首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kao RH 《The New phytologist》2007,175(4):764-772
Reproductive isolation via apomixis is one way for newly created cytotypes to persist and coexist with other cytotypes. Arnica cordifolia (Asteraceae) has both triploid and tetraploid cytotypes co-occurring in many locations. The rate of apomixis in each cytotype was explored as a mechanism for the maintenance of sympatric cytotypes. Flow cytometry was used on both adults and seeds from mixed cytotype populations to estimate reproductive mode and to evaluate the relationship between cytotype frequency and reproductive success. Flowering time was surveyed to look for temporal reproductive isolation between cytotypes. Both triploids and tetraploids can be asexual. Apomixis in A. cordifolia is usually autonomous, not pseudogamous as previously thought. Sexual reproduction appears to be uncommon. The minority cytotype in each population does not produce fewer seeds, confirming that minority cytotype exclusion is unlikely to occur via reproductive disadvantage. Triploids flowered earlier than tetraploids, but with much overlap. Asexual reproduction is an important factor promoting the coexistence of cytotypes in this system. Other mechanisms maintaining populations of sympatric cytotypes are not well studied or understood and warrant further investigation.  相似文献   

2.
Effect of triploid fitness on the coexistence of diploids and tetraploids   总被引:2,自引:0,他引:2  
The conditions for the coexistence of diploids, triploids and tetraploids in a single population were investigated with a deterministic model under the assumptions that diploids might produce 2 n gametes, and that triploids had a lower fitness than other cytotypes and generated equal proportions of haploid and diploid gametes. When diploids produced only haploid gametes, the dynamics of the cytotypes were similar to that of heterozygote disadvantage with two alleles at a single locus, with triploids being equivalent to the heterozygotes. Production of 2 n gametes by diploids increased the pool of diploid gametes and created a stable equilibrium involving a majority of diploids and a minority of polyploids. When the fitness of tetraploids was equal to or higher than that of diploids, increased triploid fitness decreased the threshold of 2 n gametes necessary to deterministically fix tetraploids in the population. Conversely, when tetraploids were less fit than diploids, the rate of 2 n gamete production leading to the exclusion of diploids first decreases and then increased with increasing triploid fitness. Triploids are repeatedly found in diploid-tetraploid hybridizations and are rarely totally sterile. They might play a determinant role in the future of multiple cytotype populations. The effect of triploids depends on the relative fitness of diploids and tetraploids and is also a function of their fitness.  相似文献   

3.
Triploids can play an important role in polyploid evolution. However, their frequent sterility is an obstacle for the origin and establishment of neotetraploids. Here we analyzed the microsporogenesis of triploids (x?=?7) and the crossability among cytotypes of Turnera sidoides, aiming to test the impact of triploids on the origin and demographic establishment of tetraploids in natural populations. Triploids of T. sidoides exhibit irregular meiotic behavior. The high frequency of monovalents and of trivalents with non-convergent orientations results in unbalanced and/or non-viable male gametes. In spite of abnormalities in chromosome pairing and unbalanced chromosome segregation, triploids are not completely sterile and yielded up to 67% of viable pollen. Triploids that originated by the fusion of 2n?×?n gametes of the same taxon showed more regular meiotic behavior and higher fertility than triploids from the contact zone of diploids and tetraploids or triploids of hybrid origin. The reproductive isolation of T. sidoides cytotypes of different ploidy level is not strict and the ‘triploid block’ may be overcome occasionally. Triploids of T. sidoides produce diploid and triploid progeny suggesting that new generations of polyploids could originate from crosses between triploids or from backcrosses with diploids. The capability of T. sidoides to multiply asexually by rhizomes, would enhance the likelihood that a low frequency of neopolyploids can be originated and maintained in natural populations of T. sidoides.  相似文献   

