首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Growth advantage in stationary phase (GASP) is the term used to describe the ability of mutants with an increased fitness from 10-day-old enterobacteria culture to out-compete 1-day-old cells of the same initial strain during a prolonged stationary phase, although the aged cells are introduced as a minority. We studied this bacterial trait in mixed cultures of two enterobacterial species, Escherichia coli and Salmonella enterica, wild type in addition to derived mutants from both strains that contain chromosomal-encoded resistance to either nalidixic acid or streptomycin. The strong GASP phenotype was obtained in mixed cultures with the aged mutant strains, but not when the isogenic antibiotic-sensitive strains were used. This phenomenon was associated with chromosomal rearrangements in 10-day-old bacterial antibiotic-resistant mutated cells.  相似文献   

2.
Photorhabdus luminescens luxCDABE genes were integrated into E. coli K‐12 using a high copy number plasmid containing modified luxABCDE genes under the control of the powerful Lac promoter. This strain emitted 10 times higher bioluminescence (BL) than P. luminescens. BL production under different growth conditions was studied. In both bacterial strains, the increase in BL signal correlated with the increase in optical density (OD) in a rich growth medium. However, at the logarithmic growth phase, the BL signal was roughly constant. By contrast, in minimal growth media, there was no substantial growth and the BL/cell was approximately five times higher than in the rich medium. The dynamic measurement range of BL was 102–107 colony‐forming units (CFU) in E. coli and 103–107 CFU in P. luminescens. Because the decrease in the BL signal correlated with the decrease in CFU and OD, i.e. the number of bacterial cells killed, it proved to be very suitable for assessing the antibacterial effects of different antimicrobial agents. Unlike with plate counting, the kinetics of killing can be monitored on a real‐time basis using BL measurements. Complement activities in different samples can be estimated using only one serum dilution. The transformed E. coli strain appeared to be superior to P. luminescens in these applications because E. coli was complement sensitive, the detection limit of E. coli was one order lower and the BL‐producing system of P. luminescens appeared to be quite unstable. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Escherichia coli Nissle 1917 (EcN) is a probiotic used for the treatment of intestinal disorders. EcN improves gastrointestinal homeostasis and microbiota balance; however, little is known about how this probiotic delivers effector molecules to the host. Outer membrane vesicles (OMVs) are constitutively produced by Gram‐negative bacteria and have a relevant role in bacteria–host interactions. Using 1D SDS–PAGE and highly sensitive LC–MS/MS analysis we identified in this study 192 EcN vesicular proteins with high confidence in three independent biological replicates. Of these proteins, 18 were encoded by strain‐linked genes and 57 were common to pathogen‐derived OMVs. These proteins may contribute to the ability of this probiotic to colonize the human gut as they fulfil functions related to adhesion, immune modulation or bacterial survival in host niches. This study describes the first global OMV proteome of a probiotic strain and provides evidence that probiotic‐derived OMVs contain proteins that can target these vesicles to the host and mediate their beneficial effects on intestinal function. All MS data have been deposited in the ProteomeXchange with identifier PXD000367 ( http://proteomecentral.proteomexchange.org/dataset/PXD000367 ).  相似文献   

4.
Abstract Bacteriophage Mu with its invertible G segment in G(−) orientation does not make plaques on Escherichia coli K-12, due to the absence of a suitable lipopolysaccharide receptor. Plaques formed by Mu G(−) were found, however, when the infected E. coli K-12 strain harbours a plasmid with the cloned DNA inversion function Gin which converts the infecting G(−) phage to G(+). Under overproducing conditions, where Gin expression is placed under the control of the tac promoter, the infectivity of Mu G(−) can be estimated as approximately 1% of that in the presence of the receptor. Furthermore, interaction of Mu G(−) with the E. coli K-12 cell wall leads to interference with the plating of a Mu G(+) variant which has the new phenotype Pen (penetration-negative).  相似文献   

5.
The L(-)-carnitine production by biotransformation using the recombinant strain Escherichia coli pT7-5KE32 has been studied and optimized with crotonobetaine and D(+)-carnitine as substrates. A resting rather than a growing cells system for L(-)-carnitine production was chosen, crotonobetaine being the best substrate. High biocatalytic activity was obtained after growing the cells under anaerobic conditions at 37°C and with crotonobetaine or L(-)-carnitine as inducer. The growth incubation temperature (37°C) was high enough as to activate the heat-inducible λpL promoter inserted in the plasmid pGP1-2. The best biotransformation conditions were with resting cells, under aerobiosis, with 4 g l−1 and 100 mM biomass and substrate concentrations respectively. Under these conditions the biotransformation time (1 h) was shorter and the L(-)-carnitine yield (70%) higher than previously reported. Consequently productivity value (11.3 g l−1h−1) was highly improved when comparing with other published works. The resting cells could be reused until eight times maintaining product yield levels well over 50% that meant to increase ten times the L(-)-carnitine obtained per gram of biomass.  相似文献   

