首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic cells (DCs) are essential mediators of the host immune response to surrounding microbes. In this study, we investigate the role of DCs in the pathogenesis of a widely used colitis model, dextran sulfate sodium-induced colitis. The effect of dextran sulfate sodium on the production of proinflammatory cytokines and chemokines by bone marrow-derived DCs (BM-DCs) was analyzed. BM-DCs were adoptively transferred into C57BL/6 mice or DCs were ablated using transgenic CD11c-DTR/GFP mice before treatment with 5% dextran sulfate sodium in drinking water. We found that dextran sulfate sodium induced production of proinflammatory cytokines (IL-12 and TNF-alpha) and chemokines (KC, MIP-1alpha, MIP-2, and MCP-1) by DCs. Adoptive transfer of BM-DCs exacerbated dextran sulfate sodium colitis while ablation of DCs attenuated the colitis. We conclude that DCs are critical in the development of acute dextran sulfate sodium colitis and may serve a key role in immune balance of the gut mucosa.  相似文献   

2.
3.
Accumulating evidence has shown that mammalian target of rapamycin (mTOR) pathway and myeloid-derived suppressor cells (MDSCs) are involved in pathogenesis of inflammatory bowel diseases (IBDs). INK128 is a novel mTOR kinase inhibitor in clinical development. However, the exact roles of MDSCs and INK128 in IBD are unclear. Here, we showed that the INK128 treatment enhanced the resistance of mice to dextran sodium sulfate (DSS)–induced colitis and inhibited the differentiation of MDSCs into macrophages. Moreover, interferon (IFN)-α level was elevated in INK128-treated colitis mice. When stimulated with IFN-α in vitro, MDSCs showed a superior immunosuppression activity. Of note, the regulatory T cells (Tregs) increased but Th1 cells decreased in INK128-treated colitis mice. These results indicate that mTOR inhibitor INK128 attenuates DSS-induced colitis via Treg expansion promoted by MDSCs. Our work provides a new evidence that INK128 is potential to be a therapeutic drug on DSS-induced colitis via regulating MDSCs as well as maintaining Treg expansion.  相似文献   

4.
The propensity of a range of parasitic helminths to stimulate a Th2 or regulatory cell-biased response has been proposed to reduce the severity of experimental inflammatory bowel disease. We examined whether infection with Schistosoma mansoni, a trematode parasite, altered the susceptibility of mice to colitis induced by dextran sodium sulfate (DSS). Mice infected with schistosome worms were refractory to DSS-induced colitis. Egg-laying schistosome infections or injection of eggs did not render mice resistant to colitis induced by DSS. Schistosome worm infections prevent colitis by a novel mechanism dependent on macrophages, and not by simple modulation of Th2 responses, or via induction of regulatory CD4+ or CD25+ cells, IL-10, or TGF-beta. Infected mice had marked infiltration of macrophages (F4/80+CD11b+CD11c(-)) into the colon lamina propria and protection from DSS-induced colitis was shown to be macrophage dependent. Resistance from colitis was not due to alternatively activated macrophages. Transfer of colon lamina propria F4/80+ macrophages isolated from worm-infected mice induced significant protection from colitis in recipient mice treated with DSS. Therefore, we propose a new mechanism whereby a parasitic worm suppresses DSS-induced colitis via a novel colon-infiltrating macrophage population.  相似文献   