4.
Ploidy levels inEmpetrum (crowberry) from the Czech Republic and from one adjacent locality in Poland were estimated by flow cytometry to examine cytotype distribution patterns at large (within the country), medium (within mountain ranges) and small (within particular localities) spatial scales. Diploid, triploid, and tetraploid individuals were found. Triploids are reported from Central Europe for the first time; they occurred in the Krkono?e Mts. Exclusively diploid plants were observed in three mountain ranges (the Kru?né hory Mts., Labské pískovce Mts., Adr?pa?sko-Teplické skály Mts.), exclusively tetraploids were observed in the Jeseníky Mts., and both cytotypes were observed in the ?umava Mts., Jizerské hory Mts. and Krkono?e Mts. Except for the latter mountain range, diploids and tetraploids were always found in different habitats. Spatial isolation is supposed to be the main barrier preventing cytotype mating. A mosaic-like sympatric occurrence of different cytotypes was demonstrated in the Krkono?e Mts., where peat bogs and rocky places were not spatially separated. Eight of 11 localities studied there were inhabited by diploids and tetraploids (five localities), diploids and triploids (one locality) or all three ploidy levels (two localities). Diploid and triploid plants occasionally intermingled at 0.3 × 0.3 m. Flower sex in crowberries was strongly associated with ploidy level: diploids usually had unisexual flowers, the tetraploids bore exclusively bisexual flowers. However, a few diploid plants with hermaphrodite flowers occurred in one population in the Krkono?e Mts.  相似文献   

5.
Generative and vegetative reproduction of diploid and triploidButomus umbellatus L., and growth and biomass production of both cytotypes under two different nutrient levels were compared. Seedling survival was studied under controlled conditions in a growth chamber; the response of plants to different nutrient conditions was studied in experimental garden. Both cytotypes do not differ in seed germination and seedling survival. Triploids produce more aboveground and underground biomass, more numerous lateral rhizome buds, and have significantly higher flowering stalks. Low generative reproduction (limited seed production) in triploids is compensated for by more intensive vegetative reproduction. High nutrient level appeared to be stressful for plants of both cytotypes: it limits plant growth and causes plant mortality. Triploids are more viable than diploids in this case, which may be important for their survival under conditions of high trophic level.  相似文献   

6.
? Premise of the Study: Polyploidy resulting from whole genome duplication has contributed to the adaptive evolution of many plant species. However, the conditions necessary for successful polyploid evolution and subsequent establishment and persistence in sympatry with diploid progenitors are often quite limited. One condition thought to be necessary for establishment is a substantial competitive superiority of the polyploid. ? Methods: We conducted a pairwise competition experiment using diploid and tetraploid cytotypes of Centaurea stoebe L. to determine whether (1) tetraploids have greater competitive ability than diploids, (2) cytotypes from mixed-cytotype populations have more balanced competitive abilities than single-cytotype populations, and (3) competitive abilities change along a longitudinal gradient. ? Key Results: Across sampling localities, tetraploids did not produce greater aboveground biomass than diploids but suffered from greater intracytotypic competition. Tetraploids allocated greater biomass belowground than diploids, regardless of competition treatment, and had greater performance for traits associated with long-term persistence (bolted more frequently and produced more accessory rosettes). Competitive ability of tetraploids did not differ between single- and mixed-cytotype populations but varied along a longitudinal gradient. Tetraploids were stronger intercytotypic competitors in Western Europe (Switzerland and Germany) than in Eastern Europe (Hungary and Slovakia), which indicates that cytotype coexistence may be more likely in Eastern Europe, the proposed origin of tetraploids, than in Western Europe. ? Conclusions: Our study addresses the importance of examining competitive interactions between cytotypes across their distributional range, as competitive interactions were not consistent across sampling localities.  相似文献   

7.
Cytogeographical variability among 564 plants from 26 populations of Turnera sidoides subsp. pinnatifida in mountain ranges of central Argentina was analysed with meiotic chromosome counts and flow cytometry and is described at regional and local scales. Populations were primarily tetraploids (2n = 4x = 28), although diploid (2n = 2x = 14), hexaploid (2n = 2x = 42), and mixed populations of diploids and triploids (2n = 3x = 21) were also found. Diploids, triploids, and hexaploids were fewer in number and restricted to narrow areas, while tetraploids were the most common and geographically widespread cytotype. Diploids grew at higher altitudes and in colder and wet locations; tetraploids had the broadest ecological spectrum, while hexaploids occurred at the lowest altitudes and in drier conditions. The cytotypes were also spatially segregated at a microgeographical scale. Diploids grew in the piedmont, tetraploids were in the adjacent valley, and in the contact zone of both cytotypes, patches of diploids and triploids were found. At a regional scale, the distribution of the cytotypes may be governed by a combination of ecological and historical variables, while segregation in the contact zone may be independent of the selective environment because the cytotypes are unable to coexist as a result of reproductive exclusion. The role of triploids is also discussed.  相似文献   

