首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Receptor activator of NF-κB (RANK) activation by RANK ligand (RANKL) mediates osteoclastogenesis by recruiting TNF receptor-associated factors (TRAFs) via three cytoplasmic motifs (motif 1, PFQEP369–373; motif 2, PVQEET559–564; and motif 3, PVQEQG604–609) to activate the NF-κB and MAPK signaling pathways. RANK also has a TRAF-independent motif (IVVY535–538), which is dispensable for the activation of TRAF-induced signaling pathways but essential for osteoclast lineage commitment by inducing the expression of nuclear factor of activated T-cells c1 (NFATc1) to regulate osteoclast gene expression. Notably, TNF/IL-1-mediated osteoclastogenesis requires RANK ligand assistance, and the IVVY motif is also critical for TNF/IL-1-mediated osteoclastogenesis by rendering osteoclast genes responsive to these two cytokines. Here we show that the two types of RANK cytoplasmic motifs have to be on the same RANK molecule to mediate osteoclastogenesis, suggesting a functional cooperation between them. Subsequent osteoclastogenesis assays with TNF or IL-1 revealed that, although all three TRAF motifs play roles in TNF/IL-1-mediated osteoclastogenesis, motifs 2 and 3 are more potent than motif 1. Accordingly, inactivation of motifs 2 and 3 blocksTNF/IL-1-mediated osteoclastogenesis. Mechanistically, double mutation of motifs 2 and 3, similar to inactivation of the IVVY motif, abrogates the expression of nuclear factor of activated T-cells c1 and osteoclast genes in assays reflecting RANK-initiated and TNF/IL-1-mediated osteoclastogenesis. In contrast, double inactivation of motifs 2 and 3 did not affect the ability of RANK to activate the NF-κB and MAPK signaling pathways. Collectively, these results indicate that the RANK IVVY motif cooperates with the TRAF-binding motifs to promote osteoclastogenesis, which provides novel insights into the molecular mechanism of RANK signaling in osteoclastogenesis.  相似文献   

2.
3.
RANKing intracellular signaling in osteoclasts   总被引:3,自引:0,他引:3  
Feng X 《IUBMB life》2005,57(6):389-395
RANKL plays a pivotal role in the differentiation, function and survival of osteoclasts, the principal bone-resorbing cells. RANKL exerts the effects by binding RANK, the receptor activator of NF-kappaB, in osteoclasts and its precursors. Upon binding RANKL, RANK activates six major signaling pathways: NFATc1, NF-kappaB, Akt/PKB, JNK, ERK and p38, which play distinct roles in osteoclast differentiation, function and survival. Recent studies have not only provided more insights into RANK signaling but have also revealed that several factors, including INF-gamma, IFN-beta, and ITAM-activated costimulatory signals, regulate osteoclastogenesis via direct crosstalk with RANK signaling. It was recently shown that RANK contains three functional motifs capable of mediating osteoclastogenesis. Moreover, although both IFN-gamma and IFN-beta inhibit osteoclastogenesis, they exert the inhibitory effects by distinct mechanisms. Whereas IFN-gamma has been shown to block osteoclastogenesis by promoting degradation of TRAF6, IFN-beta inhibits osteoclastogenesis by down-regulating c-fos expression. In contrast, the ITAM-activated costimulatory signals positively regulate osteoclastogenesis by mediating the activation of NFATc1 through two ITAM-harboring adaptors: FcRgamma and DAP12. This review is focused on discussing the current understanding of RANK signaling and signaling crosstalk between RANK and the various factors in osteoclasts.  相似文献   

