首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have previously reported that attenuation of hyperinsulinemia by diazoxide (DZ), an inhibitor of glucose-mediated insulin secretion, increased insulin sensitivity and reduced body weight in obese Zucker rats. These findings prompted us to investigate the effects of DZ on key insulin-sensitive enzymes regulating adipose tissue metabolism, fatty acid synthase (FAS), and lipoprotein lipase (LPL), as well as on circulating levels of leptin. We also determined the direct effects of diazoxide on FAS in 3T3-L1 adipocytes. Seven-week-old female obese and lean Zucker rats were treated with DZ (150 mg/kg/d) or vehicle (C, control) for a period of 6 wk. Changes in plasma parameters by DZ include significant decreases in triglycerides, free fatty acids, glucose, and insulin, consistent with our previous reports. DZ obese rats exhibited lower plasma leptin levels (P<0.03) compared to their C animals. DZ significantly reduced adipose tissue FAS activity in both lean (P<0.0001) and obese (P<0.01) animals. LPL mRNA content was also decreased significantly in DZ-treated obese animals (P<0.009) as compared to their respective controls without a significant effect on lean animals. The possibility that DZ exerted a direct effect on adipocytes was further tested in cultured 3T3-L1 adipocytes. Although diazoxide (5 microM) alone did not change FAS activity in cultured 3T3-L1 adipocytes, it significantly attenuated insulin's effect on FAS activity (P<0.001). We demonstrate that DZ regulates key insulin-sensitive enzymes involved in regulation of adipose tissue metabolism. These findings suggest that modification of insulin-sensitive pathways can be therapeutically beneficial in obesity management.  相似文献   

2.
Expression of thrombospondin-2 (TSP-2), a matricellular protein with anti-angiogenic properties, is modulated in developing adipose tissue. To investigate a potential functional role of TSP-2 in adipose tissue angiogenesis and growth, TSP-2 deficient (TSP-2(-/-)) and wild-type littermate (TSP-2(+/+)) mice were kept on normal chow (standard fat diet (SFD)) or on high fat diet (HFD) for 15 weeks. TSP-2(-/-) mice kept on HFD had a significantly lower total body weight throughout the experimental period. Subcutaneous (SC) and gonadal (GON) fat mass were, however, not different, and their composition in terms of size and density of adipocytes and blood vessels was also comparable in both genotypes. Macrophage infiltration in SC or GON adipose tissues was not affected by TSP-2 deficiency. TSP-2 deficiency had no effect on adipose tissue mRNA expression of gelatinase A (MMP-2), whereas gelatinase B (MMP-9) was downregulated in SC and GON adipose tissues of TSP-2(-/-) mice on HFD. Glucose tolerance and insulin resistance tests were comparable for TSP-2(+/+) and TSP-2(-/-) mice. TSP-2 deficiency was not compensated by increased expression of TSP-1 in the TSP-2(-/-) mice. These data suggest that TSP-2, despite its reported anti-angiogenic properties, does not play an important functional role in adipose tissue related angiogenesis or associated fat development in mice.  相似文献   

