首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Johnson T 《Genetics》1999,151(4):1621-1631
Natural selection acts in three ways on heritable variation for mutation rates. A modifier allele that increases the mutation rate is (i) disfavored due to association with deleterious mutations, but is also favored due to (ii) association with beneficial mutations and (iii) the reduced costs of lower fidelity replication. When a unique beneficial mutation arises and sweeps to fixation, genetic hitchhiking may cause a substantial change in the frequency of a modifier of mutation rate. In previous studies of the evolution of mutation rates in sexual populations, this effect has been underestimated. This article models the long-term effect of a series of such hitchhiking events and determines the resulting strength of indirect selection on the modifier. This is compared to the indirect selection due to deleterious mutations, when both types of mutations are randomly scattered over a given genetic map. Relative to an asexual population, increased levels of recombination reduce the effects of beneficial mutations more rapidly than those of deleterious mutations. However, the role of beneficial mutations in determining the evolutionarily stable mutation rate may still be significant if the function describing the cost of high-fidelity replication has a shallow gradient.  相似文献   

2.
Mildly deleterious mutation has been invoked as a leading explanation for a diverse array of observations in evolutionary genetics and molecular evolution and is thought to be a significant risk of extinction for small populations. However, much of the empirical evidence for the deleterious-mutation process derives from studies of Drosophila melanogaster, some of which have been called into question. We review a broad array of data that collectively support the hypothesis that deleterious mutations arise in flies at rate of about one per individual per generation, with the average mutation decreasing fitness by about only 2% in the heterozygous state. Empirical evidence from microbes, plants, and several other animal species provide further support for the idea that most mutations have only mildly deleterious effects on fitness, and several other species appear to have genomic mutation rates that are of the order of magnitude observed in Drosophila. However, there is mounting evidence that some organisms have genomic deleterious mutation rates that are substantially lower than one per individual per generation. These lower rates may be at least partially reconciled with the Drosophila data by taking into consideration the number of germline cell divisions per generation. To fully resolve the existing controversy over the properties of spontaneous mutations, a number of issues need to be clarified. These include the form of the distribution of mutational effects and the extent to which this is modified by the environmental and genetic background and the contribution of basic biological features such as generation length and genome size to interspecific differences in the genomic mutation rate. Once such information is available, it should be possible to make a refined statement about the long-term impact of mutation on the genetic integrity of human populations subject to relaxed selection resulting from modern medical procedures.  相似文献   

3.
Evidence is mounting that mutation rates are sufficiently high for deleterious alleles to be a major evolutionary force affecting the evolution of sex, the maintenance of genetic variation, and many other evolutionary phenomena. Though point estimates of mutation rates are improving, we remain largely ignorant of the biological factors affecting these rates at the individual level. Of special importance is the possibility that mutation rates are condition-dependent with low-condition individuals experiencing more mutation. Theory predicts that such condition dependence would dramatically increase the rate at which populations adapt to new environments and the extent to which populations suffer from mutation load. Despite its importance, there has been little study of this phenomenon in multicellular organisms. Here, we examine whether DNA repair processes are condition-dependent in Drosophila melanogaster. In this species, damaged DNA in sperm can be repaired by maternal repair processes after fertilization. We exposed high- and low-condition females to sperm containing damaged DNA and then assessed the frequency of lethal mutations on paternally derived X chromosomes transmitted by these females. The rate of lethal mutations transmitted by low-condition females was 30% greater than that of high-condition females, indicating reduced repair capacity of low-condition females. A separate experiment provided no support for an alternative hypothesis based on sperm selection.  相似文献   

4.
Populations of RNA viruses are often characterized by abundant genetic variation. However, the relative fitness of these mutations is largely unknown, although this information is central to our understanding of viral emergence, immune evasion, and drug resistance. Here we develop a phylogenetic method, based on the distribution of nonsynonymous and synonymous changes, to assess the relative fitness of polymorphisms in the structural genes of 143 RNA viruses. This reveals that a substantial proportion of the amino acid variation observed in natural populations of RNA viruses comprises transient deleterious mutations that are later purged by purifying selection, potentially limiting virus adaptability. We also demonstrate, for the first time, the existence of a relationship between amino acid variability and the phylogenetic distribution of polymorphisms. From this relationship, we propose an empirical threshold for the maximum viable deleterious mutation load in RNA viruses.  相似文献   

5.
A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations. However, models with strong positive selection on nonsynonymous mutations and little negative selection predict a stronger negative correlation between neutral diversity and nonsynonymous divergence than observed in the actual data, supporting the importance of negative, rather than positive, selection throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations.  相似文献   