5.
Lysophosphatidylinositols (LPI) are bioactive lipids that are implicated in several pathophysiological processes such as cell proliferation, migration and tumorigenesis and were shown to play a role in obesity and metabolic disorders. Often, these effects of LPI were due to activation of the G protein-coupled receptor GPR55. However, the role of LPI and GPR55 in inflammation and macrophage activation remains unclear. Therefore, we thought to study the effect of macrophage activation and inflammation on LPI levels and metabolism. To do so, we used J774 and BV2 cells in culture activated with lipopolysaccharides (LPS, 100?ng/mL) as well as primary mouse alveolar and peritoneal macrophages. We also quantified LPI levels in the cerebellum, lung, liver, spleen and colon of mice with a systemic inflammation induced by LPS (300?μg/kg) and in the colon of mice with acute colitis induced by dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS) and chronic DSS-induced colitis.Our data show that LPS-induced macrophage activation leads to altered LPI levels in both the cells and culture medium. We also show that cytosolic phospholipase A2α (cPLA2α) and α/β?hydrolase domain 6 (ABHD6) are among the enzymes implicated in LPI metabolism in J774 macrophages. Indeed, ABHD6 and cPLA2α inhibition increased 20:4-LPI levels in LPS-activated macrophages. Furthermore, incubation of LPS-activated cells with LPI decreased J774 activation in a GPR55-dependent manner. In vivo, LPI levels were altered by inflammation in the liver, spleen and colon. These alterations are tissue dependent and could highlight a potential role for LPI in inflammatory processes.  相似文献   

6.
Although macrophages are considered a critical factor in determining the severity of acute inflammatory responses in the gut, recent evidence has indicated that macrophages may also play a counterinflammatory role. In this study, we examined the role of a macrophage subset in two models of colitis. Macrophage colony-stimulating factor (M-CSF)-deficient osteopetrotic mice (op/op) and M-CSF-expressing heterozygote (+/?) mice were studied following the induction of colitis by either dinitrobenzene sulfonic acid (DNBS) or dextran sulfate sodium (DSS). DNBS induced a severe colitis in M-CSF-deficient op/op mice compared with +/? mice. This was associated with increased mortality and more severe macroscopic and microscopic injury. Colonic tissue myeloperoxidase (MPO) activity as well as concentrations of TNF-alpha, IL-1beta, and IL-6 were higher and IL-10 lower in op/op mice with DNBS colitis. The severity of inflammation and mortality was attenuated in op/op mice that had received human recombinant M-CSF prior to the induction of colitis. In contrast, op/op mice appeared less vulnerable to colitis induced by DSS. Macroscopic damage, microscopic injury, MPO activity, and tissue concentrations of TNF-alpha, IL-1beta, and IL-6 were all lower in op/op mice compared with +/? mice with DSS colitis, and no changes were seen in IL-10. Macrophage inflammatory protein-1alpha concentrations were increased in op/op but not +/? mice following colitis induced by DNBS but not DSS. These results indicate that M-CSF-dependent macrophages may play either a pro- or counterinflammatory role in acute experimental colitis, depending on the stimulus used to induce colitis.  相似文献   

7.
Inflammatory bowel disease (IBD) involves infiltration of leukocytes into intestinal tissue, resulting in intestinal damage induced by reactive oxygen species (ROS). Pro-inflammatory cytokines and cell adhesion molecules (CAMs) play important roles in this infiltration of leukocytes. The roles of heat shock factor 1 (HSF1) and heat shock proteins (HSPs) in the development of IBD are unclear. In this study, we examined the roles of HSF1 and HSPs in an animal model of IBD, dextran sulfate sodium (DSS)-induced colitis. The colitis worsened or was ameliorated in HSF1-null mice or transgenic mice expressing HSP70 (or HSF1), respectively. Administration of DSS up-regulated the expression of HSP70 in colonic tissues in an HSF1-dependent manner. Expression of pro-inflammatory cytokines and CAMs and the level of cell death observed in colonic tissues were increased or decreased in DSS-treated HSF1-null mice or transgenic mice expressing HSP70, respectively, relative to control wild-type mice. Relative to macrophages from control wild-type mice, macrophages prepared from HSF1-null mice or transgenic mice expressing HSP70 displayed enhanced or reduced activity, respectively, for the generation of pro-inflammatory cytokines in response to lipopolysaccharide stimulation. Suppression of HSF1 or HSP70 expression in vitro stimulated lipopolysaccharide-induced up-regulation of CAMs or ROS-induced cell death, respectively. This study provides the first genetic evidence that HSF1 and HSP70 play a role in protecting against DSS-induced colitis. Furthermore, this protective role seems to involve various mechanisms, such as suppression of expression of pro-inflammatory cytokines and CAMs and ROS-induced cell death.  相似文献   

