首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serotonin and molecular neuroimaging in humans using PET   总被引:1,自引:0,他引:1  
Saulin A  Savli M  Lanzenberger R 《Amino acids》2012,42(6):2039-2057
The serotonergic system is one of the most important modulatory neurotransmitter systems in the human brain. It plays a central role in major physiological processes and is implicated in a number of psychiatric disorders. Along with the dopaminergic system, it is also one of the phylogenetically oldest human neurotransmitter systems and one of the most diverse, with 14 different receptors identified up to this day, many of whose function remains to be understood. The system's functioning is even more diverse than the number of its receptors, since each is implicated in a number of different processes. This review aims at illustrating the distribution and summarizing the main functions of the serotonin (5-hydroxytryptamin, 5-HT) receptors as well as the serotonin transporter (SERT, 5-HTT), the vesicular monoamine transporter 2, monoamine oxidase type A and 5-HT synthesis in the human brain. Recent advances in in vivo quantification of these different receptors and enzymes that are part of the serotonergic system using positron emission tomography are described.  相似文献   

2.
Serotonergic neurotransmission plays an important role during neural development. Serotonergic dysfunction is observed in various psychiatric disorders and many psychoactive drugs target proteins on serotonergic neurons. Serotonergic neurons are located in the raphé nuclei and densely innervate the whole brain. The low number and the intricate accessibility of these neurons do not allow to culture them and therefore to date it was impossible to study drug-target interactions on bona fide serotonergic neurons. In order to circumvent such problems we have developed a protocol that allows the rapid and efficient generation of serotonergic neurons from mouse embryonic stem cells. Neuronal precursors were obtained by neuronal stem sphere formation in floating culture in the presence of various mitogens. Differentiation into neurons was induced by withdrawal of the mitogens. About 90% of the resulting neurons exhibited a serotonergic phenotype as judged by immunostaining against serotonin, its synthesising enzyme tryptophan hydroxylase 2, the serotonin transporter as well as 5-HT1(A) and 5-HT1(B) autoreceptors. In addition, we found expression of the vesicular monoamine transporter vMAT2 and the presynaptic protein Bassoon, which is involved in organizing the assembly of the presynaptic active zone. Depolarisation-induced calcium influx was visualised by Fluo-4, and accompanying exocytotic events by FM dye staining. Proteins involved in 5-HT release and re-uptake as well as depolarisation evoked exocytosis were evenly co-distributed on neurites and cell bodies suggesting that ES cell-derived serotonergic neurons also exhibit somatodendritic release comparable to serotonergic neurons in the raphé nuclei.  相似文献   

3.
We have studied the regulation of AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor channels by serotonin signaling in pyramidal neurons of prefrontal cortex (PFC). Application of serotonin reduced the amplitude of AMPA-evoked currents, an effect mimicked by 5-HT(1A) receptor agonists and blocked by 5-HT(1A) antagonists, indicating the mediation by 5-HT(1A) receptors. The serotonergic modulation of AMPA receptor currents was blocked by protein kinase A (PKA) activators and occluded by PKA inhibitors. Inhibiting the catalytic activity of protein phosphatase 1 (PP1) also eliminated the effect of serotonin on AMPA currents. Furthermore, the serotonergic modulation of AMPA currents was occluded by application of the Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibitors and blocked by intracellular injection of calmodulin or recombinant CaMKII. Application of serotonin or 5-HT(1A) agonists to PFC slices reduced CaMKII activity and the phosphorylation of AMPA receptor subunit GluR1 at the CaMKII site in a PP1-dependent manner. We concluded that serotonin, by activating 5-HT(1A) receptors, suppress glutamatergic signaling through the inhibition of CaMKII, which is achieved by the inhibition of PKA and ensuing activation of PP1. This modulation demonstrates the critical role of CaMKII in serotonergic regulation of PFC neuronal activity, which may explain the neuropsychiatric behavioral phenotypes seen in CaMKII knockout mice.  相似文献   