6.
Although many studies provide examples of evolutionary processes such as adaptive evolution, balancing selection, deleterious variation and genetic drift, the relative importance of these selective and stochastic processes for phenotypic variation within and among populations is unclear. Theoretical and empirical studies from humans as well as natural animal and plant populations have made progress in examining the role of these evolutionary forces within species. Tentative generalizations about evolutionary processes across species are beginning to emerge, as well as contrasting patterns that characterize different groups of organisms. Furthermore, recent technical advances now allow the combination of ecological measurements of selection in natural environments with population genetic analysis of cloned QTLs, promising advances in identifying the evolutionary processes that influence natural genetic variation.  相似文献   

7.
The vast majority of mutations are deleterious and are eliminated by purifying selection. Yet in finite asexual populations, purifying selection cannot completely prevent the accumulation of deleterious mutations due to Muller's ratchet: once lost by stochastic drift, the most-fit class of genotypes is lost forever. If deleterious mutations are weakly selected, Muller's ratchet can lead to a rapid degradation of population fitness. Evidently, the long-term stability of an asexual population requires an influx of beneficial mutations that continuously compensate for the accumulation of the weakly deleterious ones. Hence any stable evolutionary state of a population in a static environment must involve a dynamic mutation-selection balance, where accumulation of deleterious mutations is on average offset by the influx of beneficial mutations. We argue that such a state can exist for any population size N and mutation rate U and calculate the fraction of beneficial mutations, ε, that maintains the balanced state. We find that a surprisingly low ε suffices to achieve stability, even in small populations in the face of high mutation rates and weak selection, maintaining a well-adapted population in spite of Muller's ratchet. This may explain the maintenance of mitochondria and other asexual genomes.  相似文献   

8.
C A Wise  M Sraml  S Easteal 《Genetics》1998,148(1):409-421
To test whether patterns of mitochondrial DNA (mtDNA) variation are consistent with a neutral model of molecular evolution, nucleotide sequences were determined for the 1041 bp of the NADH dehydrogenase subunit 2 (ND2) gene in 20 geographically diverse humans and 20 common chimpanzees. Contingency tests of neutrality were performed using four mutational categories for the ND2 molecule: synonymous and nonsynonymous mutations in the transmembrane regions, and synonymous and nonsynonymous mutations in the surface regions. The following three topological mutational categories were also used: intraspecific tips, intraspecific interiors, and interspecific fixed differences. The analyses reveal a significantly greater number of nonsynonymous polymorphisms within human transmembrane regions than expected based on interspecific comparisons, and they are inconsistent with a neutral equilibrium model. This pattern of excess nonsynonymous polymorphism is not seen within chimpanzees. Statistical tests of neutrality, such as TAJIMA''s D test, and the D and F tests proposed by FU and LI, indicate an excess of low frequency polymorphisms in the human data, but not in the chimpanzee data. This is consistent with recent directional selection, a population bottleneck or background selection of slightly deleterious mutations in human mtDNA samples. The analyses further support the idea that mitochondrial genome evolution is governed by selective forces that have the potential to affect its use as a "neutral" marker in evolutionary and population genetic studies.  相似文献   

9.
Payseur BA  Nachman MW 《Gene》2002,300(1-2):31-42
Theoretical and empirical work indicates that patterns of neutral polymorphism can be affected by linked, selected mutations. Under background selection, deleterious mutations removed from a population by purifying selection cause a reduction in linked neutral diversity. Under genetic hitchhiking, the rise in frequency and fixation of beneficial mutations also reduces the level of linked neutral polymorphism. Here we review the evidence that levels of neutral polymorphism in humans are affected by selection at linked sites. We then discuss four approaches for distinguishing between background selection and genetic hitchhiking based on (i) the relationship between polymorphism level and recombination rate for neutral loci with high mutation rates, (ii) relative levels of variation on the X chromosome and the autosomes, (iii) the frequency distribution of neutral polymorphisms, and (iv) population-specific patterns of genetic variation. Although the evidence for selection at linked sites in humans is clear, current methods and data do not allow us to clearly assess the relative importance of background selection and genetic hitchhiking in humans. These results contrast with those obtained for Drosophila, where the signals of positive selection are stronger.  相似文献   

10.
Pálsson S 《Hereditas》2004,141(1):74-80
Deleterious mutations affect genetic variation at linked neutral loci. Neutral variation can be reduced due to background selection, but in small population and with tight linkage such variation may increase due to associative overdominance. Here I report the results of computer simulations of diploid genotypes in small populations, where I look at the effect of deleterious mutations and linkage on comparisons of intra- and interspecific variation. Each chromosome consisted of 2000 loci where deleterious and neutral mutations occurred. The ratio of nonsynonymous to synonymous substitution rates (Ka/Ks) either increases with tight linkage or is unaffected, depending on the strength of selection. The ratio of the numbers of segregating mutations to the number of fixed mutations decreases under the conditions leading to background selection but can increase at tight linkage. Numbers of segregating sites (Sn) are less affected than nucleotide site diversity (pi), pi reduces more than Sn at intermediate linkage, but pi increases more than Sn when linkage is tight. Similar effects as found for Sn and pi are observed for heterozygosity and variance in allele size of tandem repeat loci.  相似文献   

