首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maleylacetate reductase (EC 1.3.1.32) plays a major role in the degradation of chloroaromatic compounds by channeling maleylacetate and some of its substituted derivatives into the 3-oxoadipate pathway. The enzyme was purified to apparent homogeneity from an extract of 2,4-dichlorophenoxyacetate (2,4-D)-grown cells of Alcaligenes eutrophus JMP134. Maleylacetate reductase appears to be a dimer of two identical subunits of 35 kDa. The pI was determined to be at pH 5.4. There was no indication of a flavin prosthetic group. The enzyme was inactivated by p-chloromercuribenzoate but not by EDTA, 1,10-phenanthroline, or dithiothreitol. Maleylacetate and 2-chloromaleylacetate were converted with similar efficiencies (with NADH as cosubstrate, Km = 31 microM for each substrate and kcat = 8,785 and 7,280/min, respectively). NADH was preferred to NADPH as the cosubstrate. Upon reduction of 2-chloramaleylacetate by the purified enzyme, chloride was liberated and the resulting maleylacetate was further reduced by a second NADH. These results and the kinetic parameters suggest that the maleylacetate reductase is sufficient to channel the 2,4-D degradation intermediate 2-chloromaleylacetate into the 3-oxoadipate pathway. In a data base search the NH2-terminal sequence of maleylacetate reductase was found to be most similar to that of TfdF, a pJP4-encoded protein of as-yet-unknown function in 2,4-D degradation.  相似文献   

2.
The ability of Alcaligenes eutrophus JMP134(pJP4) to degrade 2,4-dichlorophenoxyacetic acid, 2,4,6-trichlorophenol, and other chlorophenols in a bleached kraft mill effluent was studied. The efficiency of degradation and the survival of strain JMP134 and indigenous microorganisms in short-term batch or long-term semicontinuous incubations performed in microcosms were assessed. After 6 days of incubation, 2,4-dichlorophenoxyacetate (400 ppm) or 2,4,6-trichlorophenol (40 to 100 ppm) were extensively degraded (70 to 100%). In short-term batch incubations, indigenous microorganisms were unable to degrade such of compounds. Degradation of 2,4,6-trichlorophenol by strain JMP134 was significantly lower at 200 to 400 ppm of compound. This strain was also able to degrade 2,4-dichlorophenoxyacetate, 2,4,6-trichlorophenol, 4-chlorophenol, and 2,4,5-trichlorophenol when bleached Kraft mill effluent was amended with mixtures of these compounds. On the other hand, the chlorophenol concentration and the indigenous microorganisms inhibited the growth and survival of the strain in short-term incubations. In long-term (>1-month) incubations, strain JMP134 was unable to maintain a large, stable population, although extensive 2,4,6-trichlorophenol degradation was still observed. The latter is probably due to acclimation of the indigenous microorganisms to degrade 2,4,6-trichlorophenol. Acclimation was observed only in long-term, semicontinuous microcosms.  相似文献   

3.
The Alcaligenes eutrophus JMP134 plasmid pJP4 contains genes necessary for the complete degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 3-chlorobenzoic acid. tfdA encodes 2,4-D monooxygenase, the initial enzyme in the 2,4-D catabolic pathway. The tfdA locus has recently been localized to a region on pJP4 13 kilobases away from a cluster of five genes, tfdB to tfdF, which encode the enzymes responsible for the further degradation of 2,4-D to chloromaleylacetic acid (W.R. Streber, K. N. Timmis, and M. H. Zenk, J. Bacteriol. 169:2950-2955, 1987). A second, dissimilar locus on pJP4, tfdAII, has been observed which encodes 2,4-D monooxygenase activity. Gas chromatographic analysis of the 2,4-D metabolites of A. eutrophus harboring pJP4 or subclones thereof localized tfdAII to within a 9-kilobase SstI fragment of pJP4 which also carries the genes tfdBCDEF. This fragment was further characterized in Escherichia coli by deletion and subcloning analysis. A region of 2.5 kilobases, adjacent to tfdC, enabled E. coli extracts to degrade 2,4-D to 2,4-dichlorophenol. Hybridization under low-stringency conditions was observed between tfdA and tfdAII, signifying that the 2,4-D monooxygenase gene was present as two related copies on pJP4.  相似文献   

4.
2-Chloro-4-methylphenoxyacetate is not a growth substrate for Alcaligenes eutrophus JMP 134 and JMP 1341. It is, however, being transformed by enzymes of 2,4-dichlorophenoxyacetic acid metabolism to 2-chloro-4-methyl-cis, cis-muconate, which is converted by enzymatic 1,4-cycloisomerization to 4-carboxymethyl-2-chloro-4-methylmuconolactone as a dead end metabolite. Chemically, only 3,6-cycloisomerization occurs, giving rise to both diastereomers of 4-carboxychloromethyl-3-methylbut-2-en-4-olide. Those lactones harbonring a chlorosubstituent on the 4-carboxymethyl side chain were surprisingly stable under physiological as well as acidic conditions.  相似文献   