8.
Experimental crosses between diploids, triploids and tetraploids ofHieracium echioides were made to examine mating interactions. Specifically, cytotype diversity in progeny from experimental crosses, intercytotype pollen competition as a reproductive barrier between diploids and tetraploids, and differences in seed set between intra- and intercytotype crosses were studied. Only diploids were found in progeny from 2x × 2x crosses. The other types of crosses yielded more than one cytotype in progeny, but one cytotype predominated in each cross type: diploids (92%) in 2x × 3x crosses, tetraploids (88%) in 3x × 2x crosses, triploids (96%) in 2x × 4x crosses, triploids (90%) in 4x × 2x crosses, tetraploids (60%) in 3x × 3x crosses, pentaploids (56%) in 3x × 4x crosses, triploids (80%) in 4x × 3x crosses and tetraploids (88%) in 4x × 4x crosses. No aneuploids have been detected among karyologically analyzed plants. Unreduced egg cell production was detected in triploids and tetraploids, but formation of unreduced pollen was recorded only in two cases in triploids. Triploid plants produced x, 2x and 3x gametes: in male gametes x (92%) gametes predominated whereas in female gametes 3x (88%) gametes predominated. Cytotype diversity in progeny from crosses where diploids and tetraploids were pollinated by mixture of pollen from diploid and tetraploid plants suggested intercytotype pollen competition to serve as a prezygotic reproductive barrier. No statistically significant difference in seed set obtained from intra- and intercytotype crosses between diploids and tetraploids was observed, suggesting the absence of postzygotic reproductive barriers among cytotypes.  相似文献   

9.
Summary The microdistribution of diploid and tetraploid plants of Dactylis glomerata L. was examined and related to their immediate environment in several sites in central Galicia, where morphologically indistinguishable individuals of both ploidies grow in sympatry. The two related cytotypes differed in habitat preference. Diploids were mainly confined to the low-density forest-floor habitat in woodlands of mostly ancient origin, whereas tetraploids were widespread in varied habitats but clearly predominant in open areas, particularly in disturbed anthropic sites. The in situ comparison of plant performance showed that where plants of each ploidy were more common they produced more tillers, panicles and seeds. This habitat preference closely reflected differences in life-history characteristics. The tetraploids had an early and short flowering time almost always completed before the aestival drought, whereas the diploids began to flower several weeks later and flowered throughout the drought. Comparisons along artificial gradients of soil water availability and light transmittance indicated that the cytotypes had distinct physiological requirements which probably originated in metabolic and more general genetic differentiation and could be directly attributable to ploidy. Habitat differentiation increases the species' colonizing ability. It also amplifies divergence in reproductive strategy between diploids and tetraploids, which reduces ineffective crossing between cytotypes and thereby permits them to coexist in sympatry. The effect of hybridization at the polyploid level on the differentiation between cytotypes was assessed from the recent introduction of a foreign tetraploid entity into the study area. Hybridization between the two distinct tetraploids was found to increase habitat differentiation between the diploids and the tetraploids, but the major part of this differentiation is probably attributable to ploidy itself.  相似文献   

10.
Secondary hybrid zones are not uncommon in Dactylorhiza, but knowledge of ecological and evolutionary consequences of hybridization are scarce. Here, we assess interploidal gene flow and introgression in a hybrid zone between diploid Dactylorhiza incarnata ssp. cruenta (2n = 2x = 40) and its putative allotetraploid derivative D. lapponica (2n = 4x = 80). Photometric quantification of DNA content and morphology confirmed that triploids are abundant in sympatric populations in our study area. Allozyme segregation patterns in D. lapponica supported an allopolyploid origin, although unbalanced genotypes suggested rare pairings between homoeologous chromosomes. Photometric data and chromosome counts suggest backcrossing between the triploid hybrid and D. lapponica, and hence some hybrid fertility. Triploids are morphologically more similar to the tetraploids than the diploids, maybe owing to the hybrid origin of both triploids and tetraploids. The diploids and tetraploids were not more similar in the parapatric populations compared to when they occur in allopatry. This indicates that backcrossing rarely leads to introgression, or alternatively that allopatric populations are not isolated enough to prevent influx of pollen from the other species. Despite some evidence of backcrossing, our study gives few indications that widespread hybridization entails local breakdown of species boundaries. Rather, the hybrid zone may be a transient phenomenon due to intensive mowing, resulting in the opening of habitats and hence bringing the parental species into close contact.  相似文献   

