首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dopamine system has been characterized in motor function, goal-directed behaviors, and rewards. Recent studies recognize various dopamine system genes as being associated with autism spectrum disorder (ASD). However, how dopamine system dysfunction induces ASD pathophysiology remains unknown. In the present study, we demonstrated that mice with increased dopamine functions in the dorsal striatum via the suppression of dopamine transporter expression in substantia nigra neurons or the optogenetic stimulation of the nigro-striatal circuitry exhibited sociability deficits and repetitive behaviors relevant to ASD pathology in animal models, while these behavioral changes were blocked by a D1 receptor antagonist. Pharmacological activation of D1 dopamine receptors in normal mice or the genetic knockout (KO) of D2 dopamine receptors also produced typical autistic-like behaviors. Moreover, the siRNA-mediated inhibition of D2 dopamine receptors in the dorsal striatum was sufficient to replicate autistic-like phenotypes in D2 KO mice. Intervention of D1 dopamine receptor functions or the signaling pathways-related D1 receptors in D2 KO mice produced anti-autistic effects. Together, our results indicate that increased dopamine function in the dorsal striatum promotes autistic-like behaviors and that the dorsal striatum is the neural correlate of ASD core symptoms.  相似文献   

2.
The behavioral effects of cocaine are enhanced following constitutive deletion of the serotonin(1B) receptor. The neural substrates mediating the enhanced response to cocaine are unknown. The present studies determined whether basal dopamine dynamics or cocaine-evoked dopamine levels are altered in projection areas of mesostriatal or mesoaccumbens dopamine neurons following serotonin(1B) receptor deletion. Male wild-type and serotonin(1B) knockout mice were implanted with microdialysis guide cannulas aimed at the dorsal striatum or nucleus accumbens. The zero net flux method of quantitative microdialysis was used to quantify basal extracellular dopamine concentrations (DA(ext)) and the extraction fraction of dopamine (E(d)), which provides an index of dopamine uptake. Conventional microdialysis techniques were used to quantify cocaine (0, 5.0, and 20.0 mg/kg)-evoked dopamine overflow. Basal DA(ext) and E(d) did not differ in striatum of wild-type and knockout mice. Similarly, cocaine-stimulated dopamine overflow did not differ between genotype. The basal E(d) did not differ in the nucleus accumbens of wild-type and knockout mice. However, DA(ext) was significantly elevated in the nucleus accumbens of knockout mice. Cocaine-evoked dopamine overflow (nM) was also enhanced in the nucleus accumbens of knockout mice. However, the cocaine-induced increase in dopamine levels, relative to basal values, did not differ between genotype. These data demonstrate that deletion of the serotonin(1B) receptor is associated with increases in basal DA(ext) in the nucleus accumbens. This increase is not associated with an alteration in E(d), suggesting increased basal dopamine release in these animals. It is hypothesized that these alterations in presynaptic neuronal activity are a compensatory response to constitutive deletion of the serotonin(1B) receptor and may contribute to the enhanced behavioral effects of psychostimulants observed in knockout mice.  相似文献   

3.
4.
The kinetic properties of type A and type B monoamine oxidase (MAO) were examined in guinea pig striatum, rat striatum, and autopsied human caudate nucleus using 3,4-dihydroxyphenylethylamine (dopamine, DA) as the substrate. MAO isozyme ratio in guinea pig striatum (28% type A/72% type B) was similar to that in human caudate nucleus (25% type A/75% type B) but different from that in rat striatum (76% type A/24% type B). Additional similarities between guinea pig striatum and human caudate nucleus were demonstrated for the affinity constants (Km) of each MAO) isozyme toward DA. Endogenous concentrations of DA, 3-methoxytyramine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid were also measured in guinea pig and rat striatum following selective type A (clorgyline-treated) and type B (deprenyl-treated) MAO inhibition. In guinea pig, DA metabolism was equally but only partially affected by clorgyline or deprenyl alone. Combined treatment with clorgyline and deprenyl was required for maximal alterations in DA metabolism. By contrast, DA metabolism in rat striatum was extensively altered by clorgyline but unaffected by deprenyl alone. Finally, the deamination of DA in synaptosomes from guinea pig striatum was examined following selective MAO isozyme inhibition. Neither clorgyline nor deprenyl alone reduced synaptosomal DA deamination. However, clorgyline and deprenyl together reduced DA deamination by 94%. These results suggest that the isozyme localization and/or isozyme affinity for DA, rather than the absolute isozyme content, determines the relative importance of type A and type B MAO in synaptic DA deamination. Moreover, based on the enzyme kinetic properties of each MAO isozyme, guinea pig striatum may serve as a suitable model of human DA deamination.  相似文献   

