首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA extraction is the first step in the study of gene isolation and expression. However, it is difficult to extract high quantity and quality RNA from tissues containing large quantities of polysaccharides and polyphenols. Peach (Prunus persica), in addition to containing high levels of polysaccharides and polyphenols, is a challenging starting material for RNA isolation using a single method because of different amounts of those substances in diverse tissues. Based on three reported methods, we developed a modified RNA isolation protocol to solve this problem, leading to high quality and quantity of total RNA from peach mesocarp tissues of fruits which were sampled from all developmental stages and different storage periods, as well as from other tissues including flowers, leaves, stems, and roots. With our modified method, 28–650 μg of total RNA was routinely obtained from per gram of fresh material, gave at least a 1.16-fold improvement by compared with those isolated by other seven methods. The RNA extracts were successfully used in downstream applications such as RT-PCR, RACE, and real-time PCR.  相似文献   

2.
RNA isolation is the first step in the study of gene expression and recombinant protein production. However, the isolation of high quantity and high-quality RNA from tissues containing large amounts of polysaccharides has proven to be a difficult process. Cupressus arizonica pollen, in addition to containing high polysaccharide levels, is a challenging starting material for RNA isolation due to the roughness of the pollen grain’s walls. Here, we describe an improved technique for RNA isolation from C. arizonica pollen grains. The protocol includes a special disruption and homogenization process as well as a two-step modified RNA isolation technique which consists of an acid phenol extraction followed by a final cleanup using a commercial kit. Resulting RNA proved to be free of contaminants as determined by UV spectrophotometry. The quality of the RNA was analyzed on a bioanalyzer and showed visible 25S and 18S bands. This RNA was successfully used in downstream applications such as RT–PCR and phage display library construction.  相似文献   

3.
4.
5.
一种广泛适用的RNA提取方法   总被引:9,自引:0,他引:9  
分离提取高质量的RNA是基因表达、调控与基因工程等研究的基础,而RNase、多糖及多酚类物质严重干扰RNA的分离提取过程.现利用硅藻土对RNase的吸附性,结合PVP、高盐及乙二醇丁醚沉淀等处理,建立了一种广泛适用的RNA提取方法.在富含多糖的玉米胚乳,富含RNase的动物肝脏,多酚多油脂的银杏、麻疯树以及木霉、酵母等10多种RNA提取困难的动、植物与微生物材料中都提取出完整性好,得率高的RNA.RT-PCR实验表明,提取的RNA能够用于后续的分子生物学研究.硅藻土-苯酚法提取RNA的得率是异硫氰酸胍法的3倍多.此外,将分离提取的总RNA经过LiCl与PEG8000加NaCl沉淀步骤有效地去除了大片段RNA,以水稻Osa-mir-156的成熟序列设计特异引物做茎环RT-PCR,结果证明,富集得到的小RNA可以用于miRNA克隆等后续实验.  相似文献   

6.
7.
8.
Introduction – It is prerequisite and crucial to extract RNA with high quality and integrity in order to carry out molecular biology studies in any plant species of a family. Euphorbiaceae members are known for high levels of their waxes, oils with polysaccharides, polyphenolics and secondary metabolites. These conditions are recognised to interfere unfavourably with various methodologies of RNA isolation. Objective – To develop a simple, rapid and reproducible cetyltrimethylamonium bromide (CTAB)‐based protocol, to reduce the time and cost of extraction without reducing quality and yield of RNA extracted from various recalcitrant Euphorbiaceae member plant tissues such as from tree leaves (Hevea brasilensis), woody shrubs leaves (Ricinus communis, Jatropha curcas, Manihot esculenta) and storage root tissue (M. esculenta). Methodology – Simple modifications and fast steps were introduced to the original CTAB protocol. All centrifugation steps were carried out at 4°C at 12000 rpm for 10 min, the sample weight was decreased and usage of spermidine and LiCl was omitted, reducing incubation time prior to RNA precipitation. This rapid CTAB protocol was compared with various RNA isolation methods intended for use with plants rich in polysaccharides and secondary metabolites. Results – The procedure can be completed within 2 h and many samples can be processed at the same time. RNA of high quality could be isolated from all the tissues of species that we tried. The isolated RNA from different species served as a robust template for RT‐PCR analysis. Conclusion – The study has shown that the improvement of a CTAB‐based protocol allows the rapid isolation of high‐quality RNA from various recalcitrant Euphorbiaceae members. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Isolation of high quality RNA from ripening banana fruit tissue is difficult due to high levels of polysaccharides and other substances that interfere when using conventional procedures for RNA isolation. These substances not only decrease the yield but the quality of RNA is almost unusable. We describe here a simple RNA procedure that effectively removes these contaminating substances without affecting the yield. Following this procedure, we routinely obtained 80–150 μg of total RNA per g fresh tissue. The RNA is of good quality and suitable for northern analysis, RT-PCR and cDNA library construction. NBRI publication No. 488(NS).  相似文献   