5.
2,4-Dichloro-cis,cis-muconate is established as ringcleavage product in the degradation of 3,5-dichlorocatechol by Alcaligenes eutrophus JMP 134. The formerly described isomerization of 2-chloro-trans- to 2-chlorocis-4-carboxymethylenebut-2-en-4-olide as an essential catabolic step could not be certified.  相似文献   

6.
Both Alcaligenes eutrophus JMP 134 and its plasmid-free derivative Alcaligenes eutrophus JMP 222 utilize 2,6-dinitrophenol as sole source of carbon, energy, and nitrogen. In the presence of ammonia resting cells of these strains release two mol of nitrite per mol of 2,6-dinitrophenol. Alcaligenes eutrophus JMP 222-1D, a mutant of strain JMP 222 obtained by transposon (Tn5) mutagenesis, is able to use 2,6-dinitrophenol as nitrogen source but not as source of carbon and energy. Resting cells of this mutant liberate only one mol of nitrite per mol of 2,6-dinitrophenol. A single metabolite was detected by high-pressure liquid chromatography and identified as 2-hydroxy-5-nitropenta-2,4-dienoic acid from the mass spectrum, the 1H-, and 13C-NMR spectra. Strain JMP 222-1S, a spontaneous mutant of strain JMP 222-1D, accumulates 4-nitropyrogallol which was identified as the initial metabolite of 2,6-dinitrophenol degradation.Non-standard abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 2,6-DNP 2,6-dinitrophenol - HNMA 2-hydroxy-5-nitromuconic acid - HNPA 2-hydroxy-5-nitropenta-2,4-dienoic acid - NB nutrient broth - NMR nuclear magnetic resonance - NPG 4-nitropyrogallol - O.D. optical density - tR retention time - UV/Vis ultraviolet/visible  相似文献   

7.
2,4-Dichlorophenoxyacetate (2,4-D) in Alcaligenes eutrophus JMP134 (pJP4) is degraded via 2-chloromaleylacetate as an intermediate. The latter compound was found to be reduced by NADH in a maleylacetate reductase catalyzed reaction. Maleylacetate and chloride were formed as products of 2-chloromaleylacetate reduction, the former being funnelled into the 3-oxoadipate pathway by a second reductive step. There was no indication for an involvement of a pJP4-encoded enzyme in either the reduction or the dechlorination reaction.Abbreviations 2,4-D 2,4-dichlorophenoxyacetate  相似文献   

8.
Prior to gene transfer experiments performed with nonsterile soil, plasmid pJP4 was introduced into a donor microorganism, Escherichia coli ATCC 15224, by plate mating with Ralstonia eutropha JMP134. Genes on this plasmid encode mercury resistance and partial 2, 4-dichlorophenoxyacetic acid (2,4-D) degradation. The E. coli donor lacks the chromosomal genes necessary for mineralization of 2,4-D, and this fact allows presumptive transconjugants obtained in gene transfer studies to be selected by plating on media containing 2,4-D as the carbon source. Use of this donor counterselection approach enabled detection of plasmid pJP4 transfer to indigenous populations in soils and under conditions where it had previously not been detected. In Madera Canyon soil, the sizes of the populations of presumptive indigenous transconjugants were 10(7) and 10(8) transconjugants g of dry soil(-1) for samples supplemented with 500 and 1,000 microg of 2,4-D g of dry soil(-1), respectively. Enterobacterial repetitive intergenic consensus PCR analysis of transconjugants resulted in diverse molecular fingerprints. Biolog analysis showed that all of the transconjugants were members of the genus Burkholderia or the genus Pseudomonas. No mercury-resistant, 2, 4-D-degrading microorganisms containing large plasmids or the tfdB gene were found in 2,4-D-amended uninoculated control microcosms. Thus, all of the 2,4-D-degrading isolates that contained a plasmid whose size was similar to the size of pJP4, contained the tfdB gene, and exhibited mercury resistance were considered transconjugants. In addition, slightly enhanced rates of 2,4-D degradation were observed at distinct times in soil that supported transconjugant populations compared to controls in which no gene transfer was detected.  相似文献   