4.
The serotonergic (5-HT) system modulates many behaviors and has been implicated in psychiatric disorders, but the density of 5-HT processes has complicated analyses. We have used regulatory regions from the Tryptophan hydroxylase 1 (Tph1) gene to drive expression of LoxP-flanked placental alkaline phosphatase (PLAP) to generate the Tph1-Lox-PLAP reporter mouse line. In these mice, PLAP is expressed in the hindbrain raphe nuclei and in peripheral tissues known to express Tph1. Tph1 is expressed at low levels in neurons. While, in Tph1-Lox-PLAP mice, most PLAP-expressing neurons are monoaminergic, PLAP was expressed in only 5-10% of neurons expressing the predominant neuronal 5-HT biosynthetic enzyme Tph2, serotonin transporter (SERT) or aromatic amino acid decarboxylase (AADC). To test this reporter further, we examined the brains of mice carrying the anorexia (anx) mutation, in which increased overall density of 5-HT immunoreactivity had been previously observed at P21. PLAP-labeling of processes in anx/anx and anx/+ mice was reduced at P0. By P10, distribution of PLAP-labeled processes in anx/+ and +/+ cortices was indistinguishable, but differed markedly from that seen in the cortical layers of anx/anx mice. Thus, the Tph1-LoxP-PLAP reporter revealed a dosage sensitive role of the anx mutation in the early 5-HT system and later cortical layer-specific differences in 5-HT process distribution in anx/anx mice. Thus, the Tph1-LoxP-PLAP reporter provides a sensitive indicator for analyses of serotonergic cells in the brain and periphery.  相似文献   

5.
5-hydroxytryptamine (5-HT) or serotonin 2A receptors play an important role in modulation of prefrontal cortex (PFC) activity and have been implicated in the physiopathology of psychiatric disorders. There is no quantitative information on the percentage of glutamatergic and GABAergic cells that express 5-HT(2A) receptors in human and monkey PFC. We have used double in situ hybridization to quantify the mRNA co-localization of 5-HT(2A) receptor with the glutamatergic transporter vesicular glutamate transporter 1, and with the GABAergic marker glutamic acid decarboxylase 65/67 and in parvalbumin and calbindin GABAergic cell populations. Our results show that nearly every glutamatergic cell (86-100%) in layers II-V expressed 5-HT(2A) receptor mRNA in both species. This percentage was lower in layer VI (13-31%). In contrast, not all the GABAergic interneurons (13-46%) expressed 5-HT(2A) receptor mRNA. This receptor was expressed in 45-69% of parvalbumin and in 61-87% of calbindin positive cells. These results indicate that, while the majority of glutamatergic neurons can be sensitive to 5-HT action via 5-HT(2A) receptors, this modulation occurs only in a limited population of GABAergic interneurons and provides new neuroanatomical information about the role played by serotonin through 5-HT(2A) receptors in the PFC and on the sites of action for drugs such as antipsychotics and antidepressants used in treatment of psychiatric disorders.  相似文献   

6.
In recent years, there has been increasing evidence that serotonergic neurotransmission modulates a wide variety of experimentally induced seizures. Generally, agents that elevate extracellular serotonin (5-HT) levels, such as 5-hydroxytryptophan and serotonin reuptake blockers, inhibit both focal and generalized seizures, although exceptions have been described, too. Conversely, depletion of brain 5-HT lowers the threshold to audiogenically, chemically and electrically evoked convulsions. Furthermore, it has been shown that several anti-epileptic drugs increase endogenous extracellular 5-HT concentration. 5-HT receptors are expressed in almost all networks involved in epilepsies. Currently, the role of at least 5-HT(1A), 5-HT(2C), 5-HT(3) and 5-HT(7) receptor subtypes in epileptogenesis and/or propagation has been described. Mutant mice lacking 5-HT(1A) or 5-HT(2C) receptors show increased seizure activity and/or lower threshold. In general, hyperpolarization of glutamatergic neurons by 5-HT(1A) receptors and depolarization of GABAergic neurons by 5-HT(2C) receptors as well as antagonists of 5-HT(3) and 5-HT(7) receptors decrease the excitability in most, but not all, networks involved in epilepsies. Imaging data and analysis of resected tissue of epileptic patients, and studies in animal models all provide evidence that endogenous 5-HT, the activity of its receptors, and pharmaceuticals with serotonin agonist and/or antagonist properties play a significant role in the pathogenesis of epilepsies.  相似文献   