4.
The epidermal growth factor receptor (EGFR) functions in various cellular physiological processes such as proliferation, differentiation, and motility. Although recent studies have reported that EGFR signaling is involved in osteoclast recruitment and formation, the molecular mechanism of EGFR signaling for the regulation of osteoclastogenesis remains unclear. We investigated the role of the EGFR in osteoclast differentiation and survival and show that the expression of the EGFR was highly up-regulated by receptor activator of nuclear factor-kappaB ligand (RANKL) during osteoclast differentiation. EGFR-specific tyrosine kinase inhibitors and EGFR knockdown blocked RANKL-dependent osteoclast formation, suggesting that EGFR signaling plays an important role in osteoclastogenesis. EGFR inhibition impaired the RANKL-mediated activation of osteoclastogenic signaling pathways, including c-Jun N-terminal kinase (JNK), NF-kappaB, and Akt/protein kinase B (PKB). In addition, EGFR inhibition in differentiated osteoclasts caused apoptosis through caspase activation. Inhibition of the phosphoinositide-3 kinase (PI3K)-Akt/PKB pathway and subsequent activation of BAD and caspases-9 and -3 may be responsible for the EGFR inhibition-induced apoptosis. The EGFR physically associated with receptor activator of nuclear factor-kappaB (RANK) and Grb2-associated binder 2 (Gab2). Moreover, RANKL transactivated EGFR. These data indicate that EGFR regulates RANKL-activated signaling pathways by cross-talking with RANK, suggesting that the EGFR may play a crucial role as a RANK downstream signal and/or a novel type of RANK co-receptor in osteoclast differentiation and survival.  相似文献   

5.
Tumor necrosis factor-α (TNF) enhances osteoclast formation and activity leading to bone loss in various pathological conditions, but its precise role in osteoclastogenesis remains controversial. Although several groups showed that TNF can promote osteoclastogenesis independently of the receptor activator of NF-κB (RANK) ligand (RANKL), others demonstrated that TNF-mediated osteoclastogenesis needs permissive levels of RANKL. Here, we independently reveal that although TNF cannot stimulate osteoclastogenesis on bone slices, it can induce the formation of functional osteoclasts on bone slices in the presence of permissive levels of RANKL or from bone marrow macrophages (BMMs) pretreated by RANKL. TNF can still promote the formation of functional osteoclasts 2 days after transient RANKL pretreatment. These data have confirmed that TNF-mediated osteoclastogenesis requires priming of BMMs by RANKL. Moreover, we investigated the molecular mechanism underlying the dependence of TNF-mediated osteoclastogenesis on RANKL. RANK, the receptor for RANKL, contains an IVVY535–538 motif that has been shown to play a vital role in osteoclastogenesis by committing BMMs to the osteoclast lineage. We show that TNF-induced osteoclastogenesis depends on RANKL to commit BMMs to the osteoclast lineage and RANKL regulates the lineage commitment through the IVVY motif. Mechanistically, the IVVY motif controls the lineage commitment by reprogramming osteoclast genes into an inducible state in which they can be activated by TNF. Our findings not only provide important mechanistic insights into the action of RANKL in TNF-mediated osteoclastogenesis but also establish that the IVVY motif may serve as an attractive therapeutic target for bone loss in various bone disorders.  相似文献   

6.
Morphogenesis and remodeling of bone involve synthesis of bone matrix by osteoblasts and coordinate resorption of bone by osteoclasts. Defective bone remodeling caused by altered osteoclast activity underlies a multitude of osteopenic disorders. Receptor activator of NF-kappaB (RANK) and its ligand RANKL have been identified as essential factors involved in osteoclast development and bone remodeling, but their mechanism and interacting factors have not been fully characterized. Here we report that the molecular adapter Grb-2-associated binder-2 (Gab2) associates with RANK and mediates RANK-induced activation of NF-kappaB, Akt and Jnk. Inactivation of the gene encoding Gab2 in mice results in osteopetrosis and decreased bone resorption as a result of defective osteoclast differentiation. We also show that Gab2 has a crucial role in the differentiation of human progenitor cells into osteoclasts. We have thus identified a new, key regulatory scaffold molecule, Gab2, that controls select RANK signaling pathways and is essential for osteoclastogenesis and bone homeostasis.  相似文献   

7.
Receptor activator of NF-κB (RANK) plays a critical role in osteoclastogenesis, an essential process for the initiation of bone remodeling to maintain healthy bone mass and structure. Although the signaling and function of RANK have been investigated extensively, much less is known about the negative regulatory mechanisms of its signaling. We demonstrate in this paper that RANK trafficking, signaling, and function are regulated by VPS35, a major component of the retromer essential for selective endosome to Golgi retrieval of membrane proteins. VPS35 loss of function altered RANK ligand (RANKL)–induced RANK distribution, enhanced RANKL sensitivity, sustained RANKL signaling, and increased hyperresorptive osteoclast (OC) formation. Hemizygous deletion of the Vps35 gene in mice promoted hyperresorptive osteoclastogenesis, decreased bone formation, and caused a subsequent osteoporotic deficit, including decreased trabecular bone volumes and reduced trabecular thickness and density in long bones. These results indicate that VPS35 critically deregulates RANK signaling, thus restraining increased formation of hyperresorptive OCs and preventing osteoporotic deficits.  相似文献   