3.
Retinopathy, a common complication of diabetes, is characterized by an unbalanced production of nitric oxide (NO), a process regulated by nitric oxide synthase (NOS). We hypothesized that retinopathy might stem from changes in the insulin receptor substrate (IRS)/PI3K/AKT pathway and/or expression of NOS isoforms. Thus, we analysed the morphology and apoptosis index in retinas of obese rats in whom insulin resistance had been induced by a high‐fat diet (HFD). Immunoblotting analysis revealed that the retinal tissue of HFD rats had lower levels of AKT1, eNOS and nNOS protein than those of samples taken from control animals. Furthermore, immunohistochemical analyses indicated higher levels of iNOS and 4‐hydroxynonenal and a larger number of apoptotic nuclei in HFD rats. Finally, both the inner and outer retinal layers of HFD rats were thinner than those in their control counterparts. When considered alongside previous results, these patterns suggest two major ways in which HFD might impact animals: direct activity of ingested fatty acids and/or via insulin‐resistance‐induced changes in intracellular pathways. We discuss these possibilities in further detail and advocate the use of this animal model for further understanding relationships between retinopathy, metabolic syndrome and type 2 diabetes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The dysregulation of adipokine secretion owing to adiposopathy can contribute to the pathogenesis of obesity-related disorders. Being that exercise is an advised strategy against obesity-induced adiposopathy, we aimed to analyze the role of physical exercise as a preventive and therapeutic strategy against high-fat diet (HFD)-induced adipokine and ghrelin alterations. Rats were pair-fed the Lieber De Carli standard diet (S, 35 Kcal% fat) or HFD (71 Kcal% fat) over 17 weeks. Animals were assigned into four groups as follows: standard diet sedentary (SS), standard diet voluntary physical activity (SVPA), high-fat diet sedentary (HS), and high-fat diet voluntary physical activity (HVPA). After 9 weeks of dietary treatment, half of the SS and HS animals were submitted to an 8-week endurance training program, standard diet endurance training (SET), and high-fat-diet endurance training (HET) groups, maintaining the respective diets. Although there were no changes in body weight, HFD increased visceral adiposity, percentage of large adipocytes, hypoxia inducible factor (HIF)-1α, and leptin contents in epididymal adipose tissue (eWAT) and decreased plasma content of adiponectin (AdipQ). Both VPA and ET decreased visceral adiposity and percentage of large adipocytes in HFD-fed animals, but ET also increased the percentage of small- to medium-sized adipocytes. VPA increased plasma growth hormone secretagogue receptor (GHS-R) and decreased leptin protein in HVPA group. ET decreased plasma insulin and leptin levels and eWAT HIF-1α and leptin expression in HET group. Moreover, ET improved insulin sensitivity, plasma high molecular weight, and AdipQ and ghrelin levels and increased eWAT and GHS-R expression. Our data suggest that exercise, particularly ET, reverted adiposopathy and related endocrine alterations induced by an isocaloric HFD pair-fed diet.  相似文献   

5.
The present study investigated the anti-obesity effects of pomegranate (Punica granatum) juices from the two Saudi Arabian, Taif red, Taif white, and Egyptian pomegranates in high-fat diet (HFD)-induced obese rats. Administrating any of the used juices decreased the body weight gain, food consumption, and serum levels of lipid, leptin, and glucose, while it increased serum insulin level. Histologically, all types of juices decreased the number and size of lipid droplets in hepatocytes compared to the obese, non-treated animals. All juices types upregulated the hepatic mRNA expression of hormone-sensitive lipase, pyruvate kinase, and adiponectin in obese rats; the genes were all suppressed by HFD feeding. Additionally, the expression of fatty acid synthase, sterol regulatory element-binding protein-1c, and acetyl-CoA carboxylase1 was also upregulated by all types of juices. Conversely, ghrelin mRNA expression was downregulated by all used juices’ types. These findings demonstrate that all types of tested juices protect against the HFD-induced obesity in rats.  相似文献   

6.
The increase in body and white adipose tissue weights induced by a high-fat diet were prevented by treatment with the beta3-adrenergic agonist Trecadrine. Plasma insulin levels were slightly elevated in overweight rats, while a decrease was observed in Trecadrine-treated groups. Insulin-dependent glucose uptake was impaired in adipocytes of the overweight rats in relation to lean animals. The beta3-adrenergic agonist induced an increase in insulin-stimulated glucose uptake by adipocytes as compared to the nontreated animals. In fact, Trecadrine treatment was able to restore to control values the impairment in insulin-mediated glucose uptake induced by the cafeteria diet, suggesting that Trecadrine prevents the development of insulin resistance in overweight animals. Basal leptin secretion was increased in adipocytes of the overweight rats in relation to lean animals. Trecadrine treatment induced a decrease in basal leptin secretion compared to the untreated animals. Insulin-stimulated leptin secretion reached similar levels in adipocytes of the overweight rats as in lean animals. There was a trend for insulin-induced leptin secretion to be lower at 24 h in Trecadrine-treated rats, but it did not reach statistical significance. In conclusion, adipocytes of diet-induced overweight animals have a higher basal leptin secretion, which is reduced by treatment with Trecadrine. However, neither the cafeteria diet nor the Trecadrine treatment significantly alters the ability of adipocytes to increase leptin secretion in response to insulin.  相似文献   

7.