5.
Interactions between endogenous dopamine, glutamate, GABA, and taurine were investigated in striatum of the freely moving rat by using microdialysis. Intrastriatal infusions of the selective dopamine uptake inhibitor nomifensine (NMF) were used to increase the endogenous extracellular dopamine. NMF produced a dose-related increase in extracellular dopamine and also increased extracellular concentrations of glutamate, GABA, and taurine. Extracellular increases of dopamine were significantly correlated with extracellular increases of glutamate and GABA, but not taurine. To investigate whether the increased extracelular dopamine produced by NMF was responsible for the concomitant increase of glutamate and GABA, D1, and D2 receptor antagonists were used. Dopamine receptor antagonists D1 (SCH23390) and D2 (sulpiride) significantly attenuated the increases of glutamate and GABA produced by NMF. These data suggest that endogenous dopamine, through both D1 and D2 dopamine receptors, plays a role in releasing glutamate and GABA in striatum of the freely moving rat.  相似文献   

6.
Altered synaptic dopamine levels have been implicated in several neurological/neuropsychiatric disorders, including drug addiction and schizophrenia. However, it is unclear what precipitates these changes in synaptic dopamine levels. One of the key presynaptic components involved in regulating dopaminergic tone is the dopamine transporter (DAT). Here, we report that the DAT is also regulated by the dopamine D2 receptor through a direct protein-protein interaction involving the DAT amino-terminus and the third intracellular loop of the D2 receptor. This physical coupling facilitates the recruitment of intracellular DAT to the plasma membrane and leads to enhanced dopamine reuptake. Moreover, mice injected with peptides that disrupt D2-DAT interaction exhibit decreased synaptosomal dopamine uptake and significantly increased locomotor activity, reminiscent of DAT knockout mice. Our data highlight a novel mechanism through which neurotransmitter receptors can functionally modulate neurotransmitter transporters, an interaction that can affect the synaptic neurotransmitter levels in the brain.  相似文献   

7.
Hypopituitary dwarf mice exhibit a heightened antioxidative capacity and live extensively longer than age-matched controls. Importantly, dwarf mice resist peripheral oxidative stress induced by paraquat, and behaviorally, they maintain cognitive function and locomotor activity at levels above those observed in old wild-type animals. We assessed monoaminergic neurotransmitters in nigrostriatal tract and cerebellum after the administration of the dopaminergic neurotoxin, MPTP. There was no significant change in mitochondrial monoamine oxidase (MAO)-B and total MAO activity in the substantia nigra and nucleus caudatus putamen of wild-type and dwarf mice. Coenzymes Q-9 and Q-10 were present in similar quantities, as were dopamine, norepinephrine, and serotonin levels in the cerebellum and nigrostriatal tract. MPTP set off tremor, hind limb abduction, and straub tail behavior and induced significant dopamine depletion in the striatum of both dwarf and normal mice. This study shows that the MAO activity and the coenzyme content of dwarf mice are similar to those of their wild-type controls and hence susceptible to MPTP-induced toxicity.  相似文献   