8.
Abnormal immune regulation is a key feature of the complex pathogenic mechanism of ulcerative colitis (UC). In particular, macrophages and group 2 innate lymphoid cells (ILC2s) are important components of natural immunity that have been shown to play important roles in the pathogenesis of UC, as well as decreased E-cadherin expression on the colonic mucosa. However, it remains unclear how these components interact with each other. In this study, we investigated the molecular mechanisms of UC mediated by macrophage-derived exosomes. We showed for the first time that miR-21a-5p expression is increased in the peritoneal exosomes of mice with dextran sulphate sodium induced enteritis and that miR-21a-5p expression correlates negatively with E-cadherin expression in enterocytes. Moreover, we confirmed that miR-21a-5p was mainly derived from M1 macrophages and demonstrated that KLRG1, a surface inhibitory receptor on ILC2s, participated in excessive ILC2 activation in UC by promoting GATA-3. In conclusion, our results suggest molecular targets and provide a theoretical basis for elucidating the pathogenesis of UC and improving its treatment.  相似文献   

9.
High-mobility group box 1 (HMGB1) is a nuclear factor released extracellularly as a proinflammatory cytokine. We measured the HMGB1 concentration in the sera of mice with chemically induced colitis (DSS; dextran sulfate sodium salt) and found a marked increase. Inhibition of HMGB1 by neutralizing anti-HMGB1 antibody resulted in reduced inflammation in DSS-treated colons. In macrophages, HMGB1 induces several proinflammatory cytokines, such as IL-6, which are regulated by NF-kappaB activation. Two putative sources of HMGB1 were explored: in one, bacterial factors induce HMGB1 secretion from macrophages and in the other, necrotic epithelial cells directly release HMGB1. LPS induced a small amount of HMGB1 in macrophages, but macrophages incubated with supernatant prepared from necrotic cells and containing large amounts of HMGB1 activated NF-kappaB and induced IL-6. Using the colitis-associated cancer model, we demonstrated that neutralizing anti-HMGB1 antibody decreases tumor incidence and size. These observations suggest that HMGB1 is a potentially useful target for IBD treatment and the prevention of colitis-associated cancer.  相似文献   

10.
Chemically induced mouse models of intestinal inflammation   总被引:2,自引:0,他引:2  
Animal models of intestinal inflammation are indispensable for our understanding of the pathogenesis of Crohn disease and ulcerative colitis, the two major forms of inflammatory bowel disease in humans. Here, we provide protocols for establishing murine 2,4,6-trinitro benzene sulfonic acid (TNBS)-, oxazolone- and both acute and chronic dextran sodium sulfate (DSS) colitis, the most widely used chemically induced models of intestinal inflammation. In the former two models, colitis is induced by intrarectal administration of the covalently reactive reagents TNBS/oxazolone, which are believed to induce a T-cell-mediated response against hapten-modified autologous proteins/luminal antigens. In the DSS model, mice are subjected several days to drinking water supplemented with DSS, which seems to be directly toxic to colonic epithelial cells of the basal crypts. The procedures for the hapten models of colitis and acute DSS colitis can be accomplished in about 2 weeks but the protocol for chronic DSS colitis takes about 2 months.  相似文献   

11.
Epithelial neutrophil-activating peptide-78 (ENA-78), a member of the CXC chemokine subfamily, is induced by inflammatory cytokines in human colonic enterocyte cell lines and increased in the colon of patients with inflammatory bowel disease (IBD). Lipopolysaccharide-induced CXC-chemokine (LIX) was recently identified as the murine homolog of ENA-78. Here we show that, similar to ENA-78, inflammatory cytokine stimulation of a murine colonic epithelial cell line, MODE-K, results in increased LIX expression. Consistent with the expression pattern of ENA-78 in IBD, LIX expression is significantly increased in mice with colitis induced by the ingestion of dextran sodium sulfate (DSS). Treating mice with antisense oligonucleotides to LIX via rectal enema delivery before DSS treatment results in colonic enterocyte uptake and a significant reduction in neutrophil infiltration and severity of colitis. These findings indicate that LIX plays an integral role in the pathogenesis of DSS-induced colitis. Similarly, enterocyte-derived CXC chemokines may play a key role in regulating neutrophil recruitment and intestinal injury in IBD. The intracolonic administration of ENA-78 antisense oligonucleotides may be effective in treating distal ulcerative colitis in humans.  相似文献   