8.
Signaling through receptor activator of nuclear factor-kappaB (RANK) is essential for the differentiation and activation of osteoclasts, the cell principally responsible for bone resorption. Animals genetically deficient in RANK or the cognate RANK ligand are profoundly osteopetrotic because of the lack of bone resorption and remodeling. RANK provokes biochemical signaling via the recruitment of intracellular tumor necrosis factor receptor-associated factors (TRAFs) after ligand binding and receptor oligomerization. To understand the RANK-mediated signal transduction mechanism in osteoclastogenesis, we have designed a system to recapitulate osteoclast differentiation and activation in vitro by transfer of the RANK cDNA into hematopoietic precursors genetically deficient in RANK. Gene transfer of RANK constructs that are selectively incapable of binding different TRAF proteins revealed that TRAF pathways downstream of RANK that affect osteoclast differentiation are functionally redundant. In contrast, the interaction of RANK with TRAF6 is absolutely required for the proper formation of cytoskeletal structures and functional resorptive activity of osteoclasts. Moreover, signaling via the interleukin-1 receptor, which also utilizes TRAF6, rescues the osteoclast activation defects observed in the absence of RANK/TRAF6 interactions. These studies are the first to define the functional domains of the RANK cytoplasmic tail that control specific differentiation and activation pathways in osteoclasts.  相似文献   

9.
Recent studies have reported that activin A enhances osteoclastogenesis in cultures of mouse bone marrow cells stimulated with receptor activator of nuclear factor-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). However, the exact mechanisms by which activin A functions during osteoclastogenesis are not clear. RANKL stimulation of RANK/TRAF6 signaling increases nuclear factor-kappaB (NFkappaB) nuclear translocation and activates the Akt/PKB cell survival pathway. Here we report that activin A alone activates IkappaB-alpha, and stimulates nuclear translocation of NFkappaB and receptor activator of nuclear factor-kappaB (RANK) expression for osteoclastogenesis, but not Akt/PKB survival signal transduction including BAD and mammalian target of rapamycin (mTOR) for survival in osteoclast precursors in vitro. Activin A alone failed to activate Akt, BAD, and mTOR by immunoblotting, and it also failed to prevent apoptosis in osteoclast precursors. While activin A activated IkappaB-alpha and induced nuclear translocation of phosphorylated-NFkappaB, and it also enhanced RANK expression in osteoclast precursors. Moreover, activin A enhanced RANKL- and M-CSF-stimulated nuclear translocation of NFkappaB. Our data suggest that activin A enhances osteoclastogenesis treated with RANKL and M-CSF via stimulation of RANK, thereby increasing the RANKL stimulation. Activin A alone activated the NFkappaB pathway, but not survival in osteoclast precursors in vitro, but it is, thus, insufficient as a sole stimulus to osteoclastogenesis.  相似文献   

10.
11.
Receptor activator of NF-kappa B ligand (RANKL) and its receptor activator of NF-kappa B (RANK) play pivotal roles in osteoclast differentiation and function. However, the structural determinants of the RANK that mediate osteoclast formation and function have not been definitively identified. To address this issue, we developed a chimeric receptor approach that permits a structure/function study of the RANK cytoplasmic domain in osteoclasts. Using this approach, we examined the role of six RANK putative tumor necrosis factor receptor-associated factor-binding motifs (PTM) (PTM1, ILLMT-REE(286-293); PTM2, PSQPS(349-353); PTM3, PFQEP(369-373); PTM4, VYVSQTSQE(537-545); PTM5, PVQEET(559-564); and PTM6, PVQEQG(604-609)) in osteoclast formation and function. Our data revealed that the RANK cytoplasmic domain possesses three functional motifs (PFQEP(369-373), PVQEET(559-564), and PVQEQG(604-609)) capable of mediating osteoclast formation and function. Moreover, we demonstrated that these motifs play distinct roles in activating intracellular signaling. PFQEP(369-373) initiates NF-kappa B, c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38 signaling pathways and PVQEET(559-564) activates NF-kappa B and p38 pathways in osteoclasts, whereas PVQEQG(604-609) is only capable of activating NF-kappa B pathway. Significantly, the revelation of these functional RANK cytoplasmic motifs has not only laid a foundation for further delineating RANK signaling pathways in osteoclasts, but, more importantly, these RANK motifs themselves represent potential therapeutic targets for bone disorders such as osteoporosis.  相似文献   