8.
Approximately, 7–10 million people in the world suffer from Parkinson's disease (PD). Recently, increasing evidence has suggested the protective effect of estrogens against nigrostriatal dopaminergic damage in PD. In this study, we investigated whether estrogen affects 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced behavioral impairment in estrogen receptor alpha (ERα)-deficient mice. MPTP (15 mg/kg, four times with 1.5-h interval)-induced dopaminergic neurodegeneration was evaluated in ERα wild-type (WT) and knockout (KO) mice. Larger dopamine depletion, behavioral impairments (Rotarod test, Pole test, and Gait test), activation of microglia and astrocytes, and neuroinflammation after MPTP injection were observed in ERα KO mice compared to those in WT mice. Immunostaining for tyrosine hydroxylase (TH) after MPTP injection showed fewer TH-positive neurons in ERα KO mice than WT mice. Levels of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC, metabolite of dopamine) were also lowered in ERα KO mice after MPTP injection. Interestingly, a higher immunoreactivity for monoamine oxidase (MAO) B was found in the substantia nigra and striatum of ERα KO mice after MPTP injection. We also found an increased activation of p38 kinase (which positively regulates MAO B expression) in ERα KO mice. In vitro estrogen treatment inhibited neuroinflammation in 1-methyl-4-phenyl pyridium (MPP +)-treated cultured astrocyte cells; however, these inhibitory effects were removed by p38 inhibitor. These results indicate that ERα might be important for dopaminergic neuronal survival through inhibition of p38 pathway.  相似文献   

9.
Since it has been reported that dopamine D2 receptors are elevated in the brain striatum of spontaneously hypertensive (SH) rats, and since both D1 and D2 receptors may interact with one another, we measured the densities of both these receptors in SH rat striatum, as well as those in the normotensive Wistar-Kyoto rat striatum. The D1 receptor density in both strains was virtually the same, 72.9 +/- 2.2 and 71.3 +/- 3.2 pmol/g, respectively (mean +/- SD). The D2 receptor densities were also almost identical, 16.3 +/- 0.6 and 16.8 +/- 1.0 pmol/g, respectively (mean +/- SD). Thus, these data do not support the concept of a dopamine receptor related role in spontaneous hypertension.  相似文献   

10.
Regulators of G protein signaling (RGS) modulate heterotrimeric G proteins in part by serving as GTPase-activating proteins for Galpha subunits. We examined a role for RGS9-2, an RGS subtype highly enriched in striatum, in modulating dopamine D2 receptor function. Viral-mediated overexpression of RGS9-2 in rat nucleus accumbens (ventral striatum) reduced locomotor responses to cocaine (an indirect dopamine agonist) and to D2 but not to D1 receptor agonists. Conversely, RGS9 knockout mice showed heightened locomotor and rewarding responses to cocaine and related psychostimulants. In vitro expression of RGS9-2 in Xenopus oocytes accelerated the off-kinetics of D2 receptor-induced GIRK currents, consistent with the in vivo data. Finally, chronic cocaine exposure increased RGS9-2 levels in nucleus accumbens. Together, these data demonstrate a functional interaction between RGS9-2 and D2 receptor signaling and the behavioral actions of psychostimulants and suggest that psychostimulant induction of RGS9-2 represents a compensatory adaptation that diminishes drug responsiveness.  相似文献   

11.
Abstract: We investigated the effects of continuous intranigral perfusion of dopamine D1 and D2 receptor agonists and antagonists on the biotransformation of locally applied l -DOPA to dopamine in the substantia nigra of freely moving rats by means of in vivo microdialysis. The "dual-probe" mode was used to monitor simultaneously changes in extracellular dopamine levels in the substantia nigra and the ipsilateral striatum. Intranigral perfusion of 10 µ M l -DOPA for 20 min induced a significant 180-fold increase in extracellular nigral dopamine level. No effect of the intranigral l -DOPA administration was observed on dopamine levels in the ipsilateral striatum, suggesting a tight control of extracellular dopamine in the striatum after enhanced nigral dopamine levels. Continuous nigral infusion with the D1 receptor agonist CY 208243 (10 µ M ) and with the D2 receptor agonist quinpirole at 10 µ M (a nonselective concentration) attenuated the l -DOPA-induced increase in dopamine in the substantia nigra by 85 and 75%, respectively. However, perfusion of the substantia nigra with a lower concentration of quinpirole (1 µ M ) and the D1 antagonist SCH 23390 (10 µ M ) did not affect the nigral l -DOPA biotransformation. The D2 antagonist (−)-sulpiride (10 µ M ) also attenuated the l -DOPA-induced dopamine release in the substantia nigra to ∼10% of that of the control experiments. We confirm that there is an important biotransformation of l -DOPA to dopamine in the substantia nigra. The high concentrations of dopamine formed after l -DOPA administration may be the cause of dyskinesias or further oxidative stress in Parkinson's disease. Simultaneous administration of D1 receptor agonists with l -DOPA attenuates the biotransformation of l -DOPA to dopamine in the substantia nigra. The observed effects could occur via changes in nigral GABA release that in turn influence the firing rate of the nigral dopaminergic neurons.  相似文献   