9.
Abstract: To use deliberately released beneficial microorganisms in the rhizosphere, we need a better understanding of the process of root colonization by seed-borne or soil-borne inocula. In this study, we determine the survival of Pseudomonas fluorescens Ag1 and Alcaligenes eutrophus JMP134, their colonization ability as affected by substrates, and the relative importance of migration versus competition for colonization of the root. Ag1 and the 2,4-dichlorophenoxy-acetic acid (2,4-D) degrader JMP134 were inoculated in sterile barley rhizosphere systems. After inoculation of seeds with individual strains, comparable population sizes were established in the rhizosphere as determined by immunofluorescence microscopic total cell counts. Both strains were motile and able to colonize the entire root system without percolating water to stimulate passive transport. Comparing immunofluorescence microscopic cell counts with colony-forming units demonstrated that a subpopulation of A. eutrophus JMP134 closely associated with the root was non-culturable in contrast to the population in rhizosphere soil. Hence, the sole use of culture-dependent methods may give misleading information about the distribution of bacteria in the rhizosphere. Colonization studies with both strains showed that co-inoculation of Ag1 and JMP134 caused a decrease of the population size of JMP134 if 2,4-D was not added to the soil as a specific carbon source for this strain. Thus, competition for limited carbon sources might influence the composition of the bacterial community in the rhizosphere. We also found that the presence of an established inoculum in the soil reduced subsequent root colonization by a seed-inoculated strain, probably by filling available niches, also indicating that competition from other bacteria may be an important factor determining the distribution of seed-borne inocula. This factor may be just as important for the distribution of bacteria as migration.  相似文献   

10.
Dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP 134 was purified to homogeneity. The enzyme has an Mr of about 270,000 as determined by gel filtration and consists of six to eight subunits of identical Mr 40,000 as determined by SDS/PAGE. Mn2+ ions as well as thiol groups are required for activity. A high Km value of about 4 mM for cis,cis-muconate explains the reported low activity with this compound. Relatively high Km values were also calculated for monochloro-substituted cis,cis-muconates (300-500 microM), in contrast with the low Km value of 20 microM for 2,4-dichloro-cis,cis-muconate. The catalytic constant of the pure enzyme was 3820 min-1 when measured with 2,4-dichloro-cis,cis-muconate.  相似文献   

11.
2,3-, 2,4-, 2,5-, 3,4-, and 3,5-dimethylphenols were cometabolized by 2,4-dichlorophenoxyacetate-grown Alcaligenes eutrophus JMP 134 or the constitutive derivative JMP 134-1 via the ortho pathway into dimethylmuconolactones as dead-end products. Formation of two distinct lactones from 3,4-dimethylphenol is indicative of 2- as well as 6-hydroxylation. Induction of the meta-cleavage pathway by 2,3- and 3,4-dimethylphenols resulted in growth and no accumulation of products. In contrast, 3,5-dimethylphenol is not metabolized by the meta-cleavage pathway.  相似文献   

12.
Abstract 2,4-Dichlorophenoxyacetate-grown cells of Alcaligenes eutrophus JMP134 [1] metabolized 4-methylphenoxyacetate via a modified ortho -cleavage pathway. 4-Carboxymethyl-4-methylbut-2-en-1,4-olide (4-methyl-2-enelactone), 4-carboxymethyl-3-methylbut-2-en-1,4-olide (3-methyl-2-enelactone) and 4-methyl-3-oxoadipate, were identified as intermediates.  相似文献   

13.
The bacterium Alcaligenes eutrophus JMP134(pJP4) degrades trichloroethylene (TCE) by a chromosomal phenol-dependent pathway and by the plasmid-encoded 2,4-dichlorophenoxyacetic acid pathway. The two pathways were independent and exhibited different rates of removal and capacities for quantity of TCE removed. The phenol-dependent pathway was more rapid (0.2 versus 0.06 nmol of TCE removed per min per mg of protein) and consumed all detectable TCE. The 2,4-dichlorophenoxyacetic acid-dependent pathway removed 40 to 60% of detectable TCE.  相似文献   

14.
The bacterium Alcaligenes eutrophus JMP134(pJP4) degrades trichloroethylene (TCE) by a chromosomal phenol-dependent pathway and by the plasmid-encoded 2,4-dichlorophenoxyacetic acid pathway. The two pathways were independent and exhibited different rates of removal and capacities for quantity of TCE removed. The phenol-dependent pathway was more rapid (0.2 versus 0.06 nmol of TCE removed per min per mg of protein) and consumed all detectable TCE. The 2,4-dichlorophenoxyacetic acid-dependent pathway removed 40 to 60% of detectable TCE.  相似文献   

