首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disordered domains are long regions of intrinsic disorder that ideally have conserved sequences, conserved disorder, and conserved functions. These domains were first noticed in protein–protein interactions that are distinct from the interactions between two structured domains and the interactions between structured domains and linear motifs or molecular recognition features (MoRFs). So far, disordered domains have not been systematically characterized. Here, we present a bioinformatics investigation of the sequence–disorder–function relationships for a set of probable disordered domains (PDDs) identified from the Pfam database. All the Pfam seed proteins from those domains with at least one PDD sequence were collected. Most often, if a set contains one PDD sequence, then all members of the set are PDDs or nearly so. However, many seed sets have sequence collections that exhibit diverse proportions of predicted disorder and structure, thus giving the completely unexpected result that conserved sequences can vary substantially in predicted disorder and structure. In addition to the induction of structure by binding to protein partners, disordered domains are also induced to form structure by disulfide bond formation, by ion binding, and by complex formation with RNA or DNA. The two new findings, (a) that conserved sequences can vary substantially in their predicted disorder content and (b) that homologues from a single domain can evolve from structure to disorder (or vice versa), enrich our understanding of the sequence ? disorder ensemble ? function paradigm.  相似文献   

2.
Molecular recognition features (MoRFs) are intrinsically disordered protein regions that bind to partners via disorder‐to‐order transitions. In one‐to‐many binding, a single MoRF binds to two or more different partners individually. MoRF‐based one‐to‐many protein–protein interaction (PPI) examples were collected from the Protein Data Bank, yielding 23 MoRFs bound to 2–9 partners, with all pairs of same‐MoRF partners having less than 25% sequence identity. Of these, 8 MoRFs were bound to 2–9 partners having completely different folds, whereas 15 MoRFs were bound to 2–5 partners having the same folds but with low sequence identities. For both types of partner variation, backbone and side chain torsion angle rotations were used to bring about the conformational changes needed to enable close fits between a single MoRF and distinct partners. Alternative splicing events (ASEs) and posttranslational modifications (PTMs) were also found to contribute to distinct partner binding. Because ASEs and PTMs both commonly occur in disordered regions, and because both ASEs and PTMs are often tissue‐specific, these data suggest that MoRFs, ASEs, and PTMs may collaborate to alter PPI networks in different cell types. These data enlarge the set of carefully studied MoRFs that use inherent flexibility and that also use ASE‐based and/or PTM‐based surface modifications to enable the same disordered segment to selectively associate with two or more partners. The small number of residues involved in MoRFs and in their modifications by ASEs or PTMs may simplify the evolvability of signaling network diversity.  相似文献   

3.
4.
Molecular Recognition Features (MoRFs) are short, interaction-prone segments of protein disorder that undergo disorder-to-order transitions upon specific binding, representing a specific class of intrinsically disordered regions that exhibit molecular recognition and binding functions. MoRFs are common in various proteomes and occupy a unique structural and functional niche in which function is a direct consequence of intrinsic disorder. Example MoRFs collected from the Protein Data Bank (PDB) have been divided into three subtypes according to their structures in the bound state: alpha-MoRFs form alpha-helices, beta-MoRFs form beta-strands, and iota-MoRFs form structures without a regular pattern of backbone hydrogen bonds. These example MoRFs were indicated to be intrinsically disordered in the absence of their binding partners by several criteria. In this study, we used several geometric and physiochemical criteria to examine the properties of 62 alpha-, 20 beta-, and 176 iota-MoRF complex structures. Interface residues were examined by calculating differences in accessible surface area between the complex and isolated monomers. The compositions and physiochemical properties of MoRF and MoRF partner interface residues were compared to the interface residues of homodimers, heterodimers, and antigen-antibody complexes. Our analysis indicates that there are significant differences in residue composition and several geometric and physicochemical properties that can be used to discriminate, with a high degree of accuracy, between various interfaces in protein interaction data sets. Implications of these findings for the development of MoRF-partner interaction predictors are discussed. In addition, structural changes upon MoRF-to-partner complex formation were examined for several illustrative examples.  相似文献   