11.
The distribution, total frequency of occurrence, regional differences and habitat conditions of diploid and triploidButomus umbellatus L. were studied in the Czech and Slovak Republics. Triploids are more frequent than diploids, with numerous localities in warm lowland regions in river floodplains. Diploids were found primarily in the South Bohemian T?eboň basin, outside the warm regions. The two cytotypes do not differ in dependence on water depth. Triploids occur more in habitats with more alkaline and base-rich soils. Considering the total distribution of both cytotypes in the area studied, triploidB. umbellatus appears to be more successful than its diploid progenitor, owing to its wider habitat range and superiority in vegetative reproduction.  相似文献   

12.
In North America, the geographic distributions of diploid and tetraploid Chamerion (formerly Epilobium) angustifolium overlap in a narrow zone along the southern border of the boreal forest and along the Rocky Mountains. We examined the frequency and distribution of diploid and tetraploid cytotypes in a narrow (5 km) zone of sympatry across an elevational gradient and in putatively uniform diploid and tetraploid reference populations on the Beartooth Pass, in the Rocky Mountains of southern Montana-northern Wyoming. All five reference populations sampled were dominated by a single cytotype, but only one was completely uniform. In the zone of sympatry, 27 transects were sampled every 2 m for a total of 238 plants. Reproductive status (vegetative, flower buds, open flowers) was recorded, and the ploidy of each plant was determined by flow cytometry. Diploid and tetraploid plants predominated (36 and 55%, respectively) but were heterogeneously distributed among the transects. Six of the 27 transects were fixed for a single cytotype (four transects, diploid; two transects, tetraploid), and in seven others either diploids or tetraploids predominated (frequency >75%). Triploids represented 9% of the total sample and occurred most frequently in transects containing both diploids and tetraploids (G = 3.4, df = 2, P = 0.07). Diploids were more often reproductive (in bud, flower, or fruit) than either triploids or tetraploids (G = 12.0, df = 2, P < 0.001) and were the only cytotype to have produced open flowers. These results suggest that the zone of sympatry is best characterized as a mosaic rather than a cline, with diploid and tetraploids in close proximity and that the distribution of polyploidy is regulated by ecological sorting in a heterogeneous physical environment.  相似文献   

13.
The effect of ploidy level on fitness in parthenogenetic flatworms   总被引:2,自引:1,他引:1  
Although polyploidy plays an important role in speciation, its impact on fitness is still debated. One problem is that its adaptive significance can only be inferred by comparing forms with different ploidy that are identical in all other traits. This situation is uncommon, presumably because ploidy types often differ in reproduction mode, genetic background or habitat. Here we compare fitness in a system of triploid and tetraploid karyotypes of the planarian flatworm Schmidtea polychroa . Both types have the same type of sperm-dependent parthenogenesis and share the same genetic background and habitat. Hence, fitness differences, if any, can be attributed to different ploidy levels only. Contrary to the general assumption of a positive correlation between fitness and ploidy level, we showed that triploids produced 58% more offspring than tetraploids. Within each ploidy type, we identified groups of highly related clones using microsatellites. Significant variation among clonal groups in body size, offspring and cocoon number and hatching time indicated a genetic basis for variance in these traits. A small model shows that despite low fitness of tetraploids, stable coexistence of triploids and tetraploids can be explained by the recurrent origin of triploids from tetraploids and vice versa.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 191–198.  相似文献   

14.