Aims/hypothesis

The excessive accumulation of adipose tissue in the obese state is linked to an altered secretion profile of adipocytes, chronic low-grade inflammation and metabolic complications. RBP4 has been implicated in these alterations, especially insulin resistance. The aim of the present study was to determine if a local inflammatory micro-environment in adipose tissue regulates RBP4 expression and secretion.

Methods

Human SGBS and primary adipocytes cultured with conditioned media from human THP-1 macrophages were used as an in vitro model for adipose inflammation. Adipocytes were exposed to recombinant TNF-α, IL-1β, IL-6 or IL-8. In addition, coexpression of IL-1β and RBP4 was measured in adipose tissue samples from 18 healthy females. RBP4 expression was studied by quantitative PCR and ELISA.

Results

RBP4 mRNA expression and secretion was significantly reduced upon incubation with macrophage-conditioned media in SGBS adipocytes and human primary adipocytes. Out of several factors studied we identified IL-1β as a new factor regulating RBP4. IL-1β significantly downregulated RBP4 mRNA and secretion in a time- and dose-dependent manner. IL-1β mediated its inhibitory effects on RBP4 expression via IL-1 receptor and NF-κB, as incubation with the IL-1 receptor blocking antibody and the NF-κB inhibitors CAPE and SC-514 reversed its effect. Most interestingly, RBP4 mRNA was negatively correlated with IL-1β mRNA in subcutaneous adipose tissue.

Conclusions

Adipose tissue inflammation as found in the obese state might lead to a downregulation in local RBP4 levels. IL-1β was identified as a major factor contributing to the decrease in RBP4. The increase in circulating RBP4 that often precedes the development of systemic insulin resistance is most likely unrelated to inflammatory processes in adipose tissue.  相似文献   

8.
It is known that obese adipose tissues are hypoxic and express hypoxia-inducible factor (HIF)-1α. Although some studies have shown that the expression of HIF-1α in adipocytes induces glucose intolerance, the mechanisms are still not clear. In this study, we examined its effects on the development of type 2 diabetes by using adipocyte-specific HIF-1α knockout (ahKO) mice. ahKO mice showed improved glucose tolerance compared with wild type (WT) mice. Macrophage infiltration and mRNA levels of monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor α (TNFα) were decreased in the epididymal adipose tissues of high fat diet induced obese ahKO mice. The results indicated that the obesity-induced adipose tissue inflammation was suppressed in ahKO mice. In addition, in the ahKO mice, serum insulin levels were increased under the free-feeding but not the fasting condition, indicating that postprandial insulin secretion was enhanced. Serum glucagon-like peptide-1 (GLP-1) levels were also increased in the ahKO mice. Interestingly, adiponectin, whose serum levels were increased in the obese ahKO mice compared with the obese WT mice, stimulated GLP-1 secretion from cultured intestinal L cells. Therefore, insulin secretion may have been enhanced through the adiponectin-GLP-1 pathway in the ahKO mice. Our results suggest that the deletion of HIF-1α in adipocytes improves glucose tolerance by enhancing insulin secretion through the GLP-1 pathway and by reducing macrophage infiltration and inflammation in adipose tissue.  相似文献   