7.
Serotonergic neurons located at the base of the mammalian brain innervate practically every region of the brain and the spinal cord. These neurons exhibit spontaneous electrical discharges in a rhythmical way. Their firing frequency is modulated by serotonin autoreceptors which also regulate intracellular cAMP levels. We have investigated how elevated levels of cAMP alter the development and the functional properties of serotonergic neurons in culture. To study the influence of cAMP on the expression of genes underlying serotonergic activity, a quantitative RT-PCR approach using internal standards was developed. Cultures of embryonic rat brain serotonergic neurons were continuously treated with cAMP analogues. Increased cAMP levels had three effects. First, the neuronal morphology was changed towards that typical for mature serotonergic neurons. Second, the expression of tryptophan hydroxylase, the rate-limiting enzyme in serotonin production, was increased in dibutyryl-cAMP treated cultures. Third, the expression of the inhibitory autoreceptor (5-HT1A) was down-regulated. These results suggest the existence of a mechanism by which the neurons react to synaptic input regulating intracellular cAMP levels. Increased cAMP concentrations affect the development and cause a prolonged activation of serotonergic transmission. Since 5-HT1A receptors inhibit cAMP formation, their down-regulation argues against a negative feedback control in this system, consistent with observations in vivo.  相似文献   

8.
Brain serotonin (5-HT) is implicated in a wide range of functions from basic physiological mechanisms to complex behaviors, including neuropsychiatric conditions, as well as in developmental processes. Increasing evidence links 5-HT signaling alterations during development to emotional dysregulation and psychopathology in adult age. To further analyze the importance of brain 5-HT in somatic and brain development and function, and more specifically differentiation and specification of the serotonergic system itself, we generated a mouse model with brain-specific 5-HT deficiency resulting from a genetically driven constitutive inactivation of neuronal tryptophan hydroxylase-2 (Tph2). Tph2 inactivation (Tph2-/-) resulted in brain 5-HT deficiency leading to growth retardation and persistent leanness, whereas a sex- and age-dependent increase in body weight was observed in Tph2+/- mice. The conserved expression pattern of the 5-HT neuron-specific markers (except Tph2 and 5-HT) demonstrates that brain 5-HT synthesis is not a prerequisite for the proliferation, differentiation and survival of raphe neurons subjected to the developmental program of serotonergic specification. Furthermore, although these neurons are unable to synthesize 5-HT from the precursor tryptophan, they still display electrophysiological properties characteristic of 5-HT neurons. Moreover, 5-HT deficiency induces an up-regulation of 5-HT(1A) and 5-HT(1B) receptors across brain regions as well as a reduction of norepinephrine concentrations accompanied by a reduced number of noradrenergic neurons. Together, our results characterize developmental, neurochemical, neurobiological and electrophysiological consequences of brain-specific 5-HT deficiency, reveal a dual dose-dependent role of 5-HT in body weight regulation and show that differentiation of serotonergic neuron phenotype is independent from endogenous 5-HT synthesis.  相似文献   

9.
Zhong P  Yan Z 《PloS one》2011,6(2):e16970
Serotonin exerts a powerful influence on neuronal excitability. In this study, we investigated the effects of serotonin on different neuronal populations in prefrontal cortex (PFC), a major area controlling emotion and cognition. Using whole-cell recordings in PFC slices, we found that bath application of 5-HT dose-dependently increased the firing of FS (fast spiking) interneurons, and decreased the firing of pyramidal neurons. The enhancing effect of 5-HT in FS interneurons was mediated by 5-HT2 receptors, while the reducing effect of 5-HT in pyramidal neurons was mediated by 5-HT1 receptors. Fluoxetine, the selective serotonin reuptake inhibitor, also induced a concentration-dependent increase in the excitability of FS interneurons, but had little effect on pyramidal neurons. In rats with chronic fluoxetine treatment, the excitability of FS interneurons was significantly increased, while pyramidal neurons remained unchanged. Fluoxetine injection largely occluded the enhancing effect of 5-HT in FS interneurons, but did not alter the reducing effect of 5-HT in pyramidal neurons. These data suggest that the excitability of PFC interneurons and pyramidal neurons is regulated by exogenous 5-HT in an opposing manner, and FS interneurons are the major target of Fluoxetine. It provides a framework for understanding the action of 5-HT and antidepressants in altering PFC network activity.  相似文献   