12.
Recent studies have confirmed that cardiomyocyte‐derived exosomes have many pivotal biological functions, like influencing the progress of coronary artery disease via modulating macrophage phenotypes. However, the mechanisms underlying the crosstalk between cardiomyocytes and macrophages have not been fully characterized. Hence, this study aimed to observe the interaction between cardiomyocytes under hypoxia and macrophages through exosome communication and further evaluate the ability of exosomes derived from cardiomyocytes cultured under hypoxic conditions (Hypo‐Exo) to polarize macrophages, and the effect of alternatively activated macrophages (M2) on hypoxic cardiomyocytes. Our results revealed that hypoxia facilitated the production of transforming growth factor‐beta (TGF‐β) in H9c2 cell‐derived exosomes. Moreover, exosomes derived from cardiomyocytes cultured under normal conditions (Nor‐Exo) and Hypo‐Exo could induce RAW264.7 cells into classically activated macrophages (M1) and M2 macrophages respectively. Likewise, macrophage activation was induced by circulating exosomes isolated from normal human controls (hNor‐Exo) or patients with acute myocardial infarction (hAMI‐Exo). Thus, our findings support that the profiles of hAMI‐Exo have been changed, which could regulate the polarization of macrophages and subsequently the polarized M2 macrophages reduced the apoptosis of cardiomyocytes in return. Based on our findings, we speculate that exosomes have emerged as important inflammatory response modulators regulating cardiac oxidative stress injury.  相似文献   

13.
Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn''s disease, is a group of autoimmune diseases characterized by nonspecific inflammation in the gastrointestinal tract. Recent investigations suggest that activation of Th17 cells and/or deficiency of regulatory T cells (Treg) is involved in the pathogenesis of IBD. Heme oxygenase (HO)-1 is a protein with a wide range of anti-inflammatory and immune regulatory function, which exerts significantly protective roles in various T cell-mediated diseases. In this study, we aim to explore the immunological regulation of HO-1 in the dextran sulfate sodium-induced model of experimental murine colitis. BALB/c mice were administered 4% dextran sulfate sodium orally; some mice were intraperitoneally pretreated with HO-1 inducer hemin or HO-1 inhibitor stannum protoporphyrin IX. The results show that hemin enhances the colonic expression of HO-1 and significantly ameliorates the symptoms of colitis with improved histological changes, accompanied by a decreased proportion of Th17 cells and increased number of Tregs in mesenteric lymph node and spleen. Moreover, induction of HO-1 down-regulates retinoic acid-related orphan receptor γt expression and IL-17A levels, while promoting Treg-related forkhead box p3 (Foxp3) expression and IL-10 levels in colon. Further study in vitro revealed that up-regulated HO-1 switched the naive T cells to Tregs when cultured under a Th17-inducing environment, which involved in IL-6R blockade. Therefore, HO-1 may exhibit anti-inflammatory activity in the murine model of acute experimental colitis via regulating the balance between Th17 and Treg cells, thus providing a possible novel therapeutic target in IBD.  相似文献   

14.
Neutrophil (polymorphonuclear leukocytes [PMN]) infiltration plays a central role in inflammation and is also a major cause of tissue damage. Thus, PMN infiltration must be tightly controlled. Using zymosan-induced peritonitis as an in vivo PMN infiltration model, we show in this study that PMN response and infiltration were significantly enhanced in mice experiencing various types of systemic inflammation, including colitis and diabetes. Adoptive transfer of leukocytes from mice with inflammation into healthy recipients or from healthy into inflammatory recipients followed by inducing peritonitis demonstrated that both circulating PMN and tissue macrophages were altered under inflammatory conditions and that they collectively contributed to enhanced PMN infiltration. Detailed analyses of dextran sulfate sodium-elicited colitis revealed that enhancement of PMN infiltration and macrophage function occurred only at the postacute/chronic phase of inflammation and was associated with markedly increased IL-17A in serum. In vitro and ex vivo treatment of isolated PMN and macrophages confirmed that IL-17A directly modulates these cells and significantly enhances their inflammatory responses. Neutralization of IL-17A eliminated the enhancement of PMN infiltration and IL-6 production and also prevented severe tissue damage in dextran sulfate sodium-treated mice. Thus, IL-17A produced at the chronic stage of colitis serves as an essential feedback signal that enhances PMN infiltration and promotes inflammation.  相似文献   