5.
The pathological process of allergies generally involves an initial activation of certain immune cells, tied to an ensuing inflammatory reaction on renewed contact with the allergen. In IgE-mediated hypersensitivity, this typically occurs in response to otherwise harmless food- or air-borne proteins. As some members of certain protein families carry special properties that make them allergenic, exploring protein allergens at the molecular level is instrumental to an improved understanding of the disease mechanisms, including the identification of relevant antigen features. For this purpose, we inspected a previously identified set of allergen representative peptides (ARPs) to scrutinize protein intrinsic disorder. The resulting study presented here focused on the association between these ARPs and protein intrinsic disorder. In addition, the connection between the disorder-enriched ARPs and UniProt functional keywords was considered. Our analysis revealed that ~ 20% of the allergen peptides are highly disordered, and that ~ 77% of ARPs are either located within disordered regions of corresponding allergenic proteins or show more disorder/flexibility than their neighbor regions. Furthermore, among the subset of allergenic proteins, ~ 70% of the predicted molecular recognition features (MoRFs that consist of short interactive disordered regions undergoing disorder-to-order transitions at interaction with binding partners) were identified as ARPs. These results suggest that intrinsic disorder and MoRFs may play functional roles in IgE-mediated allergy.  相似文献   

6.
7.
Many protein-protein and protein-nucleic acid interactions involve coupled folding and binding of at least one of the partners. Here, we propose a protein structural element or feature that mediates the binding events of initially disordered regions. This element consists of a short region that undergoes coupled binding and folding within a longer region of disorder. We call these features "molecular recognition elements" (MoREs). Examples of MoREs bound to their partners can be found in the alpha-helix, beta-strand, polyproline II helix, or irregular secondary structure conformations, and in various mixtures of the four structural forms. Here we describe an algorithm that identifies regions having propensities to become alpha-helix-forming molecular recognition elements (alpha-MoREs) based on a discriminant function that indicates such regions while giving a low false-positive error rate on a large collection of structured proteins. Application of this algorithm to databases of genomics and functionally annotated proteins indicates that alpha-MoREs are likely to play important roles protein-protein interactions involved in signaling events.  相似文献   

8.
Viral proteins bind to numerous cellular and viral proteins throughout the infection cycle. However, the mechanisms by which viral proteins interact with such large numbers of factors remain unknown. Cellular proteins that interact with multiple, distinct partners often do so through short sequences known as molecular recognition features (MoRFs) embedded within intrinsically disordered regions (IDRs). In this study, we report the first evidence that MoRFs in viral proteins play a similar role in targeting the host cell. Using a combination of evolutionary modeling, protein–protein interaction analyses and forward genetic screening, we systematically investigated two computationally predicted MoRFs within the N‐terminal IDR of the hepatitis C virus (HCV) Core protein. Sequence analysis of the MoRFs showed their conservation across all HCV genotypes and the canine and equine Hepaciviruses. Phylogenetic modeling indicated that the Core MoRFs are under stronger purifying selection than the surrounding sequence, suggesting that these modules have a biological function. Using the yeast two‐hybrid assay, we identified three cellular binding partners for each HCV Core MoRF, including two previously characterized cellular targets of HCV Core (DDX3X and NPM1). Random and site‐directed mutagenesis demonstrated that the predicted MoRF regions were required for binding to the cellular proteins, but that different residues within each MoRF were critical for binding to different partners. This study demonstrated that viruses may use intrinsic disorder to target multiple cellular proteins with the same amino acid sequence and provides a framework for characterizing the binding partners of other disordered regions in viral and cellular proteomes.  相似文献   

9.
Molecular Recognition Features (MoRFs) are defined as short, intrinsically disordered regions in proteins that undergo disorder-to-order transition upon binding to their partners. As their name suggests, they are implicated in molecular recognition, which serves as the initial step for protein–protein interactions. Membrane proteins constitute approximately 30% of fully sequenced proteomes and are responsible for a wide variety of cellular functions. The aim of the current study was to identify and analyze MoRFs in membrane proteins. Two datasets of MoRFs, transmembrane and peripheral membrane protein MoRFs, were constructed from the Protein Data Bank, and sequence, structural and functional analysis was performed. Characterization of our datasets revealed their unique compositional biases and membrane protein MoRFs were categorized depending on their secondary structure after the interaction with their partners. Moreover, the position of transmembrane protein MoRFs in relation with the protein's topology was determined. Further studies were focused on functional analyses of MoRF-containing proteins and MoRFs' partners, associating them with protein binding, regulation and cell signaling, indicating half of them as putative hubs in protein–protein interaction networks. In conclusion, we provide insights into the disorder-based protein–protein interactions involving membrane proteins.  相似文献   

