首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degradation of bisphenol A and nonylphenol involves the unusual rearrangement of stable carbon-carbon bonds. Some nonylphenol isomers and bisphenol A possess a quaternary α-carbon atom as a common structural feature. The degradation of nonylphenol in Sphingomonas sp. strain TTNP3 occurs via a type II ipso substitution with the presence of a quaternary α-carbon as a prerequisite. We report here a new degradation pathway of bisphenol A. Consequent to the hydroxylation at position C-4, according to a type II ipso substitution mechanism, the C-C bond between the phenolic moiety and the isopropyl group of bisphenol A is broken. Besides the formation of hydroquinone and 4-(2-hydroxypropan-2-yl)phenol as the main metabolites, further compounds resulting from molecular rearrangements consistent with a carbocationic intermediate were identified. Assays with resting cells or cell extracts of Sphingomonas sp. strain TTNP3 under an 18O2 atmosphere were performed. One atom of 18O2 was present in hydroquinone, resulting from the monooxygenation of bisphenol A and nonylphenol. The monooxygenase activity was dependent on both NADPH and flavin adenine dinucleotide. Various cytochrome P450 inhibitors had identical inhibition effects on the conversion of both xenobiotics. Using a mutant of Sphingomonas sp. strain TTNP3, which is defective for growth on nonylphenol, we demonstrated that the reaction is catalyzed by the same enzymatic system. In conclusion, the degradation of bisphenol A and nonylphenol is initiated by the same monooxygenase, which may also lead to ipso substitution in other xenobiotics containing phenol with a quaternary α-carbon.  相似文献   

2.
Sphingomonas sp. strain TTNP3 degrades 4(3′,5′-dimethyl-3′-heptyl)-phenol and unidentified metabolites that were described previously. The chromatographic analyses of the synthesized reference compound and the metabolites led to their identification as 2(3′,5′-dimethyl-3′-heptyl)-1,4-benzenediol. This finding indicates that the nonylphenol metabolism of this bacterium involves unconventional degradation pathways where an NIH shift mechanism occurs.  相似文献   

3.
A sequencing batch reactor (SBR) system is demonstrated to biologically remove nitrogen, phosphorus and chemical oxygen demand (COD) to very low levels from abattoir wastewater. Each 6 h cycle contained three anoxic/anaerobic and aerobic sub-cycles with wastewater fed at the beginning of each anoxic/anaerobic period. The step-feed strategy was applied to avoid high-level build-up of nitrate or nitrite during nitrification, and therefore to facilitate the creation of anaerobic conditions required for biological phosphorus removal. A high degree removal of total phosphorus (>98%), total nitrogen (>97%) and total COD (>95%) was consistently and reliably achieved after a 3-month start-up period. The concentrations of total phosphate and inorganic nitrogen in the effluent were consistently lower than 0.2 mg P l−1 and 8 mg N l−1, respectively. Fluorescence in situ hybridization revealed that the sludge was enriched in Accumulibacter spp. (20–40%), a known polyphosphate accumulating organism, whereas the known glycogen accumulating organisms were almost absent. The SBR received two streams of abattoir wastewater, namely the effluent from a full-scale anaerobic pond (75%) and the effluent from a lab-scale high-rate pre-fermentor (25%), both receiving raw abattoir wastewater as feed. The pond effluent contained approximately 250 mg N l−1 total nitrogen and 40 mg P l−1 of total phosphorus, but relatively low levels of soluble COD (around 500 mg l−1). The high-rate lab-scale pre-fermentor, operated at 37°C and with a sludge retention time of 1 day, proved to be a cheap and effective method for providing supplementary volatile fatty acids allowing for high-degree of biological nutrient removal from abattoir wastewater.  相似文献   