15.
IL-6 is known to play a crucial role in the pathogenesis of chronic intestinal inflammation by modulating T cell functions. In this study, we investigated the role of gp130, the common signal transducer for all IL-6 cytokines, in a murine model of acute T cell independent colitis to better characterize the impact of gp130 on innate immune cells and the early stages of inflammation. Experimental colitis was induced by dextran sulfate sodium treatment of mice with inducible systemic deletion of gp130 (MxCre/gp130(-/-)), macrophage/neutrophil-specific gp130-deficiency (LysCre/gp130(-/-)), or bone marrow chimeric mice and compared with wild-type controls (gp130(f/f)). Systemic deletion of gp130 (MxCre/gp130(-/-)) protected mice from severe colitis and wasting and attenuated the mucosal inflammatory infiltrate as well as local cytokine, chemokine, and adhesion molecule expression. Experiments in newly generated macrophage/neutrophil-specific gp130-deleted animals (LysCre/gp130(-/-)) and gp130 bone marrow chimeric mice, revealed a dual mechanism of proinflammatory effects mediated by gp130. Leukocyte recruitment was impaired in gp130-deleted animals and gp130-deleted recipients of wild-type bone marrow, demonstrating a central role of gp130-dependent signals in nonmyeloid cells for directing leukocytes to sites of inflammation, which was further confirmed in a model of sterile peritonitis. In contrast, macrophage/neutrophil-specific gp130 deficiency delayed and attenuated the disease but only marginally affected the inflammatory infiltrate, indicating a defective activation of mucosal leukocytes. We provide evidence that IL-6 cytokines acting via gp130 are required in the acute stages of intestinal inflammation by modulating the dynamics of innate immune cell recruitment and activation.  相似文献   

16.
Integrins, as a large family of cell adhesion molecules, play a crucial role in maintaining intestinal homeostasis. In inflammatory bowel disease (IBD), homeostasis is disrupted. Integrin αvβ6, which is mainly regulated by the integrin β6 subunit gene (ITGB6), is a cell adhesion molecule that mediates cell-cell and cell-matrix interactions. However, the role of ITGB6 in the pathogenesis of IBD remains elusive. In this study, we found that ITGB6 was markedly upregulated in inflamed intestinal tissues from patients with IBD. Then, we generated an intestinal epithelial cell-specific ITGB6 transgenic mouse model. Conditional ITGB6 transgene expression exacerbated experimental colitis in mouse models of acute and chronic dextran sulphate sodium (DSS)-induced colitis. Survival analyses revealed that ITGB6 transgene expression correlated with poor prognosis in DSS-induced colitis. Furthermore, our data indicated that ITGB6 transgene expression increased macrophages infiltration, pro-inflammatory cytokines secretion, integrin ligands expression and Stat1 signalling pathway activation. Collectively, our findings revealed a previously unknown role of ITGB6 in IBD and highlighted the possibility of ITGB6 as a diagnostic marker and therapeutic target for IBD.  相似文献   

17.
Patients with inflammatory bowel disease (IBD) suffer from body weight loss, malnutrition, and several other metabolic alterations affecting their quality of life. The aim of this study was to investigate the metabolic changes that may occur during acute and chronic colonic inflammation induced by dextran sulfate sodium (DSS) in mice. Clinical symptoms and inflammatory markers revealed the presence of an ongoing inflammatory response in the DSS-treated mice. Mice with acute inflammation had decreased body weight, respiratory exchange ratios (RER), food intake, and body fat content. Mice with chronic inflammation had decreased nutrient uptake, body fat content, locomotor activity, metabolic rates, and bone mineral density. Despite this, the body weight, food and water intake, lean mass, and RER of these mice returned to values similar to those in healthy controls. Thus, murine experimental colitis is associated with significant metabolic alterations similar to IBD patients. Our data show that the metabolic responses during acute and chronic inflammation are different, although the metabolic rate is reduced in both phases. These observations suggest compensatory metabolic alterations in chronic colitis resulting in a healthy appearance despite gross colon pathology.  相似文献   