Background and Aims

In a mixed-ploidy population, strong frequency-dependent mating will lead to the elimination of the less common cytotype, unless prezygotic barriers enhance assortative mating. However, such barriers favouring cytotype coexistence have only rarely been explored. Here, an assessment is made of the mechanisms involved in formation of mixed-ploidy populations and coexistence of diploid plants and their closely related allotetraploid derivates from the Centaurea stoebe complex (Asteraceae).

Methods

An investigation was made of microspatial and microhabitat distribution, life-history and fitness traits, flowering phenology, genetic relatedness of cytotypes and intercytotype gene flow (cpDNA and microsatellites) in six mixed-ploidy populations in Central Europe.

Key Results

Diploids and tetraploids were genetically differentiated, thus corroborating the secondary origin of contact zones. The cytotypes were spatially segregated at all sites studied, with tetraploids colonizing preferentially drier and open microhabitats created by human-induced disturbances. Conversely, they were rare in more natural microsites and microsites with denser vegetation despite their superior persistence ability (polycarpic life cycle). The seed set of tetraploid plants was strongly influenced by their frequency in mixed-ploidy populations. Triploid hybrids originated from bidirectional hybridizations were extremely rare and almost completely sterile, indicating a strong postzygotic barrier between cytotypes.

Conclusions

The findings suggest that tetraploids are later immigrants into already established diploid populations and that anthropogenic activities creating open niches favouring propagule introductions were the major factor shaping the non-random distribution and habitat segregation of cytotypes at fine spatial scale. Establishment and spread of tetraploids was further facilitated by their superior persistence through the perennial life cycle. The results highlight the importance of non-adaptive spatio-temporal processes in explaining microhabitat and microspatial segregation of cytotypes.  相似文献   

15.
Internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA (nrDNA) were used to examine the phylogeny of East Asian aconites. Individual aconites were discovered to contain as many as eight different ITS sequences after cloning and PCR-SSCP (single-stranded conformational polymorphisms) analysis. We identified eight putative ITS pseudogenes from four taxa with low predicted secondary structure stability and high substitution rates. Maximum likelihood (ML) and neighbor-joining (NJ) methods were used for phylogenetic reconstruction. The ITS trees agree with the previous chloroplast DNA (cpDNA) tree for the vast majority of the taxa. We found two East Asian clades in the ITS trees: 1) a clade with the Chinese diploid,Aconitum volubile and East Asian tetraploids, and 2) a clade of East Asian diploids and Siberian tetraploids. In the former clade, most tetraploid taxa appear to be polyphyletic; sequences from individual plants did not correspond to recognized taxonomic units. This indicates a recent divergence of the East Asian tetraploids.  相似文献   

16.
The Arabidopsis arenosa complex is closely related to the model plant Arabidopsis thaliana. Species and subspecies in the complex are mainly biennial, predominantly outcrossing, herbaceous, and with a distribution range covering most parts of latitudes and the eastern reaches of Europe. In this study we present the first comprehensive evolutionary history of the A. arenosa species complex, covering its natural range, by using chromosome counts, nuclear AFLP data, and a maternally inherited marker from the chloroplast genome [trnL intron (trnL) and trnL/F intergenic spacer (trnL/F-IGS) of tRNA(Leu) and tRNA(Phe), respectively]. We unravel the broad-scale cytogeographic and phylogeographic patterns of diploids and tetraploids. Diploid cytotypes were exclusively found on the Balkan Peninsula and in the Carpathians while tetraploid cytotypes were found throughout the remaining distribution range of the A. arenosa complex. Three centers of genetic diversity were identified: the Balkan Peninsula, the Carpathians, and the unglaciated Eastern and Southeastern Alps. All three could have served as long-term refugia during Pleistocene climate oscillations. We hypothesize that the Western Carpathians were and still are the cradle of speciation within the A. arenosa complex due to the high species number and genetic diversity and the concurrence of both cytotypes there.  相似文献   

17.
Ecological differentiation is widely seen as an important factor enabling the stable coexistence of closely related plants of different ploidy levels. We studied ecological and genetic differentiation between co-occurring sexual diploid and apomictic triploid Taraxacum section Ruderalia by analysing spatial patterns both in the distribution of cytotypes and in the distribution of genetic variation within and between the cytotypes. A significant relationship between ploidy level and elevation was found. This mode of ecological differentiation however, was not sufficient to explain the significant spatial structure in the distribution of diploids and triploids within the population. Strong congruence was found between the spatial genetic patterns within the diploids and within the triploids. We argue that this congruence is an indication of gene flow between neighbouring plants of different ploidy levels.  相似文献   