12.
The signaling molecule Wnt regulates bone homeostasis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Impairment of canonical Wnt signaling causes bone loss in arthritis and osteoporosis; however, it is unclear how noncanonical Wnt signaling regulates bone resorption. Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor (Ror) proteins. We showed that Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhanced osteoclastogenesis. Osteoblast-lineage cells expressed Wnt5a, whereas osteoclast precursors expressed Ror2. Mice deficient in either Wnt5a or Ror2, and those with either osteoclast precursor-specific Ror2 deficiency or osteoblast-lineage cell-specific Wnt5a deficiency showed impaired osteoclastogenesis. Wnt5a-Ror2 signals enhanced receptor activator of nuclear factor-κB (RANK) expression in osteoclast precursors by activating JNK and recruiting c-Jun on the promoter of the gene encoding RANK, thereby enhancing RANK ligand (RANKL)-induced osteoclastogenesis. A soluble form of Ror2 acted as a decoy receptor of Wnt5a and abrogated bone destruction in mouse arthritis models. Our results suggest that the Wnt5a-Ror2 pathway is crucial for osteoclastogenesis in physiological and pathological environments and represents a therapeutic target for bone diseases, including arthritis.  相似文献   

13.
14.
The receptor activator of NF-κB (RANK) and immunoreceptor tyrosine-based activation motif (ITAM)-containing adaptors are essential factors involved in regulating osteoclast formation and bone remodeling. Here, we identify early estrogen-induced gene 1 (EEIG1) as a novel RANK ligand (RANKL)-inducible protein that physically interacts with RANK and further associates with Gab2, PLCγ2 and Tec/Btk kinases upon RANKL stimulation. EEIG1 positively regulates RANKL-induced osteoclast formation, likely due to its ability to facilitate RANKL-stimulated PLCγ2 phosphorylation and NFATc1 induction. In addition, an inhibitory peptide designed to block RANK-EEIG1 interaction inhibited RANKL-induced bone destruction by reducing osteoclast formation. Together, our results identify EEIG1 as a novel RANK signaling component controlling RANK-mediated osteoclast formation, and suggest that targeting EEIG1 might represent a new therapeutic strategy for the treatment of pathological bone resorption.  相似文献   

15.
RANK and CD40 activate NF-kappaB and MAPKs to similar levels via TRAF6. Even though overexpression of TRAF6 results in osteoclast formation, RANK but not CD40 promotes osteoclastogenesis. To understand the molecular basis for RANK-specific activity in osteoclastogenesis, we created an osteoclast formation system driven by anti-human CD40 antibody-mediated stimulation of a chimeric receptor, h40/mRK, which consists of the extracellular domain of human CD40 and the transmembrane and cytoplasmic domains of mouse RANK. By introducing mutations into three TRAF6-binding sites of RANK, we found that h40/mRK with a single TRAF6-binding site efficiently induced Ca2+ oscillation and expression of NFATc1, a master switch in osteoclastogenesis, whereas CD40 carrying a single TRAF6-binding site did not. However, expression of CD40 that was approximately 100 times greater than that of h40/mRK resulted in osteoclast formation, indicating that the RANK-TRAF6 signal is more potent than the CD40-TRAF6 signal in terms of NFATc1 activation and osteoclastogenesis. These results suggest that RANK may harbor a specific domain that amplifies TRAF6 signaling.  相似文献   

16.
RANK and RANKL are essential mediators of osteoclastogenesis. RANK interacts with members of the tumor necrosis factor receptor-associated factor (TRAF) family, of which TRAF6 is the critical signaling molecule. We identified a unique TRAF6-binding motif in RANK, which was subsequently co-crystallized with TRAF6 revealing distinct molecular interactions. A cell-permeable TRAF6 decoy peptide (T6DP) was shown to specifically target TRAF6 and inhibit RANKL-mediated signaling. In this study, we identified a core motif for binding to TRAF6 by generating a series of deletion mutants linked via palmitate as a means to internalize the peptide, thus making a smaller scaffold for intracellular delivery. The core motif of RKIPTEDEY inhibited RANKL-mediated osteoclastogenesis and bone resorption. In contrast, TRAF2/5 decoy peptides appeared to have no affect. Thus, disruption of the RANK-TRAF6 interaction may prove useful as a novel target for the development of a small molecule therapeutic agent for the treatment of bone-related diseases.  相似文献   