10.
Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are important regulators of plant development and gene expression. The acquisition of high-quality small RNAs is the first step in the study of its expression and function analysis, yet the extraction method of small RNAs in recalcitrant plant tissues with various secondary metabolites is not well established, especially for tropical and subtropical plant species rich in polysaccharides and polyphenols. Here, we developed a simple and efficient method for high quality small RNAs extraction from recalcitrant plant species. Prior to RNA isolation, a precursory step with a CTAB-PVPP buffer system could efficiently remove compounds and secondary metabolites interfering with RNAs from homogenized lysates. Then, total RNAs were extracted by Trizol reagents followed by a differential precipitation of high-molecular-weight (HMW) RNAs using polyethylene glycol (PEG) 8000. Finally, small RNAs could be easily recovered from supernatant by ethanol precipitation without extra elimination steps. The isolated small RNAs from papaya showed high quality through a clear background on gel and a distinct northern blotting signal with miR159a probe, compared with other published protocols. Additionally, the small RNAs extracted from papaya were successfully used for validation of both predicted miRNAs and the putative conserved tasiARFs. Furthermore, the extraction method described here was also tested with several other subtropical and tropical plant tissues. The purity of the isolated small RNAs was sufficient for such applications as end-point stem-loop RT-PCR and northern blotting analysis, respectively. The simple and feasible extraction method reported here is expected to have excellent potential for isolation of small RNAs from recalcitrant plant tissues rich in polyphenols and polysaccharides.  相似文献   

11.
12.
Many experiments in plant molecular biology require processing of a large number of RNA samples and in some cases large quantities are required for a single application. In turmeric, a major spice and medicinal plant, a protocol for RNA isolation is not available. The major difficulty encountered while using other popular protocols is the low yield and quality of RNA which hampers the downstream applications like qRT-PCR, cDNA synthesis and micro RNA isolation. Commercial kits though available are costly and were found to be unsuccessful in case of rhizomes and root tissues that are rich in polyphenols, polysaccharides and alkaloids. It was thus felt that a quick, handy and cheap protocol of total RNA isolation from different tissues of turmeric was required for day to day working in our lab. The new protocol utilizes SDS based extraction buffer including β-mercaptoethanol and PVP with sequential acid phenol:chloroform extraction to remove polyphenols and proteins, followed by the purification with sodium acetate to eliminate polysaccharides. The protocol is simple and can be completed in less than 3 h. The RNA yield from rhizome was higher by more than fivefold with both A260/280 and A260/230 ratio in the range of 1.8–2.0. The protocol worked well with leaf, rhizome, pseudostem and root tissues with RIN >7.0 and the isolated RNA could be successfully used for cDNA synthesis, RT-PCR, qRT-PCR and small RNA isolation including microRNA.  相似文献   

13.
High quality RNA with good yield is a prerequisite for carrying out several molecular biology studies. Recalcitrant tissues such as oilseeds pose several problems while isolating good quality RNA. We have standardized a fast and simple protocol for RNA isolation from the seeds of Jatropha curcas, which gives good quality RNA without compromising for the yield. By including pre wash of seed powder with acetone and removal of polysaccharides through selective precipitation, we have been regularly isolating good quality total RNA in the range of 300–450 μg g?1 depending upon tissue type. The RNA isolated by this procedure is devoid of any contaminating DNA. The RNA preparations have been subjected to cDNA synthesis and PCR, and found suitable for these studies. This method also works satisfactorily with groundnut and mustard seeds.  相似文献   

14.
15.
目的:通过对TRIzol一步法进行改进,建立一种从富含胶原蛋白、多糖及色素的仿刺参体壁提取总RNA的有效方法。方法:样品在液氮中研磨并用TRIzol匀浆后再进行抽提;对TRIzol一步法提取的总RNA进行DNaseⅠ消化和酚氯仿抽提,用2.5mol/L的醋酸钾沉淀,并加入适量糖原(10mg/mL)与RNA共沉淀。结果:琼脂糖凝胶电泳和紫外分光光度法以及RT-PCR检测结果表明,改进的方法能够有效去除基因组DNA、蛋白、多糖及色素的污染,RNA的产率提高。结论:制备的总RNA纯度高,完整性好,能够满足mRNA差异显示RT-PCR等分子生物学研究的要求,是一种提取仿刺参体壁及其他富含黏多糖、胶原蛋白和色素的动物组织总RNA的有效方法。  相似文献   

16.
17.
RNA isolation is difficult in some plants and algae because phenolics, polysaccharides, or other compounds can bind or co-precipitate with RNA, and because the success of RNA isolation can be strain-specific and species-specific. To create an improved RNA isolation protocol for Laminaria japonica Aresch (Laminariaceae, Phaeophyta), four methods for extracting RNA were tested. A cetyltrimethylammonium bromide (CTAB)-based RNA extraction protocol was developed that clearly showed 28S and 18S ribosomal RNA bands and produced RNA with high yield (68 μg g−1 fresh weight) and high quality (A 260/280 ratio 1.96 ± 0.05). The isolated RNA was intact, and RT-PCR analysis confirmed that further molecular application is feasible.  相似文献   

18.
19.
Prunus persica has been proposed as a genomic model for deciduous trees and the Rosaceae family. Optimized protocols for RNA isolation are necessary to further advance studies in this model species such that functional genomics analyses may be performed. Here we present an optimized protocol to rapidly and efficiently purify high quality total RNA from peach fruits (Prunus persica). Isolating high-quality RNA from fruit tissue is often difficult due to large quantities of polysaccharides and polyphenolic compounds that accumulate in this tissue and co-purify with the RNA. Here we demonstrate that a modified version of the method used to isolate RNA from pine trees and the woody plant Cinnamomun tenuipilum is ideal for isolating high quality RNA from the fruits of Prunus persica. This RNA may be used for many functional genomic based experiments such as RT-PCR and the construction of large-insert cDNA libraries.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号