15.
The 2,4-dichlorophenoxy acetic acid (2,4-D) degrading plasmid, pJP4, was transferred into Rhizobium trifolii ANU843 from its nature host Alcaligenes eutrophus JMP134 by conjugation. The ability to degrade 2,4-D was expressed in the transconjugant ANU843p as shown by a total loss of UV-absorbent compounds and by gas chromatographic analysis. However, the transconjugant was unable to grow on 2,4-D alone. When the transconjugant strain ANU843p was inoculated onto white and subterranean clover plants in laboratory trials, the transconjugant retained the capacity of nodulation, but the nitrogen-fixation activity was diminished, particularly in the case of subterranean clover. The plasmid in the transconjugant was stable in nodules for at least nine weeks after inoculation and could be of value in applications requiring the protection or removal of the 2,4-D involving cometabolism with plant substrates.  相似文献   

16.
Plasmid pJP4 permits its host bacterium, strain JMP134, to degrade and utilize as sole sources of carbon and energy 3-chlorobenzoate and 2,4-dichlorophenoxyacetic acid (R. H. Don and J. M. Pemberton, J. Bacteriol. 145:681-686, 1981). Mutagenesis of pJP4 by transposons Tn5 and Tn1771 enabled localization of five genes for enzymes involved in these catabolic pathways. Four of the genes, tfdB, tfdC, tfdD, and tfdE, encoded 2,4-dichlorophenol hydroxylase, dichlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and chlorodienelactone hydrolase, respectively. No function has been assigned to the fifth gene, tfdF, although it may encode a trans-chlorodiene-lactone isomerase. Inactivation of genes tfdC, tfdD, and tfdE, which encode the transformation of dichlorocatechol to chloromaleylacetic acid, prevented host strain JMP134 from degrading both 3-chlorobenzoate and 2,4-dichlorophenoxyacetic acid, which indicates that the pathways for these two substrates utilize common enzymes for the dissimilation of chlorocatechols. Studies with cloned catabolic genes from pJP4 indicated that whereas all essential steps in the degradation of 2,4-dichlorophenoxyacetic acid are plasmid encoded, the conversion of 3-chlorobenzoate to chlorocatechol is specified by chromosomal genes.  相似文献   

17.
18.
Alcaligenes eutrophus JMP134 metabolizes 3-chlorobenzoate via 3- (3CC) and 4-chlorocatechol (4CC) as central metabolites. Whereas 4CC was efficiently degraded without a build-up of significant quantities of intermediates, substantial amounts of 2-chloro-cis,cis-muconate (2CM) formed from 3CC were excreted as a result of the poor activity of dichloromuconate cycloisomerase for this compound. This pathway bottleneck can, using appropriate fermentation conditions, be exploited in the production of 2CM. Correspondence to: D. H. Pieper  相似文献   

19.
Plasmid pJP4 of Alcaligenes eutrophus JMP134 encodes the degradation of 2,4-dichlorophenoxyacetic acid. A 1.2-kb BamHI-XhoI region of the restriction fragment BamHI-E has been proposed to contain the regulatory gene tfdR (A. R. Harker, R. H. Olsen, and R. J. Seidler, J. Bacteriol. 171:314-320, 1989; B. Kaphammer, J. J. Kukor, and R. H. Olsen, J. Bacteriol. 172:2280-2286, 1990). When sequenced and analyzed, the region is shown to contain two incomplete open reading frames (ORFs) positioned divergently. The complete DNA sequence for one of the two ORFs was obtained by sequencing the adjacent restriction fragment BamHI-F. The DNA sequence reveals 100% identify with the regulatory gene tfdS of pJP4. An XbaI-PstI fragment, containing the complete ORF, encodes a 32,000-Da protein which binds to the promoter regions upstream from tfdA and tfdDII. The deduced amino acid sequence of the complete ORF shows similarity with sequences of activator proteins TcbR, CatM, and CatR of the LysR family. The complete ORF represents the regulatory gene tfdR. The deduced amino acid sequence of the incomplete ORF, situated divergently from tfdR, indicates similarity to chloromuconate cycloisomerases produced by genes tfdD and tcbD of plasmids pJP4 and pP51, respectively. This ORF is identified as part of a putative isofunctional gene, tfdDII.  相似文献   

20.
An enzyme specifically induced during 4-methylmuconolactone metabolism by Alcaligenes eutrophus JMP 134 and that exhibited muconolactone isomerizing activity was purified to homogeneity. The enzyme, involved in the isomerization of 3-methylmuconolactone had a high degree of sequence similarity with muconolactone isomerase of Alcaligenes eutrophus JMP 134 and other previously described muconolactone isomerases of the 3-oxoadipate pathway. Kinetic analysis showed that the enzyme has a substrate spectrum and a reaction mechanism similar to those of the muconolactone isomerase, but that it has distinct kinetic properties. Received: 5 November 1996 / Accepted: 13 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号