11.
Pathogen species with high mutation rates are likely to accumulate deleterious mutations that reduce their reproductive potential within the host. By altering the within-host growth rate of the pathogen, the deleterious mutation load has the potential to affect epidemiological properties such as prevalence, mean pathogen load, and the mean duration of infections. Here, I examine an epidemiological model that allows for multiple segregating mutations that affect within-host replication efficiency. The model demonstrates a complex range of outcomes depending on pathogen mutation rate, including two distinct, widely separated mutation rates associated with high pathogen prevalence. The low mutation rate prevalence peak is associated with small amounts of genetic diversity within the pathogen population, relatively stable prevalence and infection dynamics, and genetic variation partitioned between hosts. The high mutation rate peak is characterized by considerable genetic diversity both within and between hosts, relatively frequent invasions by more virulent types, and is qualitatively similar to an RNA virus quasispecies. The two prevalence peaks are separated by a valley where natural selection favors evolution toward the optimal within-host state, which is associated with high virulence and relatively rapid host mortality. Both chronic and acute infections are examined using stochastic forward simulations.  相似文献   

12.
Mutation is the source of both beneficial adaptive variation and deleterious genetic load, fueling the opposing selective forces than shape mutation rate evolution. This dichotomy is well illustrated by the evolution of the mutator phenotype, a genome-wide 10- to 100-fold increase in mutation rate. This phenotype has often been observed in clonally expanding populations exposed to novel or frequently changing conditions. Although studies of both experimental and natural populations have shed light on the evolutionary forces that lead to the spread of the mutator allele through a population, significant gaps in our understanding of mutator evolution remain. Here we use an experimental evolution approach to investigate the conditions required for the evolution of a reduction in mutation rate and the mechanisms by which populations tolerate the accumulation of deleterious mutations. We find that after ~6,700 generations, four out of eight experimental mutator lines had evolved a decreased mutation rate. We provide evidence that the accumulation of deleterious mutations leads to selection for reduced mutation rate clones in populations of mutators. Finally, we test the long-term consequences of the mutator phenotype, finding that mutator lines follow different evolutionary trajectories, some of which lead to drug resistance.  相似文献   

13.
Mitochondrial genomes encode fundamental subunits of the basic energy producing machinery of eukaryotic cells that are under strong functional constraint. Paradoxically, these genes evolve rapidly in general, and there is substantial variation in evolutionary rates among genes within genomes. In order to investigate spatial variation in selection intensity, we conducted tests of neutrality using ratios of synonymous to nonsynonymous substitutions (dN/dS = omega) on numerous protein gene segments from fishes and mammals. Values of omega were very low for nearly all genomic regions. However, values of both omega and dN varied in a clinal pattern with increasing distance from the light-strand origin of replication. Spatial heterogeneity of nonsynonymous substitution rates exhibits a significantly positive correlation with variation in mutation rates that are related to the mode of mitochondrial DNA replication. The finding that nonsynonymous substitution rates are proportional to mutation rates is expected if a majority of substitutions are selectively neutral or slightly deleterious. Spatial patterns of among-gene variation in nonsynonymous rates were highly similar between fishes and mammals, suggesting that forces governing mitochondrial gene evolution have remained relatively constant over 450 Myr of vertebrate evolution. Conservation of substitution patterns despite major shifts in thermal habit and metabolic demands among taxa implicates a conserved replication mechanism controlling relative mutation rates as a major determinant of mitochondrial protein evolution.  相似文献   

14.
This paper explores the evolutionary implications of the enormous variability that characterizes populations of RNA viruses and retroviruses. It begins by examining the magnitude of genetic variation in both natural and experimental populations. In natural populations, differences arise even within individual infected patients, with the per-site nucleotide diversity at this level ranging from < 1% to 6%. In laboratory populations, two viruses sampled from the same clone differed by ∼0.7% in their fitness. Three different mechanisms that may be important in maintaining viral genetic variability were tested: (1) Fisher's fundamental theorem, to compare the observed rate of fitness change with the extent of fitness-related variation within the same experimental populations; (2) magnitude of genomic mutation rate, to assess whether it correlated with fitness-related variation, as predicted by the mutation-selection balance hypothesis; (3) frequency-dependent selection, which affords rare genotypes an advantage. The paper concludes with a discussion of two evolutionary consequences of variability: the fixation of deleterious mutations by drift in small populations and the role of clonal interference in large ones.  © 2003 The Linnean Society of London. Biological Journal of the Linnean Society , 2003, 79 , 17–26.  相似文献   