18.
BACKGROUND AND AIMS: The phylogenetic relationships between species of Coffea and Psilanthus remain poorly understood, owing to low levels of sequence variation recovered in previous studies, coupled with relatively limited species sampling. In this study, the relationships between Coffea and Psilanthus species are assessed based on substantially increased molecular sequence data and greatly improved species sampling. METHODS: Phylogenetic relationships are assessed using parsimony, with sequence data from four plastid regions [trnL-F intron, trnL-F intergenic spacer (IGS), rpl16 intron and accD-psa1 IGS], and the internal transcribed spacer (ITS) region of nuclear rDNA (ITS 1/5.8S/ITS 2). Supported lineages in Coffea are discussed within the context of geographical correspondence, biogeography, morphology and systematics. KEY RESULTS: Several major lineages with geographical coherence, as identified in previous studies based on smaller data sets, are supported. Other lineages with either geographical or ecological correspondence are recognized for the first time. Coffea subgenus Baracoffea is shown to be monophyletic, but Coffea subgenus Coffea is paraphyletic. Sequence data do not substantiate the monophyly of either Coffea or Psilanthus. Low levels of sequence divergence do not allow detailed resolution of relationships within Coffea, most notably for species of Coffea subgenus Coffea occurring in Madagascar. The origin of C. arabica by recent hybridization between C. canephora and C. eugenioides is supported. Phylogenetic separation resulting from the presence of the Dahomey Gap is inferred based on sequence data from Coffea.  相似文献   

19.
Populations of theAgrostis flaccida-mertensii complex in Hokkaido were examined as part of the taxonomic study of this complex, which has a wide range and comprises a polyploid series of 2x–8x (x=7). The principal aim was to clarify the taxonomic status of hexaploids growing in Hokkaido. Field explorations were made in the mountains and on the coasts in Hokkaido, and the materials were gathered from 19 localities. The occurrence of four cytotypes (2x, 4x, 6x, 8x), as well as some triploids and septaploids, of this complex in Hokkaido was confirmed, and the ranges of respective cytotypes were delineated. Morphological examinations showed that diploids, triploids and tetraploids are referable toAgrostis flaccida and octoploids toA. mertensii. The hexaploids of Hokkaido were morphologically different fromA. flaccida and also from the related hexaploid species,A. tateyamensis, distributed in Honshu. The hexaploids were quite similar to octoploidA. mertensii in all the morphological features examined and also in habitat preference. Septaploids were sterile hybrids between hexaploids and octoploids. A conclusion was drawn that the hexaploid plant of Hokkaido should be grouped with the octoploid in one and the same species,Agrostis mertensii Trin.Agrostis mertensii in this amended sense is discussed from a cytogeographical viewpoint.  相似文献   

20.
Nuclear internal transcribed spacer (ITS) regions and chloroplast trnL intron and trnL/trnF spacer and matK sequences were used from 86 accessions to assess relationships among 31 European and South American species of Hypochaeris plus 18 representatives of related genera of tribe Cichorieae. The ITS tree shows high resolution compared to that of the maternally inherited trnL intron, trnL/F spacer, and matK sequences. The ITS and the combined tree reveal clades that agree well with sections of the genus established previously on morphological and cytological grounds, except for H. robertia, which groups with Leontodon helveticus and L. autumnalis. Monophyly of species of Hypochaeris from South America is strongly supported by both ITS and the joint matrix of ITS, trnL, and matK data. European species lie basal to South American taxa, which suggests that species in South America evolved from a single introduction from European progenitors and not from H. robertia as suggested previously. Low levels of sequence divergence among South American taxa suggest a pattern of rapid speciation, in contrast to much greater divergence among European representatives. Different species of Leontodon form two different clades that are also supported by chromosome numbers and morphology. Both nuclear and chloroplast markers suggest that Helminthotheca, Leontodon, and Picris are closely related to each other as well as to Hypochaeris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号