9.
This study examined the anti-obesity effect and mechanism of action of blueberry peel extracts (BPE) in 3T3-L1 cells and high-fat diet (HFD)-induced obese rats. The levels of lipid accumulation were measured, along with the changes in the expression of genes and proteins associated with adipocyte differentiation in 3T3-L1 cells. Evidenced by Oil-red O staining and triglyceride assay, BPE dose-dependently inhibited lipid accumulation at concentrations of 0, 50, and 200 µg/ml. BPE decreased the expression of the key adipocyte differentiation regulator C/EBPβ, as well as the C/EBPα and PPARγ genes, during the differentiation of preadipocytes into adipocytes. Moreover, BPE down-regulated adipocyte-specific genes such as aP2 and FAS compared with control adipocytes. The specific mechanism mediating the effects of BP revealed that insulin-stimulated phosphorylation of Akt was strongly decreased, and its downstream substrate, phospho-GSK3β, was downregulated by BPE treatment in 3T3-L1 cells. Together, these data indicated that BP exerted anti-adipogenic activity by inhibiting the expression of PPARγ and C/EBPβ and the Akt signaling pathway in 3T3-L1 adipocytes. Next, we investigated whether BP extracts attenuated HFD-induced obesity in rats. Oral administration of BPE reduced HFD-induced body weight gain significantly without affecting food intake. The epididymal or perirenal adipose tissue weights were lower in rats on an HFD plus BPE compared with the tissue weights of HFD-induced obese rats. Total cholesterol and triglyceride levels in the rats fed BPE were modestly reduced, and the HDL-cholesterol level was significantly increased in HFD plus BP-fed rats compared with those of HFD-fed rats. Taken together, these results demonstrated an inhibitory effect of BP on adipogenesis through the down-regulation of C/EBPβ, C/EBPα, and PPARγ and the reduction of the phospho-Akt adipogenic factor in 3T3-L1 cells. Moreover, BPE reduced body weight gain and inhibited fat accumulation in an HFD-induced animal model of obesity.  相似文献   

10.
Ad libitum high-fat diet (HFD) induces obesity and skeletal muscle metabolic dysfunction. Liver kinase B1 (LKB1) regulates skeletal muscle metabolism by controlling the AMP-activated protein kinase family, but its importance in regulating muscle gene expression and glucose tolerance in obese mice has not been established. The purpose of this study was to determine how the lack of LKB1 in skeletal muscle (KO) affects gene expression and glucose tolerance in HFD-fed, obese mice.KO and littermate control wild-type (WT) mice were fed a standard diet or HFD for 14 weeks. RNA sequencing, and subsequent analysis were performed to assess mitochondrial content and respiration, inflammatory status, glucose and insulin tolerance, and muscle anabolic signaling.KO did not affect body weight gain on HFD, but heavily impacted mitochondria-, oxidative stress-, and inflammation-related gene expression. Accordingly, mitochondrial protein content and respiration were suppressed while inflammatory signaling and markers of oxidative stress were elevated in obese KO muscles. KO did not affect glucose or insulin tolerance. However, fasting serum insulin and skeletal muscle insulin signaling were higher in the KO mice. Furthermore, decreased muscle fiber size in skmLKB1-KO mice was associated with increased general protein ubiquitination and increased expression of several ubiquitin ligases, but not muscle ring finger 1 or atrogin-1. Taken together, these data suggest that the lack of LKB1 in skeletal muscle does not exacerbate obesity or insulin resistance in mice on a HFD, despite impaired mitochondrial content and function and elevated inflammatory signaling and oxidative stress.  相似文献   

11.
12.
Lipoic acid (LA) is an antioxidant with therapeutic properties on several diseases like diabetes and obesity. Apelin is a novel adipokine with potential beneficial actions on glucose metabolism and insulin resistance. The aim of this study was to examine in 3T3-L1 adipocytes the effects of LA on apelin gene expression and secretion, as well as elucidate the signaling pathways involved. We also tested the regulation of adipose apelin gene expression by LA supplementation in a model of high-fat diet-induced obesity. LA increased apelin secretion but not apelin gene expression in 3T3-L1 adipocytes. The AMPK inhibitor Compound C induced an increase in LA-stimulated apelin production, and, on the contrary, the AMPK activator AICAR completely reversed the LA stimulatory effects on apelin secretion, also inducing a significant reduction in apelin mRNA levels in this in vitro model. Apelin mRNA levels were increased in those animals fed with the high-fat diet, while the caloric restriction decreased apelin mRNA to control levels. However, apelin gene expression was not significantly modified in rats treated with LA compared with the obese group. The current data suggest the ability of LA to modulate apelin secretion by adipocytes. However the insulin-sensitizing effect of LA in vivo is not related to changes in apelin gene expression in our model of diet-induced obesity.  相似文献   