15.
Evolutionary theory suggests that low mutation rates should favor the persistence of asexuals. Additionally, given the observation that most nonneutral mutations are deleterious, asexuality may strengthen selection for reduced mutation rates. This reciprocal relationship raises the possibility of a positive feedback loop between sex and mutation rate. We explored the consequences of this evolutionary feedback with an individual‐based model in which a sexual population is continually challenged by the introduction of asexual clones. We found that asexuals were more likely to spread in a population when mutation rates were able to evolve relative to a model in which mutation rates were held constant. In fact, under evolving mutation rates, asexuals were able to spread to fixation even when sexuals faced no cost of sex whatsoever. The added success of asexuals was the result of their ability to evolve lower mutation rates and thereby slow the process of mutation accumulation that otherwise limited their spread. Given the existence of ample mutation rate variation in natural populations, our findings show that the evolutionary feedback between sex and mutation rate may intensify the “paradox of sex,” supporting the argument that deleterious mutation accumulation alone is likely insufficient to overcome the reproductive advantage of asexual competitors in the short term.  相似文献   

16.
Ajie BC  Estes S  Lynch M  Phillips PC 《Genetics》2005,170(2):655-660
Spontaneous mutations play a fundamental role in the maintenance of genetic variation in natural populations, the nature of inbreeding depression, the evolution of sexual reproduction, and the conservation of endangered species. Using long-term mutation-accumulation lines of the nematode Caenorhabditis elegans, we estimate the rate and magnitude of mutational effects for a suite of behaviors characterizing individual chemosensory responses to a repellant stimulus. In accordance with evidence that the vast majority of mutations are deleterious, we find that behavioral responses degrade over time as a result of spontaneous mutation accumulation. The rate of mutation for behavioral traits is roughly of the same order or slightly smaller than those previously estimated for reproductive traits and the average size of the mutational effects is also comparable. These results have important implications for the maintenance of genetic variation for behavior in natural populations as well as for expectations for behavioral change within endangered species and captive populations.  相似文献   

17.
18.
Evolutionary forces like Hill-Robertson interference and negative epistasis can lead to deleterious mutations being found on distinct haplotypes. However, the extent to which these forces depend on the selection and dominance coefficients of deleterious mutations and shape genome-wide patterns of linkage disequilibrium (LD) in natural populations with complex demographic histories has not been tested. In this study, we first used forward-in-time simulations to predict how negative selection impacts LD. Under models where deleterious mutations have additive effects on fitness, deleterious variants less than 10 kb apart tend to be carried on different haplotypes relative to pairs of synonymous SNPs. In contrast, for recessive mutations, there is no consistent ordering of how selection coefficients affect LD decay, due to the complex interplay of different evolutionary effects. We then examined empirical data of modern humans from the 1000 Genomes Project. LD between derived alleles at nonsynonymous SNPs is lower compared to pairs of derived synonymous variants, suggesting that nonsynonymous derived alleles tend to occur on different haplotypes more than synonymous variants. This result holds when controlling for potential confounding factors by matching SNPs for frequency in the sample (allele count), physical distance, magnitude of background selection, and genetic distance between pairs of variants. Lastly, we introduce a new statistic HR(j) which allows us to detect interference using unphased genotypes. Application of this approach to high-coverage human genome sequences confirms our finding that nonsynonymous derived alleles tend to be located on different haplotypes more often than are synonymous derived alleles. Our findings suggest that interference may play a pervasive role in shaping patterns of LD between deleterious variants in the human genome, and consequently influences genome-wide patterns of LD.  相似文献   

19.
20.
The long-term response to directional selection and its selection limit are derived for a quantitative character that is controlled by pleiotropic mutations with direct deleterious effect on fitness. Directional selection is assumed to be weaker than the selection acting directly on mutations via deleterious effects (purging selection), which renders all mutations to eventual elimination. The analysis embedding this restrictive assumption indicates that the evolutionary response of the character starting from an equilibrium state, in which mutation and purging selection balance but no directional selection is operating, decreases monotonically with time at an exponential rate. And the fading rate of responses is mostly determined by the direct deleterious effect. Contrary to the expectation by the standard selection limit theory based on fixation of extant genetic variation, the present model predicts that the selection limit depends on the intensity of directional selection, the limit being proportional to the ratio of the directional selection intensity to the direct deleterious effect. A slightly larger genetic variance is maintained at the selection limit than would be without directional selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号