10.
Viruses have compact genomes that encode limited number of proteins in comparison to other biological entities. Interestingly, viral proteins have shown natural abundance of either completely disordered proteins that are recognized as intrinsically disorder proteins (IDPs) or partially disordered segments known as intrinsically disordered protein regions (IDPRs). IDPRs are involved in interactions with multiple binding partners to accomplish signaling, regulation, and control functions in cells. Tuning of IDPs and IDPRs are mediated through post-translational modification and alternative splicing. Often, the interactions of IDPRs with their binding protein partner(s) lead to transition from the state of disorder to ordered form. Such interaction-prone protein IDPRs are identified as molecular recognition features (MoRFs). Molecular recognition is an important initial step for the biomolecular interactions and their functional proceedings. Although previous studies have established occurrence of the IDPRs in Zika virus proteome, which provide the functional diversity and structural plasticity to viral proteins, the MoRF analysis has not been performed as of yet. Many computational methods have been developed for the identification of the MoRFs in protein sequences including ANCHOR, MoRFpred, DISOPRED3, and MoRFchibi_web server. In the current study, we have investigated the presence of MoRF regions in structural and non-structural proteins of Zika virus using an aforementioned set of computational techniques. Furthermore, we have experimentally validated the intrinsic disorderness of NS2B cofactor region of NS2B–NS3 protease. NS2B has one of the longest MoRF regions in Zika virus proteome. In future, this study may provide valuable information while investigating the virus host protein interaction networks.  相似文献   

11.
Intrinsically disordered or unstructured proteins (or regions in proteins) have been found to be important in a wide range of biological functions and implicated in many diseases. Due to the high cost and low efficiency of experimental determination of intrinsic disorder and the exponential increase of unannotated protein sequences, developing complementary computational prediction methods has been an active area of research for several decades. Here, we employed an ensemble of deep Squeeze-and-Excitation residual inception and long short-term memory (LSTM) networks for predicting protein intrinsic disorder with input from evolutionary information and predicted one-dimensional structural properties. The method, called SPOT-Disorder2, offers substantial and consistent improvement not only over our previous technique based on LSTM networks alone, but also over other state-of-the-art techniques in three independent tests with different ratios of disordered to ordered amino acid residues, and for sequences with either rich or limited evolutionary information. More importantly, semi-disordered regions predicted in SPOT-Disorder2 are more accurate in identifying molecular recognition features (MoRFs) than methods directly designed for MoRFs prediction. SPOT-Disorder2 is available as a web server and as a standalone program at https://sparks-lab.org/server/spot-disorder2/.  相似文献   

12.
Intrinsically disordered proteins (IDPs) contain long unstructured regions, which play an important role in their function. These intrinsically disordered regions (IDRs) participate in binding events through regions called molecular recognition features (MoRFs). Computational prediction of MoRFs helps identify the potentially functional regions in IDRs. In this study, OPAL+, a novel MoRF predictor, is presented. OPAL+ uses separate models to predict MoRFs of varying lengths along with incorporating the hidden Markov model (HMM) profiles and physicochemical properties of MoRFs and their flanking regions. Together, these features help OPAL+ achieve a marginal performance improvement of 0.4–0.7% over its predecessor for diverse MoRF test sets. This performance improvement comes at the expense of increased run time as a result of the requirement of HMM profiles. OPAL+ is available for download at https://github.com/roneshsharma/OPAL-plus/wiki/OPAL-plus-Download .  相似文献   

13.
The large-conductance Ca2+-activated K+ (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal and smooth muscles, exocrine cells, and sensory cells of the inner ear. Previous studies suggest that BK channels are promiscuous binders involved in a multitude of protein-protein interactions. To gain a better understanding of the potential mechanisms underlying BK interactions, we analyzed the abundance, distribution, and potential mechanisms of intrinsic disorder in 27 BK channel variants from mouse cochlea, 104 previously reported BK-associated proteins (BKAPS) from cytoplasmic and membrane/cytoskeletal regions, plus BK β- and γ-subunits. Disorder was evaluated using the MFDp algorithm, which is a consensus-based predictor that provides a strong and competitive predictive quality and PONDR, which can determine long intrinsically disordered regions (IDRs). Disorder-based binding sites or molecular recognition features (MoRFs) were found using MoRFpred and ANCHOR. BKAP functions were categorized based on Gene Ontology (GO) terms. The analyses revealed that the BK variants contain a number of IDRs. Intrinsic disorder is also common in BKAPs, of which ∼5% are completely disordered. However, intrinsic disorder is very differently distributed within BK and its partners. Approximately 65% of the disordered segments in BK channels are long (IDRs) (>50 residues), whereas >60% of the disordered segments in BKAPs are short IDRs that range in length from 4 to 30 residues. Both α and γ subunits showed various amounts of disorder as did hub proteins of the BK interactome. Our analyses suggest that intrinsic disorder is important for the function of BK and its BKAPs. Long IDRs in BK are engaged in protein-protein and protein-ligand interactions, contain multiple post-translational modification sites, and are subjected to alternative splicing. The disordered structure of BK and its BKAPs suggests one of the underlying mechanisms of their interaction.  相似文献   