10.
The modulation of cortical dopaminergic and serotonergic neurotransmissions by neurotensin (NT) was studied by measuring the release of dopamine (DA) and 5-hydroxytryptamine (5-HT) from the prefrontal cortex (PFC) of freely moving rats. The samples were collected via transversal microdialysis. Dopamine and 5-HT levels in the dialysate were measured using high-performance liquid chromatography (HPLC) with an electrochemical detector. Local administration of neurotensin (1microM or 0.1microM) in the PFC via the dialysis probe produced significant, long-lasting, and concentration-dependent increase in the extracellular release of DA and 5-HT. The increase produced by 1microM neurotensin reached a maximum of about 210% for DA and 340% for 5-HT. A high-affinity selective neurotensin receptor (NTR1) antagonist {2-[(1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxyphenyl)pyrazol-3yl)carbonylamino tricyclo (3.3.1.1.(3.7)) decan-2-carboxylic acid} (SR 48692), perfused locally at a concentration of 0.1microM and 0.5microM in the PFC antagonized the effects of 1microM neurotensin. Our in vivo neurochemical results indicate, for the first time, that neurotensin is able to regulate cortical dopaminergic and serotonergic neuronal activity in freely moving rats. These effects are possibly mediated by interactions of neurotensin with neurons releasing DA or 5-HT, projecting to the PFC from the ventrotegmental area (VTA) and from the dorsal raphe nuclei (DRN), respectively. The potentiating effects of neurotensin on DA and 5-HT release in the PFC are regulated by NTR1 receptors, probably located on dopaminergic and serotonergic nerve terminals or axons.  相似文献   

11.
Relaxin 3 or insulin like peptide 7 has been identified as a new member of the insulin/relaxin superfamily. We recently reported that relaxin 3 was dominantly expressed in the brain, particularly in neurons of the nucleus incertus (NI) of the median dorsal tegmental pons and that it might act as a neurotransmitter. In the present study we investigated the developmental expression and serotonergic regulation of relaxin 3 gene in the rat brain. Relaxin 3 mRNA appeared at embryonic day 18 in the near region of the fourth ventricle, and was shown to have increased its density and the number of expressing neurons by in situ hybridization and RT-PCR examination. Relaxin 3 peptide was detected after birth by immunocytochemistry. Since the NI is located just caudal to the dorsal raphe nucleus where abundant serotonin (5-HT) neurons are present, we examined if 5-HT effects on the expression of relaxin 3. Relaxin 3 gene expression in the NI significantly increased after 5-HT depletion by p-chlorophenylalanine (PCPA) administration. We also observed the 5-HT1A receptor localization in relaxin 3 positive neurons of the NI. This result suggests that 5-HT negatively regulates the expression of relaxin 3 gene in the NI. The function of relaxin 3 neurons in the brain is influenced by the serotonergic activity.  相似文献   

12.
Serotonin 1A (5-HT(1A)) receptors are found in high densities in prefrontal cortex. However, their distribution within cortical cell populations is unknown in both humans and primates. We used double in situ hybridization histochemistry to quantify the percentage of glutamatergic and GABAergic neurons expressing 5-HT(1A) receptors in human and monkey prefrontal cortex. Moreover, in the case of the monkey, we also quantified the parvalbumin and calbindin GABAergic subpopulations expressing this receptor. 5-HT(1A) receptor mRNAs were expressed in about 80% of glutamatergic neurons in external layers II and upper III, and in around 50% in layer VI; they were also present in approximately 20% of GABAergic neurons in both species. Although they were found in up to 43% of the calbindin cell subpopulation they were rarely present in parvalbumin cells in monkey prefrontal cortex. The knowledge of the phenotype of the prefrontal cortex (PFC) cells expressing 5-HT(1A) will help understanding serotonin actions in PFC.  相似文献   

13.
The prefrontal cortex (PFC) is involved in the pathophysiology of schizophrenia. PFC neuronal activity is modulated by monoaminergic receptors for which antipsychotic drugs display moderate-high affinity, such as 5-HT(2A) and alpha(1)-adrenoceptors. Conversely, PFC pyramidal neurons project to and modulate the activity of raphe serotonergic neurons and serotonin (5-HT) release. Under the working hypothesis that atypical antipsychotic drugs may partly exert their action in PFC, we assessed their action on the in vivo 5-HT release evoked by increasing glutamatergic transmission in rat medial PFC (mPFC). This was achieved by applying S-AMPA in mPFC (reverse dialysis) or by disinhibiting thalamic excitatory afferents to mPFC with bicuculline. The application of haloperidol, chlorpromazine, clozapine and olanzapine in mPFC by reverse dialysis (but not reboxetine or diazepam) reversed the S-AMPA-evoked local 5-HT release. Likewise, the local (in mPFC) or systemic administration of these antipsychotic drugs reversed the increased prefrontal 5-HT release produced by thalamic disinhibition. These effects were shared by the 5-HT(2A) receptor antagonist M100907 and the alpha(1)-adrenoceptor antagonist prazosin. However, raclopride (DA D2 antagonist) had very modest effects. These results suggest that, besides their action in limbic striatum, antipsychotic drugs may attenuate glutamatergic transmission in PFC, possibly by interacting with 5-HT(2A) and/or alpha(1)-adrenoceptors.  相似文献   