4.
The activated sludge membrane bioreactor (MBR) has been shown to have some advantages for the processing and reclamation of domestic wastewater. We hypothesized that certain microorganisms, chosen for their abilities to decompose the chemical components of raw sewage, would, when coupled with the MBR, significantly improve the stability and efficiency of this system. We selected environmental bacterial strains which oxidize ammonia and nitrites and produce protease, amylase, and cellulase for the development and testing of a novel biologically enhanced MBR (eMBR). We compared the eMBR with the activated sludge MBR. With the eMBR, the average values of effluent quality were: chemical oxygen demand (COD), 40 mg/l(average efficiency of removal 90.0%); and NH4 +–N, 0.66 mg/l(average efficiency of removal 99.4%). Effluent qualities met the standard and were stable during the entire 90 days of this study. For the activated sludge MBR, the COD removal rate was 91.7%, and the NH4 +–N removal (94.8%) was less than that of the eMBR. Start-up time for the eMBR was only 24–48 h, much shorter than the 7–8 days required to initiate function of the standard MBR. The biomass concentrations of total heterotrophic bacteria and autotrophic bacteria in the eMBR did not fluctuate significantly during the course of the study. Various kinds of microorganisms will establish an ecological balance in the reactor. Compared with the activated sludge MBR, the eMBR not only produced an excellent and stable quality of effluent but also resulted in a shorter time to start-up and significantly improved the efficiency of NH4 +–N removal.  相似文献   

5.
Biodegradation of nonylphenol in a continuous packed-bed bioreactor   总被引:1,自引:0,他引:1  
A packed bed bioreactor, with 170 ml glass bead carriers and 130 ml medium, was tested for the removal of the endocrine disrupter, nonylphenol, with a Sphingomonas sp. The bioreactor was first continuously fed with medium saturated with nonylphenol in an attempt to simulate groundwater pollution. At best, nonylphenol was degraded by 99.5% at a feeding rate of 69 ml h–1 and a removal rate of 4.3 mg nonylphenol day–1, resulting in a 7.5-fold decrease in effluent toxicity according to the Microtox. The bioreactor was then fed with soil leachates at 69 ml h–1 from artificially contaminated soil (1 g nonylphenol kg–1 soil) and a real contaminated soil (0.19 g nonylphenol kg–1 soil). Nonylphenol was always completely removed from the leachates of the two soils. It was removed by 99% from the artificial soil but only 62% from real contaminated soil after 18 and 20 d of treatment, respectively, showing limitation due to nonylphenol adsorption.  相似文献   

6.
A pot culture experiment was conducted for 90 days for the evaluation of oil and total petroleum hydrocarbon (TPH) degradation in vegetated and non-vegetated treatments of real-field oil-sludge-contaminated soil. Five different treatments include (T1) control, 2% oil-sludge-contaminated soil; (T2), augmentation of microbial consortium; (T3), Vertiveria zizanioides; (T4), bio-augmentation along with V. zizanioides; and (T5), bio-augmentation with V. zizanioides and bulking agent. During the study, oil reduction, TPH, and degradation of its fractions were determined. Physico-chemical and microbiological parameters of soil were also monitored simultaneously. At the end of the experimental period, oil content (85%) was reduced maximally in bio-augmented rhizospheric treatments (T4 and T5) as compared to control (27%). TPH reduction was observed to be 88 and 89% in bio-augmented rhizospheric soil (T4 and T5 treatments), whereas in non-rhizospheric and control (T2 and T1), TPH reduction was 78 and 37%, respectively. Degradation of aromatic fraction after 90 days in bio-augmented rhizosphere of treatments T4 and T5 was found to 91 and 92%, respectively. In microbial (T2) and Vertiveria treatments (T3), degradation of aromatic fraction was 83 and 68%, respectively. A threefold increase in soil dehydrogenase activity and noticeable changes in organic carbon content and water-holding capacity were also observed which indicated maximum degradation of oil and its fractions in combined treatment of plants and microbes. It is concluded that the plant–microbe soil system helps to restore soil quality and can be used as an effective tool for the remediation of oil-sludge-contaminated sites.  相似文献   