13.
Thrombospondin-1 (TSP-1) expression in human adipose positively correlates with body mass index and may contribute to adipose dysfunction by activating transforming growth factor-β and/or inhibiting angiogenesis. Our objective was to determine how TSP-1 is regulated in adipocytes and polarized macrophages using a coculture system and to determine whether fatty acids, including the ω-3 fatty acid docosahexaenoic acid (DHA), regulate TSP-1 expression. Coculture of M1, M2a or M2c macrophages with adipocytes induced TSP-1 gene expression in adipocytes (from 2.4- to 4.2-fold, P<.05), and adipocyte coculture induced TSP-1 gene expression in M1 and M2c macrophages (M1: 8.6-fold, M2c: 26-fold; P<.05). TSP-1 protein levels in the shared media of adipocytes and M2c cells were also strongly induced by coculture (>10-fold, P<.05). DHA treatment during the coculture of adipocytes and M2c macrophages potently inhibited the M2c macrophage TSP-1 mRNA level (97% inhibition, P<.05). Adipocyte coculture induced interleukin (IL)-10 expression in M2c macrophages (10.1-fold, P<.05), and this increase in IL-10 mRNA expression was almost completely blocked with DHA treatment (96% inhibition, P<.05); thus, IL-10 expression closely paralleled TSP-1 expression. Since IL-10 has been shown to regulate TSP-1 in other cell types, we reduced IL-10 expression with siRNA in the M2c cells and found that this caused TSP-1 to be reduced in response to adipocyte coculture by 60% (P<.05), suggesting that IL-10 regulates TSP-1 expression in M2c macrophages. These results suggest that supplementation with dietary ω-3 fatty acids could potentially be beneficial to adipose tissue in obesity by reducing TSP-1 and fibrosis.  相似文献   

14.
Folic acid (FA) supplementation may protect from obesity and insulin resistance, the effects and mechanism of FA on chronic high-fat-diet-induced obesity-related metabolic disorders are not well elucidated. We adopted a genome-wide approach to directly examine whether FA supplementation affects the DNA methylation profile of mouse adipose tissue and identify the functional consequences of these changes. Mice were fed a high-fat diet (HFD), normal diet (ND) or an HFD supplemented with folic acid (20 μg/ml in drinking water) for 10 weeks, epididymal fat was harvested, and genome-wide DNA methylation analyses were performed using methylated DNA immunoprecipitation sequencing (MeDIP-seq). Mice exposed to the HFD expanded their adipose mass, which was accompanied by a significant increase in circulating glucose and insulin levels. FA supplementation reduced the fat mass and serum glucose levels and improved insulin resistance in HFD-fed mice. MeDIP-seq revealed distribution of differentially methylated regions (DMRs) throughout the adipocyte genome, with more hypermethylated regions in HFD mice. Methylome profiling identified DMRs associated with 3787 annotated genes from HFD mice in response to FA supplementation. Pathway analyses showed novel DNA methylation changes in adipose genes associated with insulin secretion, pancreatic secretion and type 2 diabetes. The differential DNA methylation corresponded to changes in the adipose tissue gene expression of Adcy3 and Rapgef4 in mice exposed to a diet containing FA. FA supplementation improved insulin resistance, decreased the fat mass, and induced DNA methylation and gene expression changes in genes associated with obesity and insulin secretion in obese mice fed a HFD.  相似文献   

15.
Fructose is a major dietary sugar, which is elevated in the serum of diabetic humans, and is associated with metabolic syndromes important in the pathogenesis of diabetic complications. The facilitative fructose transporter, GLUT5, is expressed in insulin-sensitive tissues (skeletal muscle and adipocytes) of humans and rodents, where it mediates the uptake of substantial quantities of dietary fructose, but little is known about its regulation. We found that GLUT5 abundance and activity were compromised severely during obesity and insulin resistance in Zucker rat adipocytes. Adipocytes from young obese (fa/fa), highly insulin-responsive Zucker rats contained considerably more plasma membrane GLUT5 than those from their lean counterparts (1.8-fold per microgram membrane protein), and consequently exhibited higher fructose transport (fivefold) and metabolism (threefold) rates. Lactate production was the preferred route for fructose metabolism in these cells. As the rats aged and become more obese and insulin-resistant, adipocyte GLUT5 surface density (12-fold) and fructose transport (10-fold) and utilisation rates (threefold) fell markedly. The GLUT5 loss was more dramatic in adipocytes from obese animals, which developed a more marked insulin resistance than lean counterparts. The decline of GLUT5 levels in adipocytes from older, obese animals was not a generalised effect, and was not observed in kidney, nor was this expression pattern shared by the 1 subunit of the Na+/K+ ATPase. Our findings suggest that plasma membrane GLUT5 levels and thus fructose utilisation rates in adipocytes are dependent upon cellular insulin sensitivity, inferring a possible role for GLUT5 in the elevated circulating fructose observed during diabetes, and associated pathological complications. (Mol Cell Biochem 261: 23–33, 2004)  相似文献   