18.
We found that the expression of microRNA (miRNA)-9a-5p decreased in inflammatory bowel diseases (IBD; ulcerative colitis and Crohn's disease). Further, we revealed the effects and mechanisms of miRNA-9a-5p for regulating IBD progression. In C57BL/6N mice, IBD was induced with dextran sodium sulfate (DSS), and the effects of endogenous miRNA-9a-5p were mimicked/antagonized through intraperitoneal injection of miRNA-9a-5p agomir and antagomir. In animal experimentation, agomir could inhibit intestinal inflammation and tissue damage, and reduce the mucosal barrier permeability. Antagomir, on the other hand, could promote barrier damage, whose effect was associated with the M1 macrophage polarization. This study finds that miRNA-9a-5p targets NOX4 to suppress ROS production, which plays an important role in mucosal barrier damage in IBD.  相似文献   

19.
Tumor necrosis factor-α (TNF-α) is a key factor for the pathogenesis of inflammatory bowel diseases (IBD), whose function is known to be mediated by TNF receptor 1 (TNFR1) or 2. However, the precise role of the two receptors in IBD remains poorly understood. Herein, acute colitis was induced by dextran sulfate sodium (DSS) instillation in TNFR1 or 2−/− mice. TNFR1 ablation led to exacerbation of signs of colitis, including more weight loss, increased mortality, colon shortening and oedema, severe intestinal damage, and higher levels of myeloperoxidase compared to wild-type counterparts. While, TNFR2 deficiency had opposite effects. This discrepancy was reflected by alteration of proinflammatory cytokine and chemokine production in the colons. Importantly, TNFR1 ablation rendered enhanced apoptosis of colonic epithelial cells and TNFR2 deficiency conferred pro-apoptotic effects of lamina propria (LP)-immune cells, as shown by the decreased ratio of Bcl-2/Bax and enhanced nuclear factor (NF)-κB activity.  相似文献   

20.
Inflammatory bowel disease (IBD) arises from a dysregulated mucosal immune response to luminal bacteria. Toll-like receptor (TLR)4 recognizes LPS and transduces a proinflammatory signal through the adapter molecule myeloid differentiation marker 88 (MyD88). We hypothesized that TLR4 participates in the innate immune response to luminal bacteria and the development of colitis. TLR4-/- and MyD88-/- mice and littermate controls were given 2.5% dextran sodium sulfate (DSS) for 5 or 7 days followed by a 7-day recovery. Colitis was assessed by weight loss, rectal bleeding, and histopathology. Immunostaining was performed for macrophage markers, chemokine expression, and cell proliferation markers. DSS treatment of TLR4-/- mice was associated with striking reduction in acute inflammatory cells compared with wild-type mice despite similar degrees of epithelial injury. TLR4-/- mice experienced earlier and more severe bleeding than control mice. Similar results were seen with MyD88-/- mice, suggesting that this is the dominant downstream pathway. Mesenteric lymph nodes from TLR4-/- and MyD88-/- mice more frequently grew gram-negative bacteria. Altered neutrophil recruitment was due to diminished macrophage inflammatory protein-2 expression by lamina propria macrophages in TLR4-/- and MyD88-/- mice. The similarity in crypt epithelial damage between TLR4-/- or MyD88-/- and wild-type mice was seen despite decreased epithelial proliferation in knockout mice. TLR4 through the adapter molecule MyD88 is important in intestinal response to injury and in limiting bacterial translocation. Despite the diversity of luminal bacteria, other TLRs do not substitute for the role of TLR4 in this acute colitis model. A defective innate immune response may result in diminished bacterial clearance and ultimately dysregulated response to normal flora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号