14.
Inductive signals mediating the differentiation of neural precursors into serotonergic (5-HT) or dopaminergic neurons have not been clarified. We have recently shown that in cell aggregates obtained from rat mesencephalic precursors, reduction of serotonin levels induces a marked increase in generation of dopaminergic neurons. In the present study we treated rat neurospheres with antagonists of the main subtypes of 5-HT receptors, 5-HT transport inhibitors, or 5-HT receptor agonists, and studied the effects on generation of dopaminergic neurons. Cultures treated with Methiothepin (5-HT(1,2,5,6,7) receptor antagonist), the 5-HT(4) receptor antagonist GR113808;67:00-.or the 5-HT(7) receptor antagonist SB 269970 showed a significant increase in generation of dopaminergic cells. Treatment with the 5-HT(1B/1D) antagonist GR 127935, the 5-HT(2) antagonist Ritanserin, the 5-HT transporter inhibitor Fluoxetine, the dopamine and norepinephrine transport inhibitor GBR 12935, or with both inhibitors together, or 5-HT(4) or 5-HT(7) receptor agonists induced significant decreases in generation of dopaminergic cells. Cultures treated with WAY100635 (5-HT(1A) receptor antagonist), the 5-HT(3) receptor antagonist Ondasetron, or the 5-HT(6) receptor antagonist SB 258585 did not show any significant changes. Therefore, 5-HT(4) and 5-HT(7) receptors are involved in the observed serotonin-induced decrease in generation of dopaminergic neurons from proliferating neurospheres of mesencephalic precursors. 5-HT(4) and 5-HT(7) receptors were found in astrocytes and serotonergic cells using double immunolabeling and laser confocal microscopy, and the glial receptors appeared to play a major role.  相似文献   

15.
Glycogen synthase kinase-3 (GSK3) is a constitutively active protein kinase in brain. Increasing evidence has shown that GSK3 acts as a modulator in the serotonin neurotransmission system, including direct interaction with serotonin 1B (5-HT1B) receptors in a highly selective manner and prominent modulating effect on 5-HT1B receptor activity. In this study, we utilized the serotonin neuron-selective GSK3β knockout (snGSK3β-KO) mice to test if GSK3β in serotonin neurons selectively modulates 5-HT1B autoreceptor activity and function. The snGSK3β-KO mice were generated by crossbreeding GSK3β-floxed mice and ePet1-Cre mice. These mice had normal growth and physiological characteristics, similar numbers of tryptophan hydroxylase-2 (TpH2)-expressing serotonin neurons, and the same brain serotonin content as in littermate wild type mice. However, the expression of GSK3β in snGSK3β-KO mice was diminished in TpH2-expressing serotonin neurons. Compared to littermate wild type mice, snGSK3β-KO mice had a reduced response to the 5-HT1B receptor agonist anpirtoline in the regulation of serotonergic neuron firing, cAMP production, and serotonin release, whereas these animals displayed a normal response to the 5-HT1A receptor agonist 8-OH-DPAT. The effect of anpirtoline on the horizontal, center, and vertical activities in the open field test was differentially affected by GSK3β depletion in serotonin neurons, wherein vertical activity, but not horizontal activity, was significantly altered in snGSK3β-KO mice. In addition, there was an enhanced anti-immobility response to anpirtoline in the tail suspension test in snGSK3β-KO mice. Therefore, results of this study demonstrated a serotonin neuron-targeting function of GSK3β by regulating 5-HT1B autoreceptors, which impacts serotonergic neuron firing, serotonin release, and serotonin-regulated behaviors.  相似文献   

16.
The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala and the striatal circuitry, areas involved in emotion and reward processing. The PFC, however, is able to modulate amygdala reactivity via a feedback loop to this area. A role for serotonin in adjusting for this circuitry of cognitive regulation of emotion has long been suggested based primarily on the positive pharmacological effect of elevating serotonin levels in anxiety regulation. Recent animal and human functional magnetic resonance studies have pointed to a specific involvement of the 5-hydroxytryptamine (5-HT)2A serotonin receptor in the PFC feedback regulatory projection onto the amygdala. This receptor is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings of a regulatory effect of the PFC on the emotional control of our actions.  相似文献   