16.
Thiazolidinediones (TZDs) are a commonly prescribed class of insulin sensitizing drugs that increase fatty acid re-esterification, in part through the induction of pyruvate dehydrogenase kinase 4 (PDK4). Owing to the deleterious side effects of TZDs the identification of alternative approaches with which to increase PDK4 is essential. We recently demonstrated that epinephrine increases PDK4 expression through p38 and peroxisome proliferator-activated receptor γ (PPARγ) dependent pathways in cultured adipose tissue from lean rats. The purpose of this study was to determine whether acute epinephrine treatment, in vivo, can induce PDK4 mRNA expression in adipose tissue from obese, insulin resistant rats and if the reputed signaling pathways mediating this effect are intact. To this end we fed male Wistar rats a chow or high-fat diet (HFD, 60% kcals from fat) for 6 weeks. Rats were then injected with a weight-adjusted bolus of epinephrine and tissue harvested. Despite a blunted activation of p38 epinephrine increased PDK4 mRNA expression to a similar extent in adipose tissue from chow and HFD rats. 5'AMP-activated protein kinase (AMPK) signaling was not altered by the HFD. Similar to epinephrine, 2 h of swim exercise, an intervention that increases plasma catecholamines, also increased PDK4 mRNA levels to a similar extent in adipose tissue from both lean and HFD rats. Collectively these findings demonstrate, for the first time, that acute elevations in catecholamines induce PDK4 in adipose tissue from HFD rats, that this effect is likely independent of p38, a reputed mediator of PDK4 expression and that exercise, similar to TZDs can induce PDK4 in adipose tissue from obese, insulin resistant rats.  相似文献   

17.
Ginsenoside Re (Re), a compound derived from Panax ginseng, shows an antidiabetic effect. However, the molecular basis of its action remains unknown. We investigated insulin signaling and the antiinflammatory effect by Re in 3T3-L1 adipocytes and in high-fat diet (HFD) rats to dissect its anti-hyperglycemic mechanism. Glucose uptake was measured in 3T3-L1 cells and glucose infusion rate determined by clamp in HFD rats. The insulin signaling cascade, including insulin receptor (IR) beta-subunit, IR substrate-1, phosphatidylinositol 3-kinase, Akt and Akt substrate of 160 kDa, and glucose transporter-4 translocation are examined. Furthermore, c-Jun NH(2)-terminal kinase (JNK), MAPK, and nuclear factor (NF)-kappaB signaling cascades were also assessed. The results show Re increases glucose uptake in 3T3-L1 cells and glucose infusion rate in HFD rats. The activation of insulin signaling by Re is initiated at IR substrate-1 and further passes on through phosphatidylinositol 3-kinase and downstream signaling cascades. Moreover, Re demonstrates an impressive suppression of JNK and NF-kappaB activation and inhibitor of NF-kappaBalpha degradation. In conclusion, Re reduces insulin resistance in 3T3-L1 adipocytes and HFD rats through inhibition of JNK and NF-kappaB activation.  相似文献   