12.
Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behavioral response to methamphetamine. Interestingly, D5 dopamine receptor-deficient mice displayed increased ambulation in response to methamphetamine. Furthermore, dopamine transporter threonine phosphorylation levels, which regulate amphetamine-induced dopamine release, were elevated in D5 dopamine receptor-deficient mice. The increase in methamphetamine-induced locomotor activity was eliminated by pretreatment with the dopamine transporter blocker GBR12909. Taken together, these results suggest that dopamine transporter activity and threonine phosphorylation levels are regulated by D5 dopamine receptors.  相似文献   

13.
D2 dopamine receptor from bovine striatum was solubilized in a form sensitive to guanine nucleotides, by means of a zwitterionic detergent, 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate (CHAPS). The presence of sodium ion markedly increased the solubilization yield. Treatment of the membranes with 10 mM CHAPS and 0.72 M NaCl solubilized 26% of the stereospecific [3H]spiperone binding sites in the original membrane preparations. The solubilized [3H]spiperone binding sites possessed characteristics of the D2 dopamine receptor: (a) localization of the site in the striatum but not in the cerebellum; (b) high affinity to nanomolar concentrations of [3H]spiperone; (c) displacement of [3H]spiperone binding by nanomolar concentrations of neuroleptics, but only by micromolar concentrations of dopamine and apomorphine; (d) equal activity of various dopamine agonists and antagonists in the soluble and membrane preparations. Guanine nucleotides decreased the affinity of the solubilized D2 dopamine receptor for dopamine agonists, but not for antagonists. The solubilized receptor complex was eluted in Sepharose CL-4B column chromatography as a large molecule, with a Stokes radius of approximately 90 A. These results indicate that the complex between the D2 dopamine receptor and GTP binding protein remains intact throughout the solubilization procedure.  相似文献   

14.
Evidence indicates that stress conditions might lead to drug dependence. Recently, we have demonstrated that exposure to far infrared ray (FIR) attenuates acute restraint stress via induction of glutathione peroxidase-1 (GPx-1) gene. We investigated whether FIR affects methamphetamine (MA)-induced behavioral sensitization and whether FIR-mediated pharmacological activity requires interaction between dopamine receptor and GPx-1 gene. We observed that MA treatment significantly increased GPx-1 expression in the striatum of wild-type (WT) mice. Interestingly, exposure to FIR potentiated MA-induced increase in GPx-1 expression. This phenomenon was also observed in animals receiving MA with dopamine D1 receptor antagonist SCH23390. However, dopamine D2 receptor antagonist sulpiride did not affect MA-induced GPx-1 expression. FIR exposure or SCH23390, but not sulpiride, significantly attenuated MA-induced behavioral sensitization. Exposure to FIR significantly attenuated MA-induced dopamine D1 receptor expression, c-Fos induction and oxidative burdens. FIR-mediated antioxidant effects were also more pronounced in mitochondrial- than cytosolic-fraction. In addition, FIR significantly attenuated against MA-induced changes in mitochondrial superoxide dismutase and mitochondrial GPx activities, mitochondrial transmembrane potential, intramitochondrial Ca2+ level, mitochondrial complex-I activity, and mitochondrial oxidative burdens. The attenuation by FIR was paralleled that by SCH23390. Effects of FIR or SCH23390 were more sensitive to GPx-1 KO than WT mice, while SCH23390 treatment did not exhibit any additive effects on the protective activity mediated by FIR, indicating that dopamine D1 receptor constitutes a molecular target of FIR. Our result suggests that exposure to FIR ameliorates MA-induced behavioral sensitization via possible interaction between dopamine D1 receptor and GPx-1 gene.  相似文献   

