescent HSCs, which is pivotal in liver fibrogenesis. The aim of the present study was to investigate the effects of tumor necrosis factor‐like weak inducer of apoptosis (TWEAK) on the migration of activated HSCs and to explore the relevant potential mechanisms. Human HSCs LX‐2 cells were cultured with TWEAK. TNFRSF12A‐downexpressing lentiviruses were used to infect LX‐2 cells. The specific matrix metalloproteinases inhibitor BB94, the Src family kinase inhibitor, Dasatinib, and the specific inhibitor of phosphoinositide 3‐kinase (PI3K), LY294002 were used to treat LX‐2 cells combined with TWEAK. Cell migration and invasion was tested by the transwell assay. The expression of EGFR/Src, PI3K/AKT, and matrix metallopeptidase 9 (MMP9) was identified by real‐time polymerase chain reaction or western blotting. The result showed TWEAK promoted HSC migration and collagen production. BB94 significantly attenuated the migration of LX‐2 induced by TWEAK. Dasatinib inhibited the ability of cell migration stimulated by TWEAK. TWEAK upregulated the phosphorylation of epidermal growth factor receptor (EGFR) and Src. The phosphorylation of PI3K and AKT was significantly activated by TWEAK stimulation. Inhibition of PI3K/AKT reduced the expression of MMP9 induced by TWEAK. The present study, for the first time, demonstrated that TWEAK promoted HSC migration through the activation of EGFR/Src and PI3K/AKT pathways, and showed a novel potential mechanism of HSC migration regulated by TWEAK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号