14.
Xylanases of glycosyl hydrolase family 30 (GH30) have been shown to cleave β-1,4 linkages of 4-O-methylglucuronoxylan (MeGXn) as directed by the position along the xylan chain of an α-1,2-linked 4-O-methylglucuronate (MeGA) moiety. Complete hydrolysis of MeGXn by these enzymes results in singly substituted aldouronates having a 4-O-methylglucuronate moiety linked to a xylose penultimate from the reducing terminal xylose and some number of xylose residues toward the nonreducing terminus. This novel mode of action distinguishes GH30 xylanases from the more common xylanase families that cleave MeGXn in accessible regions. To help understand this unique biochemical function, we have determined the structure of XynC in its native and ligand-bound forms. XynC structure models derived from diffraction data of XynC crystal soaks with the simple sugar glucuronate (GA) and the tetrameric sugar 4-O-methyl-aldotetrauronate resulted in models containing GA and 4-O-methyl-aldotriuronate, respectively. Each is observed in two locations within XynC surface openings. Ligand coordination occurs within the XynC catalytic substrate binding cleft and on the structurally fused side β-domain, demonstrating a substrate targeting role for this putative carbohydrate binding module. Structural data reveal that GA acts as a primary functional appendage for recognition and hydrolysis of the MeGXn polymer by the protein. This work compares the structure of XynC with a previously reported homologous enzyme, XynA, from Erwinia chrysanthemi and analyzes the ligand binding sites. Our results identify the molecular interactions that define the unique function of XynC and homologous GH30 enzymes.  相似文献   

15.

Background

Our first predictor of protein disorder was published just over a decade ago in the Proceedings of the IEEE International Conference on Neural Networks (Romero P, Obradovic Z, Kissinger C, Villafranca JE, Dunker AK (1997) Identifying disordered regions in proteins from amino acid sequence. Proceedings of the IEEE International Conference on Neural Networks, 1: 90–95). By now more than twenty other laboratory groups have joined the efforts to improve the prediction of protein disorder. While the various prediction methodologies used for protein intrinsic disorder resemble those methodologies used for secondary structure prediction, the two types of structures are entirely different. For example, the two structural classes have very different dynamic properties, with the irregular secondary structure class being much less mobile than the disorder class. The prediction of secondary structure has been useful. On the other hand, the prediction of intrinsic disorder has been revolutionary, leading to major modifications of the more than 100 year-old views relating protein structure and function. Experimentalists have been providing evidence over many decades that some proteins lack fixed structure or are disordered (or unfolded) under physiological conditions. In addition, experimentalists are also showing that, for many proteins, their functions depend on the unstructured rather than structured state; such results are in marked contrast to the greater than hundred year old views such as the lock and key hypothesis. Despite extensive data on many important examples, including disease-associated proteins, the importance of disorder for protein function has been largely ignored. Indeed, to our knowledge, current biochemistry books don't present even one acknowledged example of a disorder-dependent function, even though some reports of disorder-dependent functions are more than 50 years old. The results from genome-wide predictions of intrinsic disorder and the results from other bioinformatics studies of intrinsic disorder are demanding attention for these proteins.

Results

Disorder prediction has been important for showing that the relatively few experimentally characterized examples are members of a very large collection of related disordered proteins that are wide-spread over all three domains of life. Many significant biological functions are now known to depend directly on, or are importantly associated with, the unfolded or partially folded state. Here our goal is to review the key discoveries and to weave these discoveries together to support novel approaches for understanding sequence-function relationships.