15.
The neurotransmitter dopamine and its dopamine receptor D2 (D2DR) agonists are known to inhibit vascular permeability factor/vascular endothelial growth factor (VEGF)-mediated angiogenesis and vascular permeability. Lung injury is a clinical syndrome associated with increased microvascular permeability. However, the effects of dopamine on pulmonary edema, a phenomenon critical to the pathophysiology of both acute and chronic lung injuries, have yet to be established. Therefore, we sought to determine the potential therapeutic effects of dopamine in a murine model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Compared with sham-treated controls, pretreatment with dopamine (50 mg/kg body wt) ameliorated LPS-mediated edema formation and lowered myeloperoxidase activity, a measure of neutrophil infiltration. Moreover, dopamine significantly increased survival rates of LPS-treated mice, from 0-75%. Mechanistically, we found that dopamine acts through the VEGF-VEGFR2 axis to reduce pulmonary edema, as dopamine pretreatment in LPS-treated mice resulted in decreased serum VEGF, VEGFR2 phosphorylation, and endothelial nitric oxide synthase phosphorylation. We used D2DR knockout mice to confirm that dopamine acts through D2DR to block vascular permeability in our lung injury model. As expected, a D2DR agonist failed to reduce pulmonary edema in D2DR(-/-) mice. Taken together, our results suggest that dopamine acts through D2DR to inhibit pulmonary edema-associated vascular permeability, which is mediated through VEGF-VEGFR2 signaling and conveys protective effects in an ALI model.  相似文献   

16.
Le Foll B  Diaz J  Sokoloff P 《Life sciences》2005,76(11):1281-1296
The dopamine D3 receptor (D3R) has been implicated in schizophrenia, drug addiction, depression and Parkinson's disease. The D3R is localized post-synaptically on nucleus accumbens neurons, but is also an autoreceptor on dopaminergic neurons in the mesencephalon. Its functional role as autoreceptor is highly debated, but supported by the elevated basal extracellular dopamine levels found in D3R-deficient mice. To investigate the functional role of the D3R in vivo, we used mice with a targeted disruption of the D3R gene. We found a higher basal level of grooming in D3R-deficient mice, compared to their wild-type littermates. This behavior, which is under the control of D1R stimulation, may be related to an increased dopaminergic tone, since no changes in the gene expression of dopamine D1 and D2 receptors were noticed in the striatum of these mice. D3R-deficient mice displayed other neuroadaptive changes, including decreased tyrosine hydroxylase, increased dopamine transporter mRNAs and increased dopamine reuptake in striatum. The level of tyrosine hydroxylase protein was unchanged in the striatum, as preprodynorphin and preproenkephalin gene expressions. All the changes identified in D3R-deficient mice cannot explain hyperdopaminergia, but, on the contrary, tend to attenuate this phenotype. These results support a distinct role for D2R and D3R as autoreceptors: the D2R is the release-regulating and firing rate-regulating autoreceptor, whereas the D3R may control basal dopamine levels in the striatum, by an unknown mechanism, which does not involve regulation of dopamine transporters or tyrosine hydroxylase. This hyperdopaminergia phenotype of D3R-deficient mice may explain their hyperactivity to drug-paired environmental cues.  相似文献   

17.
Dopamine signaling plays a major role in regulation of neuronal apoptosis. During the postnatal period, dopamine signaling is known to be dramatically changed in the striatum. However, because it is difficult to culture neurons after birth, little is known about developmental changes in dopamine-mediated apoptosis. To examine such changes, we established the method of primary culture of striatal neurons from 2- to 3-wk-old (young) mice. Dopamine, via D(1)-like receptors, induced apoptosis in young, but not neonatal, striatal neurons, suggesting that the effect of dopamine on apoptosis changed with development. In contrast, although isoproterenol (Iso), a beta-adrenergic receptor agonist, increased cAMP production to a greater degree than dopamine, Iso did not increase apoptosis in striatal neurons from young and neonatal mice, suggesting a minor role of cAMP in dopamine-mediated apoptosis. Next, we examined the effect of dopamine on Ca(2+) signaling. Dopamine, but not Iso, markedly increased intracellular Ca(2+) in striatal neurons from young mice, and Ca(2+)-chelating agents abolished dopamine-induced apoptosis, suggesting that Ca(2+) played a major role in the dopamine-mediated apoptosis pathway. In contrast, dopamine failed to increase intracellular Ca(2+) in neonatal neurons, and the expression of PLC, which can increase intracellular Ca(2+) via D(1)-like receptor activation, was significantly greater in young than in neonatal striatal neurons. These data suggest that the developmental change in dopamine-mediated Ca(2+) signaling was responsible for differences between young and neonatal striatum in induction of apoptosis. Furthermore, the culture of young striatal neurons is feasible and may provide a new tool for developmental studies.  相似文献   