6.
7.
8.
Aims: Escherichia coli has emerged as a viable heterologous host for the production of complex, polyketide natural compounds. In this study, polyketide biosynthesis was compared between different E. coli strains for the purpose of better understanding and improving heterologous production. Methods and Results: Both B and K‐12 E. coli strains were genetically modified to support heterologous polyketide biosynthesis [specifically, 6‐deoxyerythronolide B (6dEB)]. Polyketide production was analysed using a helper plasmid designed to overcome rare codon usage within E. coli. Each strain was analysed for recombinant protein production, precursor consumption, by‐product production, and 6dEB biosynthesis. Of the strains tested for biosynthesis, 6dEB production was greatest for E. coli B strains. When comparing biosynthetic improvements as a function of mRNA stability vs codon bias, increased 6dEB titres were observed when additional rare codon tRNA molecules were provided. Conclusions: Escherichia coli B strains and the use of tRNA supplementation led to improved 6dEB polyketide titres. Significance and Impact of the Study: Given the medicinal potential and growing field of polyketide heterologous biosynthesis, the current study provides insight into host‐specific genetic backgrounds and gene expression parameters aiding polyketide production through E. coli.  相似文献   

9.
10.
11.
Abstract A fimbrial antigen (CS1541) was extracted and purified from the porcine enterotoxigenic Escherichia coli strain 1541P (O8:K-:H9). CS1541 fimbriae appeared as long thin filaments 3–5 mm in diameter. CS1541 antigen consisted of two peptide bands of about 18 and 19 kDa as demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. It was expressed both at 37°C and 15°C and did not demonstrate hemagglutinating properties. It was antigenically distinct from the fimbrial antigens K88, K99, F41, FY(Att25), F165, type 1, CFA-I, and CFA-II complex but demonstrated serological cross-reactions with the 987P fimbrial antigen.  相似文献   

12.
Septicemic Escherichia coli 4787 (O115: K-: H51: F165) of porcine origin possess gene clusters related to extraintestinal E. coli fimbrial adhesins. This strain produces two fimbriae: F165(1) and F165(2). F165(1) (Prs-like) belongs to the P fimbrial family, encoded by foo operon and F165(2) is a F1C-like encoded by fot operon. Data from this study suggest that these two operons are part of two PAIs. PAI I(4787) includes a region of 20 kb, which not only harbors the foo operon but also contains a potential P4 integrase gene and is located within the pheU tRNA gene, at 94 min of the E. coli chromosome. PAI II(4787) includes a region of over 35 kb, which harbors the fot operon, iroBCDEN gene clusters, as well as part of microcin M genes and nonfunctional mobility genes. PAI II(4787) is found between the proA and yagU at 6 min of the E. coli chromosome.  相似文献   

13.
14.
Abstract We examined the presence of two virulence factors in 241 blood isolates of Klebsiella pneumoniae from patients hospitalized during 1989 and 1990 in 7 French hospitals, and 125 blood isolates of Escherichia coli from one hospital. Aerobactin was scored phenotypically and genotypically with an intragenic DNA probe of 2 kb. The mucoid phenotype was assessed by culture on trypticase soy agar and by genotypic analysis (intragenic DNA probe of 235 bp). Only 6% K. pneumoniae isolates were aerobactin-positive with no significant variation according to geographical location while 20% of K. pneumoniae isolates displayed the mucoid phenotype, with a significant variation according to hospital. Aerobactin was always associated with the mucoid phenotype. The frequency of aerobactin production but not mucoid phenotype (14%) was higher among E. coli isolates (48%). They harbored two types of large plasmids. Intraperitoneal injection into mice of 103 cfu of K. pneumoniae producing both virulence factors demonstrated that capsular serotype K2 was the more virulent K23 and K28.  相似文献   

15.
16.
17.
18.
Abstract Two conditionally expressed lacZU131 gene fusions were constructed in vivo to the ompC gene which encodes a major outer membrane protein in Escherichia coli . The resulting hybrid molecules contained approximately 25% and 50% of the mature OmpC protein fused to the LacZ. Export analysis showed that under nonoverproducing conditions essentially all synthesized OmpC-LacZ hybrid protein was effectively processed in vivo unless the signal peptide cleavage was inhibited by ethanol addition. Also, the hybrid proteins were highly accessible to solid phase iodination of whole cells under conditions where cytoplasmic proteins remained unlabelled. Thus, hybrids containing large portions of the OmpC protein were clearly recognized by the cellular export machinery, and probably all synthesized hybrid protein was partially translocated through the cytoplasmic membrane.  相似文献   

19.
High-cell-density cultivations of Escherichia coli K12 in a dialysis reactor with controlled levels of dissolved oxygen were carried out with different carbon sources: glucose and glycerol. Extremely high cell concentrations of 190 g/l and 180 g/l dry cell weight were obtained in glucose medium and in glycerol medium respectively. Different behaviour was observed in the formation of acetic acid in these cultivations. In glucose medium, acetic acid was formed during the earlier phase of cultivation. However, in glycerol medium, acetic acid formation started later and was particularly rapid at the end of the cultivation. In order to estimate the influence of acetic acid during these high-cell-density cultivations, the inhibitory effect of acetic acid on cell growth was investigated under different culture conditions. It was found that the inhibition of cell growth by acetic acid in the fermentor was much less than that in a shaker culture. On the basis of the results obtained in these investigations of the inhibitory effect of acetic acid, and the mathematical predictions of cell growth in a dialysis reactor, the influence of acetic acid on high-cell-density cultivation is discussed. Received: 20 May 1997 / Received revision: 12 August 1997 / Accepted: 25 August 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号