7.
Whole-cell immobilization of selenate-respiring Sulfurospirillum barnesii in polyacrylamide gels was investigated to allow the treatment of selenate contaminated (790 μg Se × L−1) synthetic wastewater with a high molar excess of nitrate (1,500 times) and sulfate (200 times). Gel-immobilized S. barnesii cells were used to inoculate a mesophilic (30°C) bioreactor fed with lactate as electron donor at an organic loading rate of 5 g chemical oxygen demand (COD) × L−1 day−1. Selenate was reduced efficiently (>97%) in the nitrate and sulfate fed bioreactor, and a minimal effluent concentration of 39 μg Se × L−1 was obtained. Scanning electron microscopy with energy dispersive X-ray (SEM–EDX) analysis revealed spherical bioprecipitates of ≤2 μm diameter mostly on the gel surface, consisting of selenium with a minor contribution of sulfur. To validate the bioaugmentation success under microbial competition, gel cubes with immobilized S. barnesii cells were added to an Upflow Anaerobic Sludge Bed (UASB) reactor, resulting in earlier selenate (24 hydraulic retention times (HRTs)) and sulfate (44 HRTs) removal and higher nitrate/nitrite removal efficiencies compared to a non-bioaugmented control reactor. S. barnesii was efficiently immobilized inside the UASB bioreactors as the selenate-reducing activity was maintained during long-term operation (58 days), and molecular analysis showed that S. barnesii was present in both the sludge bed and the effluent. This demonstrates that gel immobilization of specialized bacterial strains can supersede wash-out and out-competition of newly introduced strains in continuous bioaugmented systems. Eventually, proliferation of a selenium-respiring specialist occurred in the non-bioaugmented control reactor, resulting in simultaneous nitrate and selenate removal during a later phase of operation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
A modified ludzack ettinger reactor (MLE) combined with a post-denitrification reactor (PDMLE) using electroflotation (EF) as a secondary clarifier was investigated on its feasibility and process performance. Results indicated that higher mixed liquor suspended solids (MLSS) concentrations in bioreactor (5,350 ± 352 mg L−1) were maintained via the highly concentrated return sludge (16,771 ± 991 mg L−1) from the EF clarifier and the effluent suspended solids (SS) concentrations continued relatively low, representing effluent SS concentration of 1.71 ± 1.16 mg L−1, compared with GS-A2O process during the operation of four months. The denitrification was improved by combining MLE process with post-denitrification based on endogenous decay (i.e. no additional carbon source was added), resulting in the removal efficiencies of TN were about 91 and 59% for the influent C/N ratio of 10 and 5, respectively, revealing relatively high nitrogen removal as compared with EF-A2O and gravity settling (GS)-A2O processes as a control. The nitrogen balance analysis indicates that pre-denitrification and post-denitrification contributed to 78 and 22% of TN removed, respectively.  相似文献   

9.
A mixed microbial culture capable of growing aerobically on tetrahydrofuran (THF) as a sole carbon and energy source was used as the inoculum in a 10 l working volume membrane bioreactor. Following start-up, the reactor was operated in batch mode for 24 h and then switched to continuous feed with 100% biomass recycle. On average, greater than 96% of THF fed to the reactor was removed during the 8-month study. THF loading rates ranged from 0.62 to 9.07 g l–1 day–1 with a hydraulic retention time of 24 h. THF concentrations as high as 800 mg/l were tolerated by the culture. Biomass production averaged 0.28 kg total suspended solids/kg chemical oxygen demand removed, i.e., comparable to a conventional wastewater treatment process. Periodic batch wasting resulted in a solids retention time of 7–14 days. Reactor biomass typically ranged from 4 to 10 g/l volatile suspended solids and the effluent contained no solids. Pure THF-degrading cultures were isolated from the mixed culture based on morphological characteristics, Gram-staining and THF degradation. Based on 16S rDNA analysis the isolates were identified as Pseudonocardia sp. M1 and Rhodococcus ruber M2.  相似文献   