18.
Phencyclidine (PCP), a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, increases locomotor activity in rodents and causes schizophrenia-like symptoms in humans. Although activation of the dopamine (DA) pathway is hypothesized to mediate these effects of PCP, the precise mechanisms by which PCP induces its effects remain to be elucidated. The present study investigated the effect of PCP on extracellular levels of DA (DA(ex)) in the striatum and prefrontal cortex (PFC) using in vivo microdialysis in mice lacking the NMDA receptor channel ε1 or ε4 subunit (GluRε1 [GluN2A] or GluRε4 [GluN2D]) and locomotor activity. PCP significantly increased DA(ex) in wildtype and GluRε1 knockout mice, but not in GluRε4 knockout mice, in the striatum and PFC. Acute and repeated administration of PCP did not increase locomotor activity in GluRε4 knockout mice. The present results suggest that PCP enhances dopaminergic transmission and increases locomotor activity by acting at GluRε4.  相似文献   

19.
We examined the effect of chronic nicotine treatment on dopaminergic activity by measuring the effects of D1 and D2 dopamine (DA) receptor agonists and antagonists on tritium release from mouse striatum preloaded with [3H]DA. The radioactivity released during superfusion was separated on alumina columns and the distribution and efflux of [3H]DA and its main 3H-labeled metabolites were quantified. After preloading by incubation with [3H]DA, the electrical stimulation-evoked tritium overflow was higher in striatum prepared from nicotine-treated mice, whereas in vitro addition of nicotine caused a similar increase in tritium release from striatum of untreated and chronic nicotine-treated mice. The overflow of [3H]DA and its 3H-metabolites exhibited similar distribution patterns in [3H]DA-preloaded striatum dissected from untreated and chronic nicotine-pretreated mice, indicating that repeated injections with nicotine did not alter the metabolism of [3H]DA taken up by the tissue. (-)-Quinpirole, a selective agonist for D2 DA receptors, and apomorphine, a nonselective D1/D2 agonist, inhibited the electrical stimulation-induced tritium efflux from striatum of untreated mice, whereas (+/-)-sulpiride, a D2 DA receptor antagonist, enhanced the evoked release of tritium. These changes in tritium efflux effected by (-)-quinpirole and (+/-)-sulpiride reflected changes in [3H]DA release and not in DA metabolism, as shown by separation of the released radioactivity on alumina columns. The D1 receptor agonist (+/-)-SKF-38393 did not affect the tritium overflow, whereas the D1 receptor antagonist (+)-SCH-23390 exerted a stimulatory action but only at a high concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Mutation in the Nurr1 gene, a member of the nuclear receptor superfamily, causes selective agenesis of dopaminergic neurons in the midbrain of null mice. Homozygous Nurr1 knockout mice (Nurr1-/-) die 1 day after birth, but heterozygous mice (Nurr1 +/-) survive postnatally without obvious locomotor deficits. Although adult Nurr1 +/- mice show significantly reduced Nurr1 protein levels in the substantia nigra (SN), they display a normal range of tyrosine hydroxylase-positive neuron numbers in the SN and normal levels of dopamine in the striatum. The reduction in Nurr1 expression in Nurr1 +/- mice, however, confers increased vulnerability to the selective dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) compared with wild-type (Nurr1 +/+) mice. This study suggests that Nurr1 may play an important role in maintaining mature mesencephalic dopaminergic neuron function and that a defect in Nurr1 may increase susceptibility to SN injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号