17.
Receptor activator of NF-kappaB ligand (RANKL) is crucial in osteoclastogenesis but signaling events involved in osteoclast differentiation are far from complete and other signals may play a role in osteoclastogenesis. A more direct pathway for cellular crosstalk is provided by gap junction intercellular channel, which allows adjacent cells to exchange second messengers, ions, and cellular metabolites. Here we have investigated the role of gap junction communication in osteoclastogenesis in mouse bone marrow cultures. Immunoreactive sites for the gap junction protein connexin 43 (Cx43) were detected in the marrow stromal cells and in mature osteoclasts. Carbenoxolone (CBX) functionally blocked gap junction communication as demonstrated by a scrape loading Lucifer Yellow dye transfer technique. CBX caused a dose-dependent inhibition (significant > or = 90 microM) of the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells formed in 7- to 8-day marrow cultures stimulated by parathyroid hormone (PTH; 10 nM) or forskolin (FSK; 1 microM). Furthermore, CBX (100 microM) significantly inhibited prostaglandin E2 (PGE2; 10 microM) and 1,25(OH)2-vitamin D3 stimulated osteoclast differentiation in the mouse bone marrow cultures. Consequently, quantitative real-time polymerase chain reaction (PCR) analysis demonstrated that CBX downregulated the expression of osteoclast phenotypic markers, but without having any significant effects on RANK, RANKL, and osteoprotegerin (OPG) mRNA expression. However, the results demonstrated that CBX significantly inhibits RANKL-stimulated (100 ng/ml) osteoclastogenesis in the mouse bone marrow cultures. Taken together, our results suggests that gap junctional diffusion of messenger molecules interacts with signaling pathways downstream RANKL in osteoclast differentiation. Further studies are required to define the precise mechanisms and molecular targets involved.  相似文献   

18.
19.
A variety of surface receptors eliciting diverse cellular responses have been shown to recruit tumor necrosis factor receptor-associated factor (TRAF) adaptor molecules. However, a few TRAF-interacting intracellular proteins that serve as downstream targets or regulators of TRAF function have been identified. In search of new intracellular molecules that bind TRAF6, we carried out a yeast two-hybrid cDNA library screening with an N-terminal segment of TRAF6 as the bait. A novel human C(2)H(2)-type zinc finger family protein was identified, which when coexpressed with TRAF6 led to a suppression of TRAF6-induced activation of NF-kappa B and c-Jun N-terminal kinase. This novel protein was designated TIZ (for TRAF6-inhibitory zinc finger protein). TIZ expression also inhibited the signaling of RANK (receptor activator of NF-kappa B), which together with TRAF6 has been shown to be essential for osteoclastogenesis. Furthermore, the expression level of TIZ appeared to be regulated during the differentiation of human peripheral blood monocytes into osteoclasts. More significantly, transfection of TIZ into the monocyte/macrophage cell line Raw264.7 reduced the RANK ligand-induced osteoclastogenesis of this cell line. Our findings suggest that the novel zinc finger protein TIZ may play a role during osteoclast differentiation by modulating TRAF6 signaling activity.  相似文献   

20.
Tetraspanin CD9 has been shown to regulate cell-cell fusion in sperm-egg fusion and myotube formation. However, the role of CD9 in osteoclast, another multinucleated cell type, is not still clear. Therefore, we investigated the role of CD9 in osteoclast differentiation. CD9 was expressed in osteoclast lineage cells and its expression level increased during the progression of RANKL-induced osteoclastogenesis. KMC8, a neutralizing antibody specific to CD9, significantly suppressed RANKL-induced multinucleated osteoclast formation and the mRNA expression of osteoclast differentiation marker genes. To define CD9-regulated osteoclastogenic signaling pathway, MAPK pathways were examined. KMC8 induced long-term phosphorylation of p44/42 MAPK, but not of p38 MAPK. Constitutive activation of p44/42 MAPK by overexpressing constitutive-active mutant of MEK1 almost completely blocked osteoclast differentiation. Taken together, these results suggest that CD9 expressed on osteoclast lineage cells might positively regulate osteoclastogenesis via the regulation of p44/42 MAPK activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号