10.
For better operational control of the completely mixed oxygen activated sludge process (CMOAS), a study concerning the kinetics, performance, and operational stability of the Ramanathan-Gaudy model was conducted. Short-term experiments were conducted at various dilution rates (1/9, 1/6, 1/3, 1/1.5, and 1/1.0 hr?1) by using two recycle solids concentration values (5000 and 10,000 mg/liter). The influent substrate was an actual industrial organic wastewater (soft drink waste) and its concentration was maintained at 1000 mg/liter COD. The hydraulic recycle ratio, α, was maintained at 0.30. It was found that for CMOAS system with constant recycle cell concentration, a “steady state” with respect to reactor biological solids and effluent COD at different dilution rates could be attained. No appreciable dilute-out of reactor biological solids and substrate was observed up to the dilution rate of 1 hr?1 for both systems of different XR (5000 and 10,000 mg/liter). For the system of XR = 5000 mg/liter, except the dilution rate of hr?1, the effluent filtrate COD was lower than 100 mg/liter, the aerator biological solids concentration was about 1550 mg/liter, and the COD removal efficiency was higher than 90% for all dilution rates. For the system of XR = 10,000 mg/liter, the effluent filtrate COD was lower than 71 mg/liter, the aerator biological solids concentration was about 2750 mg/liter, and the COD removal efficiency was higher than 90% throughout all the dilution rates selection in the present study. The value of the Sludge Volume Index (SVI) was the range of 37.0 to 58.5 and provided good settleability of sludge. The sludge yield was 0.53 for the system of XR = 5000 mg/liter and 0.57 for the system of XR = 10,000 mg/liter. The carbohydrate and the protein content of the cells were 10.1–21.6% and 35.6–50.6%, respectively. For predicting the reactor biological solid and effluent COD of the CMOAS system by using the Ramanathan-Gaudy model, two sets of values for the biological kinetic constants should be considered since it provided the best fit of predicted values of the observed values. In the present study, μm = 0.4 hr?1, ks = 92 mg/liter for 1/3 ? D ? 1, and μm = 0.05 hr?1, ks = 11.1 mg/liter for 1/9 ? D < 1/3 were used to calculate the predicted values of reactor biological solid and effluent filtrate COD.  相似文献   

11.
The aim of this study was to evaluate the converged effect of maize and plant growth promoting bacteria on degradation of petroleum hydrocarbons under axenic conditions. Artificially spiked sand with 10 g kg?1 light crude oil was planted with maize alone and in combination with eight bacterial isolates having plant growth promotion and bioremediation potential to observe the dissipation of petroleum hydrocarbons. Results showed remarkable suppression of maize growth and biomass production due to phytotoxicity of the crude oil contamination. However, bio-augmentation of plants with bacteria having ACC-deaminase activity significantly compensated the reduction in plant growth compared to uninoculated plants. The results revealed that plants bio-augmented with PM32Y exhibited significant increase in root length (75%), plant height (74%), and biomass (67%) as compared to uninoculated plants after 60 days of planting. The same bacterium in convergence with maize caused 43% degradation of petroleum hydrocarbons as compared to the unplanted and uninoculated control. Amplification, sequencing and phylogenetic analysis of 16S rRNA gene sequence identified PM32Y bacterium as Bacillus subtilis strain. It is concluded that bio-augmentation of plants with plant growth promoting bacteria having bioremediation potential and ACC-deaminase activity can successfully be used in phytoremediation of petroleum hydrocarbons.  相似文献   

12.
Isolation of a Bacterial Strain Able To Degrade Branched Nonylphenol   总被引:14,自引:3,他引:11       下载免费PDF全文
Conventional enrichment of microorganisms on branched nonylphenol (NP) as only carbon and energy source yielded mixed cultures able to grow on the organic compound. However, plating yielded no single colonies capable, alone or in combination with other isolates, of degrading the NP in liquid culture. Therefore, a special approach was used, referred to as “serial dilution-plate resuspension,” to reduce culture complexity. In this way, one isolate, TTNP3, tentatively identified as a Sphingomonas sp., was found to be able to grow on NP in liquid culture. Remarkably, this isolate was able to be filtered through a 0.45-μm-pore-diameter filter. Moreover, isolate TTNP3 did not form visible colonies on mineral medium with NP, and it formed visible colonies on R2A agar only after a prolonged incubation of 1 week. High-performance liquid chromatography and gas chromatography-mass spectroscopy analysis of the culture media indicated that the strain starts the degradation of NP with a fission of the phenol ring and preferably uses the para isomer of NP and not the ortho isomer. No distinct accumulation of an intermediary product could be observed.  相似文献   

13.
Phototrophic bacterial cells in the effluent from a lighted upflow anaerobic sludge blanket reactor supplied with a medium containing 142 mg S (as SO4 2–) l–1 accumulated a 6.8% w/w oleic acid content in cells and 19 mg cell-bound oleic acid l–1 in the effluent. Pure cultures of Rhodopseudomonas palustris and Blastochloris sulfoviridis isolated from the effluent also accumulated 5.1 and 6.4% w/w oleic acid contents in cells, respectively. The oleic acid content in the cells recovered from the LUASB reactor effluent was related to the phototrophic bacterial population in the LUASB reactor. The inverse relationship was observed in the LUASB reactor between phototrophic bacterial growth and sulfate concentration in the influent.  相似文献   