17.
Abnormal serotonin-glutamate interaction in prefrontal cortex (PFC) is implicated in the pathophysiology of many mental disorders, including schizophrenia and depression. However, the mechanisms by which this interaction occurs remain unclear. Our previous study has shown that activation of 5-HT(1A) receptors inhibits N-methyl-D-aspartate (NMDA) receptor (NMDAR) currents in PFC pyramidal neurons by disrupting microtubule-based transport of NMDARs. Here we found that activation of 5-HT(2A/C) receptors significantly attenuated the effect of 5-HT(1A) on NMDAR currents and microtubule depolymerization. The counteractive effect of 5-HT(2A/C) on 5-HT(1A) regulation of synaptic NMDAR response was also observed in PFC pyramidal neurons from intact animals treated with various 5-HT-related drugs. Moreover, 5-HT(2A/C) stimulation triggered the activation of extracellular signal-regulated kinase (ERK) in dendritic processes. Inhibition of the beta-arrestin/Src/dynamin signaling blocked 5-HT(2A/C) activation of ERK and the counteractive effect of 5-HT(2A/C) on 5-HT(1A) regulation of NMDAR currents. Immunocytochemical studies showed that 5-HT(2A/C) treatment blocked the inhibitory effect of 5-HT(1A) on surface NR2B clusters on dendrites, which was prevented by cellular knockdown of beta-arrestins. Taken together, our study suggests that serotonin, via 5-HT(1A) and 5-HT(2A/C) receptor activation, regulates NMDAR functions in PFC neurons in a counteractive manner. 5-HT(2A/C), by activating ERK via the beta-arrestin-dependent pathway, opposes the 5-HT(1A) disruption of microtubule stability and NMDAR transport. These findings provide a framework for understanding the complex interactions between serotonin and NMDARs in PFC, which could be important for cognitive and emotional control in which both systems are highly involved.  相似文献   

18.
The cricket, Gryllus bimaculatus, shows a rhythm reversal from diurnal to nocturnal in about a week after the imaginal molt. In the present study, we investigated the role of serotonin (5-HT) in the rhythm reversal. The 5-HT content in the brain measured by HPLC equipped with an electrochemical detector gradually increased after the imaginal molt, and in fully nocturnal adults it was about 2 times of nymphal level. We then examined the effects of 5,7-dihydroxytryptamine (5,7-DHT), a selective neurotoxine to serotonergic neurons, on the locomotor rhythm. In most animals with 5,7-DHT (25 muM or 250 muM, 32.2 nl) injected into the brain, daytime activity significantly increased even after the rhythm reversal, while nighttime activity was not significantly affected, forming rather diurnal pattern. The serotonin content in the brain of animals injected with 250 muM 5,7-DHT was reduced by about 30%. On the basis of these results, possible involvement of 5-HT in the neural mechanism controlling the locomotor rhythm is discussed.  相似文献   

19.
Effects of thyroid hormone deficiency on 5-HT1A receptors, 5-HT2A receptors and serotonin transporter in the brain were studied in thyroidectomised Wistar rats receiving an iodine-free diet and receiving 15 micrograms/kg of thyroxine for 21 days. Binding of 3H-8-OH-DPAT to 5-HT1A receptors and 3H-cytalopram to serotonin transporter were unchanged in hypothyroid rats as compared to the control. 3H-ketanserin binding to 5-HT2A receptors was significantly decreased in the frontal cortex in hypothyroid rats. The cortical 3H-ketanserin binding in thyroidectomised rats was normalised after thyroxine replacement. The data suggest that the decrease in the cortical 5-HT2A receptors is the main consequence of impairing effect of hypothyroidism on serotonin neurotransmission.  相似文献   

20.
Among the molecular, cellular, and systemic events that have been proposed to modulate the function of the hippocampus and the entorhinal cortex (EC), one of the most frequently cited possibilities is the activation of the serotonergic system. Neurons in the hippocampus and in the EC receive a strong serotonergic projection from the raphe nuclei and express serotonin (5-HT) receptors at high density. Here we review the various effects of 5-HT on intrinsic and synaptic properties of neurons in the hippocampus and the EC. Although similar membrane-potential changes following 5-HT application have been reported for neurons of the entorhinal cortex and the hippocampus, the effects of serotonin on synaptic transmission are contrary in both areas. Serotonin mainly depresses fast and slow inhibition of the principal output cells of the hippocampus, whereas it selectively suppresses the excitation in the entorhinal cortex. On the basis of these data, we discuss the possible role of serotonin under physiological and pathophysiological circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号