Conclusion

Intrinsically disordered protein is common across the three domains of life, but especially common among the eukaryotic proteomes. Signaling sequences and sites of posttranslational modifications are frequently, or very likely most often, located within regions of intrinsic disorder. Disorder-to-order transitions are coupled with the adoption of different structures with different partners. Also, the flexibility of intrinsic disorder helps different disordered regions to bind to a common binding site on a common partner. Such capacity for binding diversity plays important roles in both protein-protein interaction networks and likely also in gene regulation networks. Such disorder-based signaling is further modulated in multicellular eukaryotes by alternative splicing, for which such splicing events map to regions of disorder much more often than to regions of structure. Associating alternative splicing with disorder rather than structure alleviates theoretical and experimentally observed problems associated with the folding of different length, isomeric amino acid sequences. The combination of disorder and alternative splicing is proposed to provide a mechanism for easily "trying out" different signaling pathways, thereby providing the mechanism for generating signaling diversity and enabling the evolution of cell differentiation and multicellularity. Finally, several recent small molecules of interest as potential drugs have been shown to act by blocking protein-protein interactions based on intrinsic disorder of one of the partners. Study of these examples has led to a new approach for drug discovery, and bioinformatics analysis of the human proteome suggests that various disease-associated proteins are very rich in such disorder-based drug discovery targets.
  相似文献   

16.
Intrinsic protein disorder is a widespread phenomenon characterised by a lack of stable three-dimensional structures and is considered to play an important role in protein-protein interactions (PPIs). This study examined the genome-wide preference of disorder in PPIs by using exhaustive disorder prediction in human PPIs. We categorised the PPIs into three types (interaction between disordered proteins, interaction between structured proteins, and interaction between a disordered protein and a structured protein) with regard to the flexibility of molecular recognition and compared these three interaction types in an existing human PPI network with those in a randomised network. Although the structured regions were expected to become the identifiers for binding recognition, this comparative analysis revealed unexpected results. The occurrence of interactions between disordered proteins was significantly frequent, and that between a disordered protein and a structured protein was significantly infrequent. We found that this propensity was much stronger in interactions between nonhub proteins. We also analysed the interaction types from a functional standpoint by using GO, which revealed that the interaction between disordered proteins frequently occurred in cellular processes, regulation, and metabolic processes. The number of interactions, especially in metabolic processes between disordered proteins, was 1.8 times as large as that in the randomised network. Another analysis conducted by using KEGG pathways provided results where several signaling pathways and disease-related pathways included many interactions between disordered proteins. All of these analyses suggest that human PPIs preferably occur between disordered proteins and that the flexibility of the interacting protein pairs may play an important role in human PPI networks.  相似文献   

17.
Intrinsically disordered proteins (IDPs) exist without the presence of a stable tertiary structure in isolation. These proteins are often involved in molecular recognition processes via their disordered binding regions that can recognize partner molecules by undergoing a coupled folding and binding process. The specific properties of disordered binding regions give way to specific, yet transient interactions that enable IDPs to play central roles in signaling pathways and act as hubs of protein interaction networks. An alternative model of protein-protein interactions with largely overlapping functional properties is offered by the concept of linear interaction motifs. This approach focuses on distilling a short consensus sequence pattern from proteins with a common interaction partner. These motifs often reside in disordered regions and are considered to mediate the interaction roughly independent from the rest of the protein. Although a connection between linear motifs and disordered binding regions has been established through common examples, the complementary nature of the two concepts has yet to be fully explored. In many cases the sequence based definition of linear motifs and the structural context based definition of disordered binding regions describe two aspects of the same phenomenon. To gain insight into the connection between the two models, prediction methods were utilized. We combined the regular expression based prediction of linear motifs with the disordered binding region prediction method ANCHOR, each specialized for either model to get the best of both worlds. The thorough analysis of the overlap of the two methods offers a bioinformatics tool for more efficient binding site prediction that can serve a wide range of practical implications. At the same time it can also shed light on the theoretical connection between the two co-existing interaction models.  相似文献   

18.
The abundance and potential functional roles of intrinsically disordered regions in aquaporin-4, Kir4.1, a dystrophin isoforms Dp71, α-1 syntrophin, and α-dystrobrevin; i.e., proteins constituting the functional core of the astrocytic dystrophin-associated protein complex (DAPC), are analyzed by a wealth of computational tools. The correlation between protein intrinsic disorder, single nucleotide polymorphisms (SNPs) and protein function is also studied together with the peculiarities of structural and functional conservation of these proteins. Our study revealed that the DAPC members are typical hybrid proteins that contain both ordered and intrinsically disordered regions. Both ordered and disordered regions are important for the stabilization of this complex. Many disordered binding regions of these five proteins are highly conserved among vertebrates. Conserved eukaryotic linear motifs and molecular recognition features found in the disordered regions of five protein constituting DAPC likely enhance protein-protein interactions that are required for the cellular functions of this complex. Curiously, the disorder-based binding regions are rarely affected by SNPs suggesting that these regions are crucial for the biological functions of their corresponding proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号