14.
A laboratory upflow anaerobic sludge blanket reactor, seeded with fine, suspended, bacterial floc with 1.76 g volatile suspended solids/l, was used to treat synthetic methanolic waste. After 180 days of continuous peration, granular sludge with discrete granules of 1 to 2 mm diam. was formed, with 52 g volatile suspended solids/l. Granules were brown, relatively soft and had a settling velocity of 1.61 cm/s. Extracellular polymeric matter extracted from the granular sludge had high carbohydrate content but low nucleic acid content. The ash of the granular sludge contained Na+, K+ and Mg2+ up to 15.0, 11.7 and 3.75 mg/g, respectively. Scanning and transmission electron microscopy revealed that the granular sludge was dominated by methanogens resembling Methanosarcina.The authors are with the Department of Environmental Engineering, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565, Japan  相似文献   

15.
An anaerobic down-flow fluidized bed reactor was inoculated with granular sludge and started-up with sulfate containing synthetic wastewater to promote the formation of a biofilm enriched in sulfate-reducing bacteria (SRB), to produce biogenic sulfide. The start-up was done in two stages operating the reactor in batch for 45 days followed by 85 days of continuous operation. Low-density polyethylene was used as support. The biofilm formation was followed up by biochemical and electron microscopy analyses and the composition of the community was examined by 16S rDNA sequence analysis. Maximum immobilized volatile solids (1.2 g IVS/Lsupport) were obtained after 14 days in batch regime. During the 85 days of continuous operation, the reactor removed up to 80% of chemical oxygen demand (COD), up to 28% of the supplied sulfate and acetate was present in the effluent. Sulfate-reducing activity determined in the biofilm with ethanol or lactate as substrate was 11.7 and 15.3 g COD/g IVS per day, respectively. These results suggested the immobilization of sulfate reducers that incompletely oxidize the substrate to acetate; the phylogenetic analysis of the cloned 16S rDNA gene sequences showed high identity to the genus Desulfovibrio that oxidizes the substrates incompletely. In contrast, in the granular sludge used as inoculum a considerable number of clones showed homology to Methanobacterium and just few clones were close to SRB. The starting-up approach allowed the enrichment of SRB within the diverse community developed over the polyethylene support.  相似文献   

16.
In order to enhance performances of organics removal and nitrification for the treatment of swine wastewater containing high concentration of organic solids and nitrogen than conventional biological nitrogen removal process, a submerged membrane bioreactor (MBR) was followed by an anaerobic upflow bed filter (AUBF) reactor in this research (AUBF–MBR process). The AUBF reactor is a hybrid reactor, which is the combination of an anoxic filter for denitrification and upflow anaerobic sludge blanket (UASB) for acid fermentation. In the AUBF–MBR process, it showed a considerable enhancement of the effluent quality in terms of COD removal and nitrification. The submerged MBR could maintain more than 14,000 mg VSS/L of the biomass concentration. Total nitrogen (T-N) removal efficiency represented 60% when internal recycle ratio was three times of flow-rate (Q), although the nitrification occurred completely. Although the volatile fatty acids produced in AUBF reactor can enhance denitrification rate, but the AUBF–MBR process showed reduction of overall removal efficiency of the nitrogen due to the reduction of carbon source by methane production in the AUBF reactor compared to that of theoretical nitrogen removal efficiency.

Long-term operation of the submerged MBR showed that the throughputs of the submerged MBR were respectively 74, 63, and 31 days at 10, 15, and 30 L/m2 h (LMH) of permeate flux. Resistance to filtration by rejected solid is the primary cause of fouling, however the priority of cake resistance (Rc) and fouling resistance (Rf) with respect to filtration phenomenon was different according to the amount of permeate flux. The submerged MBR, here, achieved a steady-state flux of 15 LMH at 0.4 atm. of trans-membrane pressure (TMP) but the flux can be enhanced in the future because shear force by tangential flow will be greater when multi-layer sheets of membrane were used.  相似文献   