18.
The incidence of obesity is increasing worldwide. It was reported that endoplasmic reticulum stress (ERS) could inhibit insulin receptor signaling by activating c-Jun N-terminal kinase (JNK) in the liver. However, the relationship between ERS and insulin receptor signaling in the brain during obesity remains unclear. The aim of the current study was to assess whether ERS alters insulin receptor signaling through the hyper-activation of JNK in the hippocampus and frontal cortex in the brains of obese rats. Obesity was induced using a high fat diet (HFD). The Morris water maze test was then performed to evaluate decreases in cognitive function, and western blot was used to verify whether abnormal insulin receptor signaling was induced by ERS in HFD rats exhibiting cognitive decline. In addition, to determine whether ERS activated JNK and consequently impaired insulin receptor signaling, SH-SY5Y cells were treated with the JNK inhibitor, SP600125, followed by tunicamycin or thapsigargin, and primary rat hippocampal and cortical neurons were transfected with siRNA against IRE1α and JNK. We found that the expression of phosphorylation of PKR-like kinase (PERK), phosphorylation of α subunit of translation initiation factor 2 (eIF2α), and phosphorylation of inositol-requiring kinase-1α (IRE-1α) were increased in the brains of rats with HFD when compared with control rats. The level of serine phosphorylation of insulin receptor substrate-1 (IRS-1) was also increased, while protein kinase B (PKB/Akt) was reduced. ERS was also found to inhibit insulin receptor signaling via the activation of JNK in SH-SY5Y cells, primary rat hippocampal, and cortical neurons. These results indicate that ERS was increased, thereby resulting in impaired insulin receptor signaling in the hippocampus and frontal cortex of obese rats.  相似文献   

19.
Type 2 diabetes and obesity are characterized by elevated nocturnal circulating free fatty acids, elevated basal insulin secretion, and blunted glucose‐stimulated insulin secretion (GSIS). The CB1 receptor antagonist, Rimonabant, has been shown to improve glucose tolerance and insulin sensitivity in vivo but its direct effect on islets has been unclear. Islets from lean littermates and obese Zucker (ZF) and Zucker Diabetic Fatty (ZDF) rats were incubated for 24 h in vitro and exposed to 11 mmol/l glucose and 0.3 mmol/l palmitate (GL) with or without Rimonabant. Insulin secretion was determined at basal (3 mmol/l) or stimulatory (15 mmol/l) glucose concentrations. As expected, basal secretion was significantly elevated in islets from obese or GL‐treated lean rats whereas the fold increase in GSIS was diminished. Rimonabant decreased basal hypersecretion in islets from obese rats and GL‐treated lean rats without decreasing the fold increase in GSIS. However, it decreased GSIS in islets from lean rats without affecting basal secretion. These findings indicate that Rimonabant has direct effects on islets to reduce insulin secretion when secretion is elevated above normal levels by diet or in obesity. In contrast, it appears to decrease stimulated secretion in islets from lean animals but not in obese or GL‐exposed islets.  相似文献   

20.
Central obesity is associated with low-grade inflammation that promotes type 2 diabetes and cardiovascular disease in obese individuals. The 12- and 5-lipoxygenase (12-LO and 5-LO) enzymes have been linked to inflammatory changes, leading to the development of atherosclerosis. 12-LO has also been linked recently to inflammation and insulin resistance in adipocytes. We analyzed the expression of LO and proinflammatory cytokines in adipose tissue and adipocytes in obese Zucker rats, a widely studied genetic model of obesity, insulin resistance, and the metabolic syndrome. mRNA expression of 12-LO, 5-LO, and 5-LO-activating protein (FLAP) was upregulated in adipocytes and adipose tissue from obese Zucker rats compared with those from lean rats. Concomitant with increased LO gene expression, the 12-LO product 12-HETE and the 5-LO products 5-HETE and leukotriene B4 (LTB4) were also increased in adipocytes. Furthermore, upregulation of key proinflammatory markers interleukin (IL)-6, TNFα, and monocyte chemoattractant protein-1 were observed in adipocytes isolated from obese Zucker rats. Immunohistochemistry indicated that the positive 12-LO staining in adipose tissue represents cells in addition to adipocytes. This was confirmed by Western blotting in stromal vascular fractions. These changes were in part reversed by the novel anti-inflammatory drug lisofylline (LSF). LSF also reduced p-STAT4 in visceral adipose tissue from obese Zucker rats and improved the metabolic profile, reducing fasting plasma glucose and increasing insulin sensitivity in obese Zucker rats. In 3T3-L1 adipocytes, LSF abrogated the inflammatory response induced by LO products. Thus, therapeutic agents reducing LO or STAT4 activation may provide novel tools to reduce obesity-induced inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号