17.
Extracellular ligninolytic enzymes secreted by seven different fungi grown under solid-state fermentation using agro-residue as substrate were extracted through successive extractions. In general, most of the enzymes were recovered during first and second extractions. These extractants were then subjected to ultrafiltration using a 10 kDa membrane for further concentration. The permeates collected after every filtration and the final retentate were analyzed for protein and enzymes. In all the isolates, enzyme concentration was maximum in first retentate, which reduced significantly in second, third, and fourth retentate. Maximum per unit laccase (14.44 U g−1) and MnP production (142.2 U g−1) was observed in Fusarium verticillioides TERIDB16 while maximum LiP production (137.42 U g−1) was in Alternaria gaisen TERIDB6. The retentate was further used for checking its decolorization efficiency of undiluted distillery effluent. The maximum decolorization (37%) was obtained using the enzyme extract of Pleurotus florida EM1303.  相似文献   

18.
A membrane-aerated biofilm reactor (MABR) was developed to degrade acetonitrile (ACN) in aqueous solutions. The reactor was seeded with an adapted activated sludge consortium as the inoculum and operated under step increases in ACN loading rate through increasing ACN concentrations in the influent. Initially, the MABR started at a moderate selection pressure, with a hydraulic retention time of 16 h, a recirculation rate of 8 cm/s and a starting ACN concentration of 250 mg/l to boost the growth of the biofilm mass on the membrane and to avoid its loss by hydraulic washout. The step increase in the influent ACN concentration was implemented once ACN concentration in the effluent showed almost complete removal in each stage. The specific ACN degradation rate achieved the highest at the loading rate of 101.1 mg ACN/g-VSS h (VSS, volatile suspended solids) and then declined with the further increases in the influent ACN concentration, attributed to the substrate inhibition effect. The adapted membrane-aerated biofilm was capable of completely removing ACN at the removal capacity of up to 21.1 g ACN/m2 day, and generated negligible amount of suspended sludge in the effluent. Batch incubation experiments also demonstrated that the ACN-degrading biofilm can degrade other organonitriles, such as acrylonitrile and benzonitrile as well. Denaturing gradient gel electrophoresis studies showed that the ACN-degrading biofilms contained a stable microbial population with a low diversity of sequence of community 16S rRNA gene fragments. Specific oxygen utilization rates were found to increase with the increases in the biofilm thickness, suggesting that the biofilm formation process can enhance the metabolic degradation efficiency towards ACN in the MABR. The study contributes to a better understanding in microbial adaptation in a MABR for biodegradation of ACN. It also highlights the potential benefits in using MABRs for biodegradation of organonitrile contaminants in industrial wastewater.  相似文献   

19.
The primary objective of this study was to evaluate the effects of the organic loading rate on the performance of an up-flow anaerobic sludge blanket (UASB) reactor treating olive mill effluent (OME), based on the following indicators: (i) chemical oxygen demand (COD) removal efficiency; and (ii) effluent variability (phenol, suspended solids, volatile fatty acids, and pH stability). The UASB reactor was operated under different operational conditions (OLRs between 0.45 and 32 kg COD/m3·day) for 477 days. The results demonstrated that the UASB reactor could tolerate high influent COD concentrations. Removal efficiencies for the studied pollution parameters were found to be as follows: COD, 47∼92%; total phenol, 34∼75%; color, 6∼46%; suspended solids, 34∼76%. The levels of VFAs in the influent varied between 310 and 1,750 mg/L. Our measurements of the VFA levels indicated that some of the effluent COD could be attributed to VFAs (principally acetate, butyrate, iso-butyrate, and propionate) in the effluent, which occurred at levels between 345 and 2,420 mg/L. As the OLRs were increased, more VFAs were measured in the effluent. A COD removal efficiency of 90% could be achieved as long as OLR was kept at a level of less than 10 kg COD/m3·day. However, a secondary treatment unit for polishing purposes is necessary to comply with discharge standards.  相似文献   

20.
Sabry T 《Bioresource technology》2008,99(10):4073-4077
The aim of this work was to investigate the resistance to hydraulic shock loads of flocculent versus granular sludge used in UASB reactors treating sewage with high solids content. Step-wise shock loads were conducted through decreasing HRT to examine the extent of reducing this parameter without significantly changing COD removal efficiency of the reactor. The lowest HRT of 4h resulted in only 3-4% reduction in the COD removal efficiency and the effluent contained low VFAs. Both sludge types have been also tested under transient hydraulic shock loads, which represent the wide variations between peak and average sewage flows occurring in small communities (rural areas). Up to 6 times the average flow no significant impact was observed on reactor performance except during and